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ABSTRACT

It 1s shown that the effective transfer impedance per
unit length of a thin coaxial cable shield is given by
ZS + hg/YS, where ZS and YS are respectively the cable's
inductive transfer impedance per unit length and capacitive
transfer admittance per unit length, and h is the axial pro-
pagation constant. This general result i1s illustrated by

consideration of a specific shield model, the M-filar fila-

mentary helix.




I. INTRODUCTION

Coaxial cables have been used for the transmission of electromagnetic e

energy for many years and the basic analysis of such cables is familiar

to most electrical engineers. The study of coupling of electromagnetic

fields between the interior and exterior of such cables, motivated

principally by an interest in understanding the phenomenon of crosstalk

between adjacent cables, was begun many years ago; a fundamental paper

dealing with this problem is thdt by Schelkunoff [1} published in 1934.

More recently, Kaden [2] considered the problem of perforations in théﬁ

shield, and attempts have been made to model realistic braided-wire

shields [3-6]. | W
A useful descriptor of the coaxial-cable shield is the “transfer

impedance," defined as the ratio of the rate of change of open~circuit

voltage between the center conductor and the shield to the total shield °
current:

s =Ll av

T IS dz 1=0

I is the center-conductor current, and Is denotes the shield current.

If Z_ is not zero, a term involving Z

T is introduced as a driving function

T
into the voltage-change transmission-line equation.

In 1972, following a conjecture of C. E. Baum's, Latham [4] showed
that a driving term also appears in the current-change transmission-line J
equation for coaxial cables with periodic shields. Thus two parameters
describe the exterior-to-interior coupling on coaxial cables: an induc-—
tive transfer impedance per unit length, and a capacitive transfer

admittance per unit length. These quantities are discussed more fully

in the following sections of this paper. d



It is our purpose in this paper to show that the effective shield
transfer impedance per unit length, defined as the ratio of average
axial electric field at the shield to the total shield current, actually
involves both the inductive and capacitive transfer immittances and also
depends upon the axial propagation constant. This concept is used in
formulating an external coupling impedance for the cable, defined as the
ratio of the average axial electric field at the cable surface to the
total cable current. This external coupling impedance has proven to be
useful in the study of certain "leaky-feeder" communication systems in
mine tunnels [7], in which a leaky coaxial cable is used as a passive
transmission medium.

In Section II of this paper, the transmission-line theory is re-
viewed and some necessary definitions given. In Section III we derive
the effective shield transfer impedance per unit length and the external
coupling impedance per unit length for thinly shielded cables. A épecific
cable model is analyzed for illustrative purposes in Section IV; and

Section V concludes the paper.



IT. GENERAL CONSIDERATIONS

Let it be assumed that all source and field quantities vary with
time as exp(jwt); this time dependence is suppressed in what follows.

The transmission-line equations are written¥®

I, = 2L+ I

- —_
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(1a)

(1b)

in which z is the axial coordinate of the cylindrical system (p,¢,2),

and V and I denote the line voltage and current respectively. I is the

current on the center conductor and is taken to be positive in the

+z-direction; and V is the potential of the center conductor with respect

to the shield. Z and Y denote respectively the series impedance and the

shunt admittance per unit length of the cable; ZS is the inductive

transfer impedance per unit length, and Ys is the capacitive transfer

admittance per unit length. It and Qt are respectively the total current

(i.e., the sum of the currents carried by the center conductor and the

shield) and the total charge per unit length on the cable; these quanti-

ties are related by the continuity equation

JoQ = - g

The parameters Z and Y are conveniently expressed as

Z =272 +1Z
c 8
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*With some changes in notation from [4].
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ZC and YC are respectively the series impedance and the shunt admittance
per unit length associated principally with the cable interior and the
center conductor. For a coaxial cable whose shield is confined to an
electrically thin layer at p = b and whose center conductor has radius

p = a, it is easy to show that

- jou o b
ZC Z:.L + 5 &n 3 (4a)
y = 2uiee (4b)
n a

in which u and ¢ are respectively the permeability and permittivity of

the medium £illing the region a < p < b, and Z, is the impedance per

i
unit length of the center conductor.

