ELECTROMAGNETIC TRANSMISSION THROUGH A RECTANGULAR APERTURE IN A PERFECTLY CONDUCTING PLANE

by

Joseph R. Mautz
Roger F. Harrington

TECHNICAL REPORT TR-76-1

February 1976

This work was sponsored by Air Force Cambridge Research Laboratories under Contract F19628-73-C-0047 and by the National Science Foundation under Grant GK-38309.

DEPARTMENT OF
ELECTRICAL AND COMPUTER ENGINEERING
SYRACUSE UNIVERSITY
SYRACUSE, NEW YORK 13210
ABSTRACT

A computer program is developed for calculating the transmission characteristics of a rectangular aperture in a perfectly conducting plane excited by an incident plane wave. The solution is obtained from the integral equation for the equivalent magnetic current using the method of moments. The expansion functions and testing functions are pulses in the direction transverse to current flow, and triangles in the direction of current flow. Quantities computed are the equivalent magnetic current and the transmission cross section patterns. To illustrate the solution, computations are given for narrow slots and for square apertures. The computer program is described and listed with sample input-output data.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PART ONE - THEORY AND EXAMPLES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. STATEMENT OF THE PROBLEM</td>
<td>3</td>
</tr>
<tr>
<td>III. ADMITTANCE MATRIX</td>
<td>3</td>
</tr>
<tr>
<td>IV. PLANE WAVE EXCITATION AND MEASUREMENT VECTORS</td>
<td>12</td>
</tr>
<tr>
<td>V. REPRESENTATIVE COMPUTATIONS</td>
<td>14</td>
</tr>
<tr>
<td>VI. DISCUSSION</td>
<td>21</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART TWO - COMPUTER PROGRAMS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. DESCRIPTION OF THE MAIN PROGRAM</td>
<td>23</td>
</tr>
<tr>
<td>II. DESCRIPTION OF SUBROUTINE YMAT</td>
<td>30</td>
</tr>
<tr>
<td>III. DESCRIPTION OF SUBROUTINE PLANE</td>
<td>40</td>
</tr>
<tr>
<td>IV. DESCRIPTION OF THE PROGRAM TO PLOT PATTERNS</td>
<td>42</td>
</tr>
</tbody>
</table>
PART ONE
THEORY AND EXAMPLES

I. INTRODUCTION

Formulas for the computation of plane wave transmission through a rectangular aperture in a perfectly conducting plane are derived in Part One. The computer programs which use these formulas are given in Part Two. The general theory of solution is derived in a previous report [1]. Basically, the procedure is an application of the method of moments to an integral equation formulation of the problem. The unknown to be determined is the equivalent magnetic current over the aperture region, which is proportional to the tangential electric field in the aperture. The solution is expressed in terms of an aperture admittance matrix, which is dual to the impedance matrix for the complementary conducting plate. Once the equivalent magnetic current is obtained, the electromagnetic field can be computed via potential integrals. The notation used in this report is the same as that used in [1]. We abstract equations from this previous work as we need them, referring to them by equation number. We do not attempt to summarize the theory here.

Previous studies of aperture problems include those for small apertures [2,3], and those for circular apertures [4,5]. Some results for

Fig. 1. Rectangular aperture in a conducting plane.
apertures of arbitrary shape have been obtained using Babinet's principle plus a wire grid approximation to the complementary conducting plate [6,7]. The reader may consult these papers for other references.

II. STATEMENT OF THE PROBLEM

Figure 1 shows the problem to be considered and defines the coordinates and parameters to be used. The infinitely conducting plate covers the entire \(z=0 \) plane except for the aperture, which is rectangular in shape with side lengths \(L_x \Delta x \) and \(L_y \Delta y \) in the \(x \) and \(y \) directions, respectively. The excitation of the aperture is a uniform plane wave incident from the region \(z < 0 \). The field to be computed is the far zone magnetic field in the region \(z > 0 \), at the angles \(\theta, \phi \).

The solution is expressed in terms of the equivalent magnetic current \(\mathbf{M} = \mathbf{\hat{z}} \times \mathbf{E} \), where \(\mathbf{\hat{z}} \) is the unit \(z \)-directed vector and \(\mathbf{E} \) is the electric field in the aperture. To compute \(\mathbf{M} \), we use a linear expansion in terms of basis functions \(\mathbf{M}_i \) and evaluate the coefficients by the method of moments. This involves determining a generalized admittance matrix, evaluated in Section III, and an excitation vector. To determine the field produced by \(\mathbf{M} \), we need a measurement vector. The excitation and measurement vectors for the present problem are of the same form, and are evaluated in Section IV.

III. ADMITTANCE MATRIX

According to [1, Eq. (28)] and [1, Eq. (10)], the admittance matrix \([\mathbf{Y}] \) is given by

\[
Y_{ij} = (Y^a + Y^b)_{ij} = -4\mathbf{\langle W_i, H(M_j) \rangle}
\]

where $H(M_j)$ is the magnetic field produced by M_j radiating in free space. The magnetic field $H(M_j)$ can be expressed in terms of an electric vector potential F and magnetic scalar potential ϕ as [8]

$$H(M_j) = -j \omega F_j - \nabla \phi_j$$ \hspace{1cm} (2)

where

$$F_j = \frac{e}{4\pi} \iint_{\text{apert.}} \frac{e^{-jk|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{s}$$ \hspace{1cm} (3)

$$\phi_j = \frac{1}{4\pi \mu} \iint_{\text{apert.}} \frac{\rho_j e^{-jk|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{s}$$ \hspace{1cm} (4)

$$\rho_j = -\frac{\nabla \times M_j}{-j\omega}$$ \hspace{1cm} (5)

where \mathbf{r} and \mathbf{r}' are respectively the vectors to the field and source points in the aperture, ω is the angular frequency, ε is the capacitance of free space, μ is the permeability of free space, and $k = \omega \sqrt{\mu / \varepsilon}$ is the propagation constant in free space. Substituting [1, Eq. (7)] and (2) into (1), we obtain

$$Y_{ij} = 4 \iint_{\text{apert.}} \frac{W_i \cdot (j \omega F_j + \nabla \phi_j)}{W_j} d\mathbf{s}.$$ \hspace{1cm} (6)

Because of the identity

$$0 = \iint_{\text{apert.}} \nabla \cdot (\phi_j W_i) d\mathbf{s} = \iint_{\text{apert.}} W_i \cdot \nabla \phi_j d\mathbf{s} + \iint_{\text{apert.}} \phi_j \nabla \cdot W_i d\mathbf{s}$$ \hspace{1cm} (7)

(6) becomes

$$Y_{ij} = 4j\omega \iint_{\text{apert.}} (F_j \cdot W_i + \phi_j \rho_i) d\mathbf{s}$$ \hspace{1cm} (8)

where

\[\rho_i = \frac{\bar{W}_i \cdot \bar{A}_i}{-j \omega} \]

(9)

We choose the set of testing functions \(\bar{W}_i \) equal to the set of expansion functions \(\bar{A}_i \). The rectangular aperture \(0 \leq x \leq L_x \Delta x, 0 \leq y \leq L_y \Delta y \) where \(L_x \) and \(L_y \) are integers is divided into rectangular subareas of length \(\Delta x \) in \(x \) and \(\Delta y \) in \(y \). The set \(\bar{A}_i \) of expansion functions is split into a set \(\bar{A}_i^X \) of \(x \) directed magnetic currents and a set \(\bar{A}_i^Y \) of \(y \) directed magnetic currents defined by

\[
\begin{align*}
\bar{A}_i^X &= \sum_{p=1}^{L_x} \bar{T}_i^X(x) \hat{p}^X(y), & \hat{p} = 1, 2, \ldots, L_x - 1 \\
\bar{A}_i^Y &= \sum_{q=1}^{L_y} \bar{T}_i^Y(y) \hat{p}^Y(x), & \hat{q} = 1, 2, \ldots, L_y - 1
\end{align*}
\]

(10)

(11)

where \(\bar{T}_i^X(x) \) and \(\bar{T}_i^Y(y) \) are triangle functions defined by

\[
\bar{T}_i^X(x) = \begin{cases}
\frac{x - (p-1)\Delta x}{\Delta x} & (p-1) \Delta x \leq x \leq p\Delta x \\
\frac{(p+1)\Delta x - x}{\Delta x} & p\Delta x \leq x \leq (p+1)\Delta x \\
0 & |x - p\Delta x| \geq \Delta x
\end{cases}
\]

(12)

\[
\bar{T}_i^Y(y) = \begin{cases}
\frac{y - (q-1)\Delta y}{\Delta y} & (q-1)\Delta y \leq y \leq q\Delta y \\
\frac{(q+1)\Delta y - y}{\Delta y} & q\Delta y \leq y \leq (q+1)\Delta y \\
0 & |y - q\Delta y| \geq \Delta y
\end{cases}
\]

(13)

and \(\hat{p}^X(x) \) and \(\hat{p}^Y(y) \) are pulse functions defined by

and
\[p^X_p(x) = \begin{cases}
1 & (p-1)\Delta x \leq x < p\Delta x \\
0 & \text{all other } x
\end{cases} \quad (14) \]

\[p^Y_q(y) = \begin{cases}
1 & (q-1)\Delta y \leq y < q\Delta y \\
0 & \text{all other } y
\end{cases} \quad (15) \]

The magnetic charge sheets, say \(\rho^X \) and \(\rho^Y \) associated with \(\omega^X \) and \(\omega^Y \) are obtained from (5) as

\[\rho^X_{p+(q-1)(L_x-1)} = \frac{(p^X(p) - p^X(p+1))p^Y(q)}{-j\omega \Delta x} \quad (16) \]

\[\rho^Y_{p+(q-1)L_x} = \frac{(p^Y(q) - p^Y(q+1))p^X(p)}{-j\omega \Delta y} \quad (17) \]

Introduction of the two types of expansion functions \(M^X_j \) and \(M^Y_j \) and the two types of testing functions \(\psi^X_i \) and \(\psi^Y_i \) into (8) gives rise to four \(Y \) submatrices defined by

\[Y^uv_{ij} = 4j\omega \int \int \left(F^V_j \cdot M^u_i + \phi^V_j \cdot \psi^u_i \right) ds \quad \text{apert.} \quad (18) \]

where \(u \) is either \(x \) or \(y \) and \(v \) is either \(x \) or \(y \). In (18), \(F^V_j \) and \(\phi^V_j \) are the electric vector and magnetic scalar potentials due to \(M^V_j \).