If the cable is axially uniform or if it has a periodic shield
whose axial period is much smaller tham the axial wavelength, and if the

excitation depends upon z as exp(-jhz), then it is convenient to write

the transmission-line equations (1) in the form

~jhV = 2T + 2 I_ (52)
~5hI = -YV -ih +— T (5b)
Y t
s
in which
V(z) v
I(z)] = I e—th
It(z) It

and Qt has been expressed in terms of It by using Eq. (2).

The transmission-~line parameters Zc’ z Yc, and YS may be determined

S

A A

once I/It and V/It are known as functions of h. Defining



r(h) = I/It (72)
hs(h) = V/It (7b)
we obtain from Egs. (5)
2
-ih"s = -rZ + Zs : (8a)
-jhr = -Yhs - jhY/Y_ (8b)

from which the transmission-line parameters may be found. The functions
r(h) and s(h) are determined from the solution of an appropriate boundary
value problem. Conversely, if the transmission-line parameters are known,

r(h) and s(h) may be expressed in terms of these parameters as follows:

Z o+ h2/Y
r(h) = =—p" (92)
Z+ h/Y
Jh@@ /Y - 2/Y )
hs(h) = S (9b)

Z+ hZ/Y
It is therefore apparent that when the transmission~line parameters
for a given cable are known, the induced current and voltage can be deter-
mined from a knowledge of the total current It. This current can be
related to the axial component of the electric field at the outer surface
of the cable by means of the external coupling impedance per unit length

Z , defined by
ec
(10)

Eza denotes the average value of Ez at the outer surface of the cable. It
is assumed that in order for this concept to be useful, the circumference
of the cable is small in comparison to the free space wavelength. The
external coupling impedance may in general be determined from the solution

of an appropriate boundary value problem.
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In the next section of this paper, we shall show that under certain
conditions the external coupling impedance may be directly cvaluated in
terms of the transmission-line parameters and the electrical properties
of the cable jacket. It is also shown that the effective transfer
impedance per unit length of the shield depends upon the axial propaga-~

tion constant h and is given by z, t hZ/YS.



III. THINLY SHIELDED COAXTIAL CABLES

We define a thin coaxial cable shield as one through which the
tangential components of elecfric field are continuoué. The tﬁin surface=-
impedance layer considered by Wait [7] is such a shield, as is the
multifilar filamentary helix considered in Section IV of this paper.

Consider a coaxial cable with a center conductor of radius a having
impedance per unit length Zi' The center conductor is surrounded by a

dielectric layer of permittivity e, extending to p = b. A thin shield

1

is located at p = b and is surrounded by an outer dielectric jacket of
permittivity €, extending to p = ¢. The permeability of both dielectrics
is assumed to be equal to Moo The geometry of this general coaxial
cable model is shown in Fig. (1).

The shield will in general be a structure periodic in both ¢ and
z, and as a consequence doubly infinite sets of space harmonics of both
TE and TM fields are necessary to describe the electromagnetic £ield of the
cable, However, the currents £ and Et and the average electric field

~

Ez involve only the TM, . space harmonic, and we shall focus attention on

00

this component of the total field in what follows.