The integrations over the "field" magnetic current and charge \(M^u_j \) and \(\rho^u_j \) explicit in (18) are approximated by sampling the integrands at two points. Hence,

\[Y^X_{ij} = 4j\omega \Delta x \Delta y \left[\frac{1}{2} (F^V_j \cdot \frac{\partial}{\partial x}) x_p, y_q + \frac{1}{2} (F^V_j \cdot \frac{\partial}{\partial y}) x_p, y_q \right. \]

\[- \left. \frac{1}{j\omega \Delta x} (\phi^V_j)_x y_p, y_q + \frac{1}{j\omega \Delta y} (\phi^V_j)_y x_p, y_q \right] \quad (19) \]
\[
Y_{ij}^{yv} = 4j\omega \Delta x \Delta y \left[\frac{1}{2} (F_j^y \cdot \dot{\gamma})_{x_p} y_q + \frac{1}{2} (F_j^y \cdot \dot{\gamma})_{x_p} y_{q+1} \right.
\]

\[
- \frac{1}{j \omega \Delta y} (\phi_j^y)_{x_p} y_q + \frac{1}{j \omega \Delta y} (\phi_j^y)_{x_p} y_{q+1} \left. \right] \right. \tag{20}
\]

where \(v \) is either \(x \) or \(y \) and

\[
x_p = (p - 0.5) \Delta x \tag{21}
\]

\[
y_q = (q - 0.5) \Delta y \tag{22}
\]

To determine \(p \) and \(q \) in terms of \(i \) in (19) or (20), refer to (10) or (11).

Substitution of (10), (11), (16), (17), (3) and (4) into (19) and (20) yields

\[
Y_{ij}^{xx} = \frac{j \Delta x \Delta y}{\pi \eta} \left[\frac{1}{2} I_c(s-p, t-q) - \frac{1}{2} I_x(s-p+1, t-q) \right.
\]

\[
+ \frac{(s-p + 3/2)}{2} I_c(s-p+1, t-q) + \frac{1}{2} I_x(s-p-1, t-q) - \frac{(s-p-3/2)}{2} I_c(s-p-1, t-q) \]

\[
+ \frac{1}{k \Delta x} (I_c(s-p+1, t-q) - 2I_c(s-p, t-q) + I_c(s-p-1, t-q)) \right] \tag{23}
\]

\[
Y_{ij}^{yx} = \frac{1}{\pi \eta k} \left[- I_c(s-p, t-q) + I_c(s-p+1, t-q) \right.
\]

\[
+ I_c(s-p, t-q-1) - I_c(s-p+1, t-q-1) \right] \tag{24}
\]

\[
Y_{ij}^{xy} = \frac{1}{\pi \eta k} \left[- I_c(s-p, t-q) + I_c(s-p, t-q+1) \right.
\]

\[
+ I_c(s-p-1, t-q) - I_c(s-p-1, t-q+1) \right] \tag{25}
\]
\[\gamma_{ij}^{yy} = \frac{j\Delta x \Delta y}{\pi \eta} \left[\frac{1}{2} I_c(s-p, t-q) - \frac{1}{2} I_y(s-p, t-q+1)
ight. \\
+ \frac{(t-q+3/2)}{2} I_c(s-p, t-q+1) + \frac{1}{2} I_y(s-p, t-q-1) - \frac{(t-q-3/2)}{2} I_c(s-p, t-q-1) \\
+ \frac{1}{k^2 \Delta y^2} \left(I_c(s-p, t-q+1) - 2I_c(s-p, t-q) + I_c(s-p, t-q-1) \right) \right] \] (26)

where \(\eta = \sqrt{\frac{\mu}{\varepsilon}} = 376.730 \) ohms is the intrinsic impedance for empty space and where

\[I_c(s,t) = k \int_{y=(s-1/2)\Delta y}^{(t+1/2)\Delta y} \int_{x=(s-1/2)\Delta x}^{(s+1/2)\Delta x} dx \, dy \, \frac{e^{-jk \sqrt{x^2 + y^2}}}{\sqrt{x^2 + y^2}} \] (27)

\[I_x(s,t) = \frac{k}{\Delta x} \int_{y=(s-1/2)\Delta y}^{(t+1/2)\Delta y} \int_{x=(s-1/2)\Delta x}^{(s+1/2)\Delta x} xdx \, dy \, \frac{e^{-jk \sqrt{x^2 + y^2}}}{\sqrt{x^2 + y^2}} \] (28)

\[I_y(s,t) = \frac{k}{\Delta y} \int_{y=(s-1/2)\Delta y}^{(t+1/2)\Delta y} \int_{x=(s-1/2)\Delta x}^{(s+1/2)\Delta x} ydy \, dx \, \frac{e^{-jk \sqrt{x^2 + y^2}}}{\sqrt{x^2 + y^2}} \] (29)

\(I_c(s,t) \) is even in both \(s \) and \(t \), \(I_x(s,t) \) is odd in \(s \) and even in \(t \), and \(I_y(s,t) \) is even in \(s \) and odd in \(t \). In (23) to (26), \(\gamma_{ij}^{uv} \) is the interaction of the expansion function \(m_i^u \) with the testing function \(m_j^v \). For the testing function \(m_i^x \),

\[i = p + (q-1)(L_x-1), \quad \begin{cases} p = 1, 2, \ldots, L_x-1 \\ q = 1, 2, \ldots, L_y \end{cases} \] (30)

whereas for the testing function \(m_i^y \),

\[i = p + (q-1)L_x, \quad \begin{cases} p = 1, 2, \ldots, L_x \\ q = 1, 2, \ldots, L_y-1 \end{cases} \] (31)
For the expansion function M_{xj}^X,

\[
\begin{align*}
 j &= s + (t-1)(L_x - 1), \\
 t &= 1, 2, \ldots L_y
\end{align*}
\]

(32)

whereas for the expansion function M_{yj}^Y,

\[
\begin{align*}
 j &= s + (t-1)L_x, \\
 t &= 1, 2, \ldots L_y - 1
\end{align*}
\]

(33)

The four dimensional array Y_{ij}^{XX} of (23) in which s, p, t, and q vary separately can be constructed from the two dimensional array obtained by varying the two integers $(s-p)$ and $(t-q)$ in (23). In (23),

\[
2 - L_x \leq (s-p) \leq L_x - 2
\]

\[
1 - L_y \leq (t-q) \leq L_y - 1
\]

but because (23) is even in both $(s-p)$ and $(t-q)$,

\[
(s-p) = 0, 1, 2, \ldots L_x - 2
\]

\[
(t-q) = 0, 1, 2, \ldots L_y - 1
\]

(34)

is sufficient. In (24),

\[
1 - L_x \leq (s-p) \leq L_x - 2
\]

\[
2 - L_y \leq (t-q) \leq L_y - 1
\]

but because (24) is odd about $(s-p) = -1/2$ and odd about $(t-q) = 1/2$,

\[
(s-p) = 0, 1, 2, \ldots L_x - 2
\]

\[
(t-q) = 1, 2, 3, \ldots L_y - 1
\]

(35)

is sufficient. In (25),
\[2 - L_x \leq (s-p) \leq L_x - 1\]
\[1 - L_y \leq (t-q) \leq L_y - 2\]

but because (25) is odd about \((s-p) = 1/2\) and odd about \((t-q) = -1/2\),
\[(s-p) = 1, 2, 3, \ldots L_x - 1\]
\[(t-q) = 0, 1, 2, \ldots L_y - 2\]

is sufficient. Finally, in (26),
\[1 - L_x \leq (s-p) \leq L_x - 1\]
\[2 - L_y \leq (t-q) \leq L_y - 2\]

but because (26) is even in both \((s-p)\) and \((t-q)\),
\[(s-p) = 0, 1, 2, \ldots L_x - 1\]
\[(t-q) = 0, 1, 2, \ldots L_y - 2\]

is sufficient. From inspection of (23) to (26) and (34) to (37),
\[s = -1, 0, 1, \ldots L_x - 1\]
\[t = -1, 0, 1, \ldots L_y - 1\]

is adequate in (27) to (29).

The integrals (27) to (29) are evaluated by using the following four term approximation
\[e^{-jkr} \approx e^{-jk r_0} (1 - jkr_0^2 - \frac{k^2}{2} (r - r_0)^2 + \frac{jk^3}{6} (r - r_0)^3)\] (39)

where
\[r = \sqrt{x^2 + y^2} \] \hspace{1cm} (40)

\[r_o = \sqrt{(s\Delta x)^2 + (t\Delta y)^2} \] \hspace{1cm} (41)

Substitution of (39) into (27) yields

\[
I_c(s,t) = \left[k(1 + jkr_o - \frac{k^2 r_o^2}{2} - \frac{jkr_o^3}{6}) \right] \int \frac{dx\,dy}{r} \\
+ k^2 (-j + kr_o + \frac{jkr_o^2}{2}) \int \frac{dx\,dy}{r} + k^3 (-\frac{1}{2} - \frac{jkr_o}{2}) \int r\,dx\,dy \\
+ \frac{jk^4}{6} \int r^2 \,dx\,dy \, e^{-jkr_o}
\] \hspace{1cm} (42)

where the limits on all the integrals in (42) are the same as those in (27). The approximations to (28) or (29) are given by (42) with an additional factor of either \(\frac{x}{\Delta x} \) or \(\frac{y}{\Delta y} \) in the integrands. Three of the required integrals are

\[\int \int dx\,dy = \Delta x\Delta y \] \hspace{1cm} (43)

\[\int \int x \,dx\,dy = s\Delta x^2 \Delta y \] \hspace{1cm} (44)

\[\int \int y \,dx\,dy = t\Delta x\Delta y^2 \] \hspace{1cm} (45)

The indefinite integrals associated with the rest of the required integrals are

\[\int \int \frac{dx\,dy}{r} = x \log(y + r) + y \log(x + r) \] \hspace{1cm} (46)

\[\int \int r \,dx\,dy = \frac{xyr}{3} + \frac{x^3}{6} \log(y + r) + \frac{y^3}{6} \log(x + r) \] \hspace{1cm} (47)
\[\int \int r^2 \, dx \, dy = \frac{xyr^2}{3} \quad (48) \]
\[\int \frac{xdx \, dy}{r} = \frac{yr}{2} + \frac{x^2}{2} \log (y + r) \quad (49) \]
\[\int xrdx \, dy = yr\left(\frac{r^2}{12} + \frac{x^4}{8}\right) + \frac{x^4}{8} \log (y + r) \quad (50) \]
\[\int xr^2 \, dx \, dy = x^2 y\left(\frac{x^2}{4} + \frac{y^2}{6}\right) \quad (51) \]
\[\int \frac{ydx \, dy}{r} = \frac{xr}{2} + \frac{y^2}{2} \log (x + r) \quad (52) \]
\[\int yr \, dx \, dy = xr\left(\frac{r^2}{12} + \frac{y^2}{8}\right) + \frac{y^4}{8} \log (x + r) \quad (53) \]
\[\int yr^2 \, dx \, dy = y^2 x\left(\frac{y^2}{4} + \frac{x^2}{6}\right) \quad (54) \]

The reader can verify (46) to (54) by showing that, in each case, the mixed second partial derivative \(\frac{\partial^2}{\partial x \partial y} \) of the right hand side is equal to the integrand on the left hand side. The definite integral is obtained from the indefinite integral by adding the indefinite integral evaluated at both upper limits to that at both lower limits and subtracting both evaluations of the indefinite integral at the mixed (one upper, one lower) limits.