In the interior of the cable, we have

) -2
EzOO = jmel WOO (112)
—ay
~ _ 00
H¢OO P (11b)
. c a2 2 .2 .2 2
in which kl = h kl, kl = poal, and
ay
1a f, ool 25 |
S I [ P J Alwoo = 0 (12)
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Figure 1. Geometry of the general coaxial cable model



Constructing a solution of Eq. (12) in the case A b << 1 and applying the

1
contlition
Ezoo(p=a) = ZwaZiH¢00(p=a) (13)
yields the result that for a < p < b,
~ A~ A
E (0) =T —t w24+ (14)
z00 Zﬂjwel a i

Assuming that EZOO is continuous through the shileld at p = b and similarly

A

constructing a solution for Ez in the outer jacket, we find readily that

00
" AZI ~ Az
E (p=c) = ——2—£—~2n S+ ———};—-Rn I—3--+ Z (15)
z00 2ij52 b 2ijel a i

Now dividing Eq. (15) through by It and using Egs. (3), (4), and (9a), we
obtain an expression for Zec: ‘
(z + h2/Y Y@z + h2/Y )
c ¢’ Vs 8

Z =Z, + (16)
ec 2 2 2
(zc + h /Yc) + (zs + h /Ys)

in which

- s c
2 = Zniue, fn g an

A network representation of Zec is shown in Fig. (2). It will be noted
that the shunt element representing the shield is ZS + hZ/YS. This is
the effective transfer impedance per unit length of the shield itself,

as we can show directly by expressing Ezoo(p=b) in terms of Is’ the current

on the shield. We have from Eq. (14)

-~

E_ o (0=b) = (z_ + hz/Yc)Es . (18)

H>‘H>
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Hipgure 2. Network representation of the external coupling
impedance per unit length
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~

Since It =1 +1,

S
I r(h)
T (19)
S

and therefore, using Eq. ( 9a), we obtain

-~

EzOO(p=b>

@, + hz/YS)is (20a)

~

ZTeIs (20b)

where ZTe z Zs + hz/YS denotes the effective transfer impedance per unit
length of the shield.

It is apparent that the effect of capacitive coupling of the electro-
magnetic field between the interior and the exterior of the cable is to
make the shield's effective transfer impedance spaﬁially dispersive. This
result appears to be new.

In the following section of this paper, we shall consider a specific
coaxial cable model in some detail, in order to illustrate the results

which have been presented above.

12




IV, A MULTIFILAR-HELIX SHIELDED CABLE

We coansider a coaxial cable model whose shield is an M~-filar fila-
mentary helix of pitch angle y (measured with respect to the z-axis).
For simplicity, the shield wires and the center conductor are assumed to
be perfect, and dielectrics are absent (i.e., €y = €y = eo). The shield
wires have radius r, and r is assumed to be small in comparison to
the separation of the wires from each other and to their distance from
the center conductof. The geometry of this cable model is shown in Fig.
(3).

The transmission-line parameters for this cable model have been
found by Latham [4] using electrostatic and magnetostatic considerations.
We shall reconsider the model from an electromagnetic viewpoint, assuming
that the transverse cable dimensions are small in comparison to the
free-space wavelength (i.e., kob << 1) and that the axial period of the
shield is small in comparison to the axial wavelength (bh << M tany).
The purpose of our analysis is to verify the utility of the transmission-
line formulation in this low-frequency case and to demonstrate, for this
model at least, the assertions made in the previous section regarding
the external coupling impedance and the effective transfer impedance per
unit length of the shield.

The electric and magnetic fields are expressed in terms of two

functions Y and ¢ which satisfy the scalar Helmholtz equation as follows:

E=V x ¢a +.l V x V x ¥a (21a)
z Jjwe z

(o]

jusfl
il

v x Waz - jwuo V¥ X V x @az (21b)

Y yields the TM part of the electromagnetic field and ¢ the TE part.