IV. PLANE WAVE EXCITATION AND MEASUREMENT VECTORS

The plane wave excitation vector \(\vec{e}_i \) of [1, Eq. (32)] and the plane wave measurement vector \(\vec{e}_m \) of [1, Eq. (37)] are of the same form except for a minus sign. We therefore need to evaluate only one of them, say the measurement vector \(\vec{e}_m \). We specialize it to four principal plane patterns as
\[(P_{i}^{\mu})_{\theta y} = -2 \int \int_{\text{apert.}} M_{\mu i}^{u} \cdot \hat{\theta} e^{jkx} \cos \theta \, dx dy \quad (55)\]

\[(P_{i}^{\mu})_{\phi x} = -2 \int \int_{\text{apert.}} M_{\mu i}^{u} \cdot \hat{\phi} e^{jky} \cos \phi \, dx dy \quad (57)\]

\[(P_{i}^{\mu})_{\phi x} = -2 \int \int_{\text{apert.}} M_{\mu i}^{u} \cdot \hat{x} e^{jky} \cos \phi \, dx dy \quad (58)\]

The superscript \(u\) is necessary because \(M_{\mu i}\) has been split up into \(M_{\mu i}^{x}\) and \(M_{\mu i}^{y}\) of (10) and (11). In (55) to (58), \(\hat{\theta}\), \(\hat{y}\), \(\hat{\phi}\), and \(\hat{x}\) are unit vectors in the \(\theta\), \(y\), \(\phi\), and \(x\) directions respectively where, as shown in Fig. 1, \(\theta\) is measured from the positive \(x\) axis in the \(y = 0\) plane and \(\phi\) is measured from the positive \(y\) axis in the \(x = 0\) plane. For measurement vectors, \(0^\circ \leq \theta \leq 180^\circ\), \(0^\circ \leq \phi \leq 180^\circ\). \((P_{i}^{\mu})_{\theta y}\) is for a \(\hat{\theta}\) polarized measurement in the \(y = 0\) plane, \((P_{i}^{\mu})_{\phi y}\) is for a \(\hat{y}\) polarized measurement in the \(y = 0\) plane, \((P_{i}^{\mu})_{\phi x}\) is for a \(\hat{\phi}\) polarized measurement in the \(x = 0\) plane, and \((P_{i}^{\mu})_{\phi x}\) is for a \(\hat{x}\) polarized measurement in the \(x = 0\) plane. Because our set of testing functions \(W_{m}\) is the same as the set of expansion functions \(M_{\mu i}\), the plane wave excitation vector \(P_{i}^{\mu}\) of [1, Eq. (32)] is obtained by putting \(180^\circ \leq \theta \leq 360^\circ\), \(180^\circ \leq \phi \leq 360^\circ\) in the negative of one of the equations (55) to (58).

Substituting (10) and (11) into (55) to (58) we obtain, with the help of [9]

\[
(P_{p+(q-1)(L_x-1)}^{mx})_{xy} = 2\Delta x \Delta y \sin \theta \left(\frac{k\Delta x \cos \theta}{2} \right)^2 e^{jkp\Delta x \cos \theta} \left\{ \begin{array}{ll}
p = 1, 2, \ldots L_x - 1 \\q = 1, 2, \ldots L_y \\
\end{array} \right.
\]

(59)

\[
(P_{i}^{my})_{y} = 0, \quad i = 1, 2, \ldots L_x (L_y - 1)
\]

(60)

\[
(P_{i}^{mx})_{xy} = 0, \quad i = 1, 2, \ldots (L_x - 1)L_y
\]

(61)

\[
(P_{p+(q-1)L_x}^{my})_{yy} = -2\Delta x \Delta y \left(\frac{k\Delta x \cos \theta}{2} \right) e^{jk(p-1/2)\Delta x \cos \theta} \left\{ \begin{array}{ll}
p = 1, 2, \ldots L_x \\q = 1, 2, \ldots L_y - 1 \\
\end{array} \right.
\]

(62)

\[
(P_{i}^{mx})_{x} = 0, \quad i = 1, 2, \ldots (L_x - 1)L_y
\]

(63)

\[
(P_{p+(q-1)L_x}^{my})_{x} = 2\Delta x \Delta y \sin \phi \left(\frac{k\Delta y \cos \phi}{2} \right)^2 e^{jkq\Delta y \cos \phi} \left\{ \begin{array}{ll}
p = 1, 2, \ldots L_x \\q = 1, 2, \ldots L_y - 1 \\
\end{array} \right.
\]

(64)

\[
(P_{p+(q-1)(L_x-1)}^{mx})_{xx} = -2\Delta x \Delta y \left(\frac{k\Delta y \cos \phi}{2} \right) e^{jk(q-1/2)\Delta y \cos \phi} \left\{ \begin{array}{ll}
p = 1, 2, \ldots L_x - 1 \\q = 1, 2, \ldots L_y \\
\end{array} \right.
\]

(65)

\[
(P_{i}^{my})_{xx} = 0, \quad i = 1, 2, \ldots L_x (L_y - 1)
\]

(66)

V. REPRESENTATIVE COMPUTATIONS

A versatile computer program has been developed using the preceding formulas. This program is described and listed in Part Two of this report. Some representative computations obtained with this program are given in this section.
The first computations were made for a narrow slot, of width \(\lambda/20 \) and of variable length \(L \). The far-zone quantity plotted was the transmission cross section, defined as [1, Eq. (39)]

\[
\tau = 2\pi r^2 |H_m|^2 \tag{67}
\]

where \(H_m \) is the component of magnetic field being considered. We use the notation:

\[
\tau_{zy} = 2\pi r^2 |H_\theta|^2 \text{ in the } y = 0 \text{ plane,} \tag{68}
\]

\[
\tau_{xx} = 2\pi r^2 |H_x|^2 \text{ in the } x = 0 \text{ plane.}
\]

For the case being considered, the orthogonal components of \(H \) in these two planes were zero. Figure 2 shows plots of \(\tau_{zy} \) and \(\tau_{xx} \) for \(x \)-directed slots of width \(\lambda/20 \) and length (a) \(L = \lambda/4 \), (b) \(L = \lambda/2 \), (c) \(L = 3\lambda/4 \), and (d) \(L = \lambda \). In all cases the excitation was due to a plane wave normally incident on the conducting plane with the magnetic field in the \(x \) direction. Note the large transmission cross section for \(L = \lambda/2 \), case (b), due to the slot being near resonance. The plots of \(\tau \) are of the same form as scattering cross section from the complementary conducting strips, as known from Babinet’s principle.

Figure 3 shows plots of the equivalent magnetic current in the aperture region for the same slots. Since \(\mathbf{M} = \mathbf{E} \times \mathbf{H} \), they are also plots of the tangential component of \(\mathbf{E} \) in the slots. Again note the large value of \(\mathbf{M} \) for the case \(L = \lambda/2 \), which is near resonance. Note also that, for short slots (\(L \leq 3\lambda/4 \)), the \(\mathbf{M} \) is almost equiphaseal and closely approximated by a half sine wave.

Next, computations were made to test the rate of convergence of the solution as the number of subsections was increased. A slot of width \(\lambda/10 \) and length \(2\lambda \) was chosen for the study. Again the excitation is a plane-wave normally incident on the conducting plane with the magnetic field in the \(x \) direction. Figure 4 shows plots of \(\tau_{zy} \) and \(\tau_{xx} \) for the cases (a) 39, (b) 19, (c) 9, and (d) 4 triangular expansion
Fig. 2. Transmission cross section for slots of length L in the x direction and width λ/20 in the y direction. (a) L = λ/4, (b) L = λ/2, (c) L = 3λ/4, (d) L = λ. Excitation is by a plane wave normally incident on the conducting plane with magnetic field in the x direction.
Fig. 3. Magnitude and phase of $|\mathcal{M}/\mathcal{E}|$, where \mathcal{M} is the x-directed magnetic current and \mathcal{E} is the incident electric field, for the same slots as for Fig. 2. (a) $L = \lambda/4$, (b) $L = \lambda/2$, (c) $L = 3\lambda/4$, (d) $L = \lambda$. Circles denote magnitude, triangles denote phase.
Fig. 4. Transmission cross section when the number of expansion functions is (a) 39, (b) 19, (c) 9, and (d) 4. Computations are for a slot of length 2λ in the x direction and width $\lambda/10$ in the y direction. Excitation is by a plane wave normally incident on the conducting plane with magnetic field in the x direction.
Fig. 5. Magnitude and phase of $\frac{|M|}{|F^i|}$, where M is the x-directed magnetic current and F^i is the incident electric field, when the number of expansion functions is (a) 39, (b) 19, (c) 9, and (d) 4. Circles denote magnitude, triangles denote phase. Computations are for the same slot as for Fig. 4.
Fig. 6. Transmission cross sections for a square aperture of side length L, excited by a plane wave with H in the xz plane and incident at an angle θ from the normal direction in the H plane. (a) $L = \lambda/4$, $\theta = 0$. (b) $L = \lambda/4$, $\theta = 45^\circ$. (c) $L = \lambda/2$, $\theta = 0$. (d) $L = \lambda/2$, $\theta = 45^\circ$.
functions respectively. Note that the patterns (a) and (b) are essentially the same, and pattern (c) is only slightly different. They differ appreciably from (d), which results from only 4 expansion functions. The difference in the solutions as the number of expansion functions is decreased is better illustrated by plots of \mathbf{M}, as shown in Fig. 5. These are for the same cases as the corresponding cases of Fig. 4. It can be seen clearly how the computed equivalent current in the slot region changes as the number of subsections is reduced. As a rule of thumb, for near-field quantities (such as \mathbf{M}) one should use subareas of length $\lambda/10$ or less and for far-field quantities (such as τ) length $\lambda/5$ or less.

Finally, Fig. 6 shows some computations for wider apertures and excitations by waves not normally incident on the conducting plane. All cases shown are for square apertures, of side length L. Figures 6(a) and (b) are for $L = \lambda/4$, with the plane wave normally incident for (a) and incident 45° from the normal direction in the H plane for (b). Figures 6(c) and (d) are for $L = \lambda/2$, with the plane wave normally incident for (c) and 45° from the normal direction in the H plane for (d). Note that, for the relatively small slots chosen, there is little difference in the shapes of the patterns as the incident wave direction is changed from the normal direction. There is, however, an appreciable difference in the amplitudes of the patterns.

VI. DISCUSSION

The computer program, Part Two, is written explicitly for rectangular apertures, but the formulas are valid for any aperture composed of rectangular subsections. Other apertures, such as L-shaped, T-shaped, square O-shaped, etc., could be treated by appropriately changing the computer program. Apertures of arbitrary shape could be treated by approximating them by rectangular subsections. As with all moment solutions, the size of the apertures which can be treated depends upon the size of the matrix which can be computed and inverted. The examples indicate that the rectangular subsections should have side lengths not greater than 0.2 wavelengths for reasonable accuracy.
The aperture admittance matrix has application to any problem in which one region is bounded by a plane conductor, as shown in reference [1]. Hence, it can be used for waveguide-fed apertures in a ground plane, and for cavity-backed apertures in a ground plane. It is planned to treat these latter two problems in future reports.

REFERENCES

I. DESCRIPTION OF THE MAIN PROGRAM

The main program computes the complex coefficients \(v_n \) which determine the magnetic current \(m \) according to [1, Eq. (5)], the transmission coefficient \(T \) of [1, Eq. (44)], and four patterns of the transmission cross section [1, Eq. (40)] per square wavelength \(\tau/\lambda^2 \). The four patterns of \(\tau/\lambda^2 \) are written on the first record of direct access data set 6. The main program calls the subroutines LINE0, YMAT, and PLANE which are listed later on in this report.