13
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The shield is periodic in both ¢ (period 27/M) and z (period 2mb/M coty),

and the appropriate Floquet forms for ¥ and 9 are

Y o Y ) jné - jh z
= An e o (22)
® meco | G
n=gM \ D

A

in which Wn and @n depend only upon p, and

ho= o+ BE2D (23)

We shall consider that the coaxial cable is illuminated by a TM-
polarized plane wave of frequency such that kbb << 1, Appropriate forms

for Wn and @n in each of the two regions of the problem are therefore

a<p <hb: wni = An[In(Anp)Kn(kna) - In(kna)Kn(Anp)] (242)
p = ' - 1
Qni Bn[In(knp)Kn(Ana) In(Ana)Kn(Anp)] (24b)
A jwso -
p > b: ‘yno = CnKn(Anp) - }\2 EzincIo()\op)dno (24¢)
o
no DnKn(Anp) (244)

in which Ezi is the amplitude of the z-component of the incident

ne
electric field, Sno is the Kronecker delta-function, and

A2 = n? - kg (25)

The currents on the shield filaments are initially unknown, but are
assumed to be identical because of the azimuthal uniformity of the
excitation. The space~harmonic components of the shield surface current

density at p = b are

~ Is tany
Jsqbn = 27b (262)
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A I
- _.8

szn 21h (26b)
in which the total shield current IS is simply (M cosy) times the current

on a single filament.

The boundary conditions to be applied at p = b are

~ N

zni Ezno (272)
“qmi" = By (27b)
I:\Iqmo - ﬁ¢ni = Sszn | ‘ (27¢c)
fzno - ﬁzni = -35¢n ' (274)

These conditions suffice to determine the unknown coefficients An - Dn in

termg of the shield current is and the incident;field;ﬁziné;=AThe addi-
tional boundary condition to be imposed is that,.sinde!thé'éhield wires
are assumed to be perfectly conducting, the electric field parallel to

the shield wires vanishes on the wire surfaces:

siny E, + cosy Ez = 0 (28)

¢

on shield
filament

The coefficients A - D are readily determined using Eqs. (21)-(27).

We obtain

~ ~

I K (A b) nh_ tany jue E_,

A =-S.n D {l __n J _ o _zinc . (29a)
n 2w Kn(Ana) Azb KZK O a) no
a 000

-1 . !
. Juu IS tany Kn(knb) (290
n 2% K'(x a)

n n''n

16




C. =55 % ooay [In(Knb)Kn(Ana) - In(kna)Kn(Anb)]

o zinc
+ T Io(loa)dno (29¢)

A K
Ao o(koa)

—jmuo is tany 1
= 1 ' - 1 1
Dn = Zﬂ}\n K;I(xna) [In(knb)Kn(kna) In()\na)Kn(Anb)} (29&)

Now apply the wire boundary condition of Eq. (28) at p = b, z = bécot) +

rcscy. After some algebraic simplification, the result is the relation

A~

~ _ zi -
IS(Zp + Zq) = EZTXZET [Io(lob)Ko(koa) Io(koa)Ko(Aob)] (30)
in which
xg K_(A_b)
Zp = Triue, KO<*03) [Io(kob)Ko(Aoa) - Io(koa)Ko(lob)] (31a)
-Juug tanzw -jnrsect/b Ky (Agb)
-—_ o y ' - Tt '
T lz_m e RO [1] (A bIK! (A a) - I'(X a)K! (A b)]
n=4M
® . K_(A_b)
1 -jnrsecy/b "n''n _
2Tjwe 2 e K (A _a) [In(knb)Kn(Ana) In(kna)Kn(Anb)]
0 == n'n
240
n=4{M
nhn tany 2
. l}\n - T} | (31b)

In the limiting cases kob << 1, bh << M tanV, Eqs. (30) and (31) simplify to

~

. B b
IS(ZP + Zq) = ETTX—ET n oy (32)
o "o
2
A
0 b
Zp Zﬂjweo a (33a)



i 2=1
n=4M
2 ©
h nr (2) a
ﬂjwso Qzl cos(fg secw)Gn (tany, E-tanw) (33b)
n=44M
where
(1) K (0x)
G (x,y) = W [I;(nx)Kr'l(ny) - Ir'l(ny)Kr'l(nx)] (34a)
2) Kn(nx)
G, (x,y) = E;fﬁ;? [In(nX)Kn(ny) - In(ny)Kn(nx?] (34b)