One data card is read early in the main program according to

\[
\text{READ (1,11) LX, LY, LI, NTH, DX, DY, TH}
\]

\[11 \quad \text{FORMAT (4I3, 3E14.7)}\]

The \(L_x \) and \(L_y \) appearing in (10) are read in through \(LX \) and \(LY \) respectively. Here, \(LX \geq 2 \) and \(LY \geq 1 \) which means that the long dimension of a rectangular aperture only one subsection wide must lie along the \(x \) axis.\(DX \) is \(\Delta x/\lambda \) and \(DY \) is \(\Delta y/\lambda \) where \(\Delta x \) and \(\Delta y \) appear in (12) and (13) and \(\lambda \) is the wavelength. The plane wave excitation vector \([1, \text{Eq. (32)}] \) is the negative of expression \((54 + LI) \) where \(LI \) is either 1, 2, 3 or 4 and \(\theta \) is the angle (either \(\theta \) or \(\phi \)) in degrees appearing in equation \((54 + LI) \) is \(TH \). The four patterns of the transmission cross section [1, Eq. (40)] per square wavelength \(\tau/\lambda^2 \) are generated by evaluating the plane wave measurement vectors (55) to (58) at angles (\(\theta \) or \(\phi \)) equal to \((J-1)*180.\)\((NTH-1)\) degrees, \(J = 1, 2, \ldots, NTH \).

Minimum allocations are given by

\[
\text{COMPLEX Y(N*N), P(4*N), V(N)}
\]

\[
\text{DIMENSION TA(4*NTH)}
\]

where

\[
N = (LX-1)*LY + LX*(LY-1)
\]
Statement 27 uses LX, LY, DX, and DY to store \(\frac{\eta}{j \Delta x \Delta y} [Y^a + Y^b] \)
where \([Y^a + Y^b]\) is the admittance matrix appearing in [1, Eq. (14)]
by columns in Y. Here, \(\eta = \frac{u_0}{\varepsilon} = 376.730 \) ohms is the intrinsic impedance
for empty space. At the time statement 27 is executed, LX and LY are
still the original input data, namely the numbers of subdivisions in x
and y but DX and DY are \(k \Delta x \) and \(k \Delta y \) instead of the original input data
\(\Delta x / \lambda \) and \(\Delta y / \lambda \).

Statement 28 inverts the N by N matrix stored in Y.

Statement 29 uses TH, LX, LY, DX, and DY to store \(\frac{-1}{2 \Delta x \Delta y} p_m^i \) in
\(P(m + (K-1)N), K = 1, 2, 3, 4, m = 1, 2, \ldots N, \) where \(p_m^i \) is the plane wave
excitation [1, Eq. (32)] and, in particular, the negative of expression
(54 + K). At the time statement 29 is executed, TH is the angle \(\theta \) or \(\phi \)
(see (55) to (58) and Fig. 1) in radians which specifies the direction
from which the exciting plane wave comes, LX and LY are the numbers of
subdivisions in x and y, DX is \(k \Delta x \) and DY is \(k \Delta y \).

Nested DO loops 16 and 17 multiply the matrix stored in Y by the
column vector stored in \(P(1 + (LI-1)N) \) through \(P(LI*N) \) and use the constant
UV = \(j 2 \pi n \) in order to store \(\tilde{V} \) of [1, Eq. (14)] in V. Substituting
[1, Eq. (28)] into [1, Eq. (13)] we obtain
\[
[Y^{hs}] \tilde{V} = \frac{1}{2} \tilde{i}^i
\]
(70)
which simplifies [1, Eq. (44)] to
\[
T = \frac{1}{2 \pi \alpha \cos \theta_{inc.}} \text{Re}(\tilde{V} \tilde{i}^i \ast) \]
(71)
DO loop 16 accumulates \(\frac{-\tilde{V} \tilde{i}^i \ast}{2 \Delta x \Delta y} \) in U2. Statement 31 stores the trans-
mission coefficient \(T \) of (69) in T.

[1, Eq. (40)] simplifies to
\[
\tau / \lambda^2 = \frac{k^4}{32 \pi^2 n^2} \left| p^{m} \tilde{V} \right|^2
\]
(72)
DO loop 19 stores the transmission cross section per square wavelength \(\tau/\lambda^2 \) of (72) in TAU(K). Statement 30 uses TH = (J-1)*\pi/(NTH-1) radians, LX, LY, DX, and DY to store \(\frac{1}{2\Delta x\Delta y} p^m_n \) in P(n + (K-1)*N). For the \(\frac{1}{2\Delta x\Delta y} \hat{p}^m \) stored in P(1+(K-1)*N) through P(K*N), DO loop 21 accumulates \(\hat{p}^m \) in U1.

Next, \(\tau/\lambda^2 \) of (72) is stored in both TAU(K) and TA(J+(K-1)*NTH).

Statement 32 writes TA on the first record of data set 6 for possible input to the plot program listed later on in this report.
LISTING OF THE MAIN PROGRAM AND SAMPLE DATA

// EXEC WATFIV
// GO TO 001 DD DSNAME=EE0034.REVL,DISP=OLD,UNIT=3330,
// DGB=(REC FM=VS,RLKSIZE=2596,LPECL=2592)
// GO.SYSIN DD *
$JOB MAUTZ,TIME=1,PAGES=40

MAIN PROGRAM
THIS PROGRAM CALLS THE SURROUNTS LINEQ, YMAT, PLANE
COMPLEX U, UV, Y(2500), P(200), U1, U2, V(50), CONJG
DIMENSION TAU(4), TA(1168)
PI = 3.141593
ETA = 376.730
U = (0., 1.)
UV = 2.*PI*ETA*U
READ(11, 11) LX, LY, LI, NTH, DX, DY, TH
11 FORMAT(4(I3, 3E14.7))
WRITE(3, 12) LX, LY, LI, NTH, DX, DY, TH
12 FORMAT(' LX, LY, LI, NTH, 5*X, 12*X, 12*X, TH, 1X, 4I3, 3E14.7)
RK = 2.*PI
DX = DX*RK
DY = DY*RK
PB = 180./PI
TH = TH/PB
27 CALL YMAT(LX, LY, DX, DY, Y)
WRITE(3, 13) (Y(I), I=1, 3)
13 FORMAT(' Y(I) / 1X, 4E15.4))
N = (LX-1)*LY+LY*(LY-1)
28 CALL LINEQ(N, Y)
WRITE(3, 13) (Y(I), I=1, 3)
29 CALL PLANE(TH, LX, LY, DX, DY, P)
WRITE(3, 14) (P(I), I=1, 3)
14 FORMAT(' P(I) / 1X, 6E11.4)
IA = 1+(LI-1)*N
IB = IA+N-1
U2 = 0.
DO 16 J = 1, N
16 CONTINUE
U1 = 0.
J1 = J
DO 17 I = IA, IB
17 CONTINUE
V(I) = U1*UV
J1 = I+J-1
U2 = U2+V(J)*CONJG(P(J1))
18 CONTINUE
WRITE(3, 24) (V(I), I=1, N)
24 FORMAT(' V(I) / 1X, 6E11.4))
31 T = REAL(U2)/(LX*LY*ETA*SIN(TH))
WRITE(3, 18) T
18 FORMAT(' TRANSMISSION COEFFICIENT T=', E14.7)
CT = DX*DY/(PI*ETA)
CT = CT*CT/(8.*PI)
DTH = PI/(NTH-1)
WRITE(3, 23)
23 FORMAT(' IN ANGLE TAU', 7X, TAU1, TAU2, TAU3, TAU4)
DO 19 J = 1, NTH

26
TH=(J-I)*DTH
30 CALL PLANE(TH,LX,LY,DX,DY,P)
TH=TH*PB
J1=0
J2=J
DO 20 K=1,4
U1=0.
DO 21 I=1,N
J1=J1+1
U1=U1+P(J1)*V(I)
21 CONTINUE
H=U1*CCNJC(U1)
TAU(K)=CT*H
TAU(J2)=TAU(K)
J2=J2+NTH
20 CONTINUE
WRITE(3,22) TH,(TAU(I),I=1,4)
22 FORMAT(1X,F7.2,4E11.4)
19 CONTINUE
KA=J2-NTH
REWIND 6
32 WRITE(6),(TAU(J),J=1,KA)
STOP
END

$DATA
5 1 1 19 0.500000E-01 0.500000E-01 0.270000E+03
$STOP
/
/

PRINTED OUTPUT
LX LY LI NTH DX DY TH
5 1 19 0.500000E-01 0.500000E-01 0.270000E+03
Y -0.1531E+02-0.6525E-01 -0.6646E+01-0.6463E-01 -0.1312E+01-0.6275E-01
Y -0.9999E-01 -0.4015E-02-0.6822E-01 -0.5537E-02-0.5131E-01 -0.5523E-02
P -0.1000E+01-0.3034E-06-0.1000E+01-0.6067E-06-0.1000E+01-0.9101E-06
COEFFICIENTS V OF MAGNETIC CURRENT EXPANSION FUNCTIONS
0.4511E+02 0.5916E+03 0.6238E+02 0.8153E+03 0.6238E+02 0.8153E+03
0.4511E+02 0.5916E+03
TRANSMISSION COEFFICIENT T= 0.1141254E+00

ANGLE TAU1 TAU2 TAU3 TAU4
0.00 0.0000E+00 0.0000E+00 0.0000E+00 0.2186E-02
10.00 0.5885E-04 0.7000E+00 0.0000E+00 0.2186E-02
20.00 0.2308E-03 0.0000E+00 0.0000E+00 0.2186E-02
30.00 0.5016E-03 0.0000E+00 0.0000E+00 0.2190E-02
40.00 0.8462E-03 0.3000E+00 0.0000E+00 0.2193E-02
50.00 0.1228E-02 0.0000E+00 0.0000E+00 0.2196E-02
60.00 0.1602E-02 0.0000E+00 0.0000E+00 0.2199E-02
70.00 0.1918E-02 0.0000E+00 0.0000E+00 0.2202E-02
80.00 0.2129E-02 0.0000E+00 0.0000E+00 0.2203E-02
90.00 0.2204E-02 0.3000E+00 0.0000E+00 0.2204E-02
100.00 0.2129E-02 0.0000E+00 0.0000E+00 0.2203E-02
110.00 0.1918E-02 0.0000E+00 0.0000E+00 0.2202E-02
120.00 0.1602E-02 0.3000E+00 0.0000E+00 0.2199E-02
130.00 0.1228E-02 0.0000E+00 0.0000E+00 0.2196E-02
140.00 0.8462E-03 0.0000E+00 0.0000E+00 0.2193E-02

27
LISTING OF THE SUBROUTINE LINFO

C SUBROUTINE LINQ(LL,C)
C COMPLEX C(250),STOR,STN,ST,S
C DIMENSION LR(50)
C DO 20 I=1,LL
C LP(I)=I
20 CONTINUE