Comparison of Eq. (33b) with Latham's results indicates that
Zq = ZS + hZ/YS; however, we shall make this identification only tenta-

tively and write

=|2v
Zq ZS + h /Ys (35)
in which
Jwu 2
v o o 2 _ 2
ZS = % tan"P (1 2)
b
Juu tanzw o
- 7 cos(EE'secw)G(l)(tanw, g-tanw) (36a)
T =1 - b n b
n={M
%T'= ﬂ.is ) cos(E% secw)Giz)(tanw, %-tanw) (36b)
s JOES g=1
n=M
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Furthermore, we shall write

h2
- 71 AL
Zp ZC + 7 (37)
c
where
jou
v o= ) b
Zc 5o &n - (38a)
1 1 b
YT T 2njuwe n 3 (38b)
c , o)

Now consider the total current on the cable and the current on the

center conductor. We have

2 dlyoo
I = -27b } (39a)
t dp o=b
N d?oi
I=-2na — } (390)
p -
p=a
and it is readily found from Egs. (24a), (29a), and (32) that
~ Zﬁjweo EZinc
It = 5 (40a)
ATK (h_a)
oo 0
I=1 -1 (40b)

in the case kob << 1, Now it is easy to show using Eqs. (32), (35), (37),

and (40b) that

A 1 2 4
. zs + h /Ys
= r(h) = St (41)
It Z' 4+ h°/Y’

where

19



Z' = Zé + z! (42a)

s
1 1 1
Ty (42)
c s
The average electric field at p=b is given by
A P
za  jwe Yoo = jwe o1 (432)
o o)
N
= m—— n 2 (43b)
o
= @' + n2/YNI (43¢)
c c

and the external coupling impedance is therefore, from Eqs. (41) and (43c),

(z' + hZ/Y')(Z' + hZ/Y')
Ze - c c 2’S S (44)
¢ Z' + h°/Y"

Furthermore, it is easy to show ﬁsing the above results that

Aza 2
-— 1 \
=z' +h/Y (45)

H>l

s
so that the effective transfer impedance per unit length of the shield

is given by

Zy, = 2. + bO/Y] | (46)
It is apparent from Eqs. (44) and (46) that the external coupling
impedance and the effective shield transfer impedance per unit length have
the forms which were discussed in the previous section of this paper. It

remains to show that Z; =Zs Yé = Ys’ Zé = Zc, and Yé = Yc’ i.e., that

the primed quantities are actually identical to the transmission-line

20




parameters for this cable. We have already derived in Eq. (41) an expression
for r(h); we now obtain an expression for s(h) as follows. The potential

of the center conductor with respect to the shield is defined to be the
integral of the radial electric field from the center conductor to a point

on one of the shield filaments, the integral being taken at constant ¢ and

z. In the low-frequency case under consideration, the TE part of the radial
electric field does not contribute to V, and as a consequence

1 %Y

- jweo'az

47)
filament
surface

From Egqs. (24a) and (29a), in the limits kob << 1, bh << Mtany, we find

s T hIs b h Is ot nr (2) a
V = T Qn-g = os Z cos(-—-g-secd))Gn (tany, B-tan¢)
o) 0 g=1
n=44M
jh E_.
+ —2ime 4y g- (48)
ATK (X a)
oo a

and using Eqs. (36b), (38b), and (40a), we have

6 _ ~jh Is . jh It
X Y!
s

(49)

~

so that division by It and use of Eqs. (40b) and (41) yields

. ' vt '
jh(zl/Y z'/Y))

hs(h) = (50)

Z' + hZ/Y'
It is now necessary only to compare Eq. (41) with Eq. (9a) and Eq. (50)

with Eq. (9b), and it is apparent .that

e,y

T - == —_—
ZC ZC 5 gn " (51a)
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}
H

11 1 b
Y'Y 2njwe S (51a)
¢ c o

. 2 2
Jurg tan Y a2 jmuc tan ¢ < (1)
L * N N s a
Zs = ZS o (l bz} + - 221 cos(nﬂc)Gn (tany, 5 tany)
' n=4M
(51c)
T = %f-= ﬂ'is 2 cos(nwc)G§2>(tan¢, %-tan¢) (51d)
s s J o %=1

in which we have introduced the expression for the optical coverage of”
the shield

- Mr secy
b

(52)
Therefore, for this particular cable model in the low-frequency case

kob << 1, bh << Mtany, the effective transfer impedance per unit length
of the shield and the external coupling impedance per unit length are
given by the expressions derived in Section IIIrof this paper. They can
therefore be expressed directly in terms of the transmission-line para-
meters of the cable.

It is of interest to express the infinite series in Egs. (51lc¢) and
(51d) above in closed form if possible. Latham has presented several
expressions for these, applicable in various special casés. The one which
may be of most interest is the case in which M is sufficiently large to
permit the replacement of the modified Bessel functions in the series

expressions by thelr uniform asymptotic forms [8]. The series may then

be summed without difficulty, and we find that if M 2n(b/a) >> 1+, then

TThis assumption means physically that the n#0 space harmonics do not

penetrate into the cable interior to the depth of the center conductor.
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2
juu  tan' y 2y juu  secy
v O -2 - 0 . TC
Zs & i [l bz} i 2n (2sin 2) (53a)
}_.: _-cosy 2n (2sin 1%) (53b)

Y 2Mjwe
s 0

the expressions being valid when ¢ < 1.

A special feature of the multifilar helix shielded cable studied in
this section is the angular asymmetry of the shield. A consequence of
this asymmetry is that the n = 0 space harmonics for TE and T™M fields are
coupled, so that the scattering characteristics of this cable are in-
sufficiently described by the external impedance alone. We therefore
augment the description of this cable as a scatterer by calculating the
total magnetic current carried by the cable. Defining this magnetic

current

27
- - f bE, (p=b)do (54)
. 5

tm

we readily obtain

juyp b I tany 2
_ o s _a’
Lim = 7 (l 2} (55)
b
or equivalently
s (1 - —af-]E (56)
tm ZZTe b2 za

It will be noted that Itm = 0 when ¥ = 0 and the angular asymmetry dis-

appears. In a cable whose shield comprised two counterwound helices (i.e.,

pitch angles *¥) the angular asymmetry would not be present and the total
magnetic current would be zero; and there would be no "macroscopic" coupling
between TE and TM parts of the external field due to the presence of the

cable.
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V. CONCLUDING REMARKS

We have defined a '"thin" coaxial cable shield and have shown that
for such a shield, the external coupling impedance per unit length is
related in a relatively simple way to the transmission-~line parameters
of the cable itself and to the properties of the outer dielectric jacket.
The result indicates that the effective transfer impedance per unit lenéth
of the shield is not simply its inductive transfer impedance per unit
length, but it also contains a cgntribution due to capacitive coupling{
Thus the external behavior of the cable cannot completely be described‘by
the inductive transfer impedance alone; capacitive effects must also be
considered.

It is emphasized once again that the transmission-line formulation is
useful only when the cable is small compared to wavelength, both in trans-
verse and axial (period) dimensions. Otherwise a complete electrodynamic
treatment of the coupling problem is necessary and the simplifications
afforded by the use of the transmission-line parameters will lead to
incorrect results. However, in the many practicalrcases in which the
approximations are valid, the transmission-line formulation of the
external impedance provides a simple means of relating the external
behavior of a leaky coaxial cable to its properties as a tramnsmission~line,

In the event that the tangential components of the electric field
cannot be considered continuous through the shield, the simple relation
ZTe = ZS + hZ/YS may no longer apply, although we suspect that the
capacitive transfer admittance will still influence ZTe' This problem
is presently being studied, and the results will be reported in a

future paper.
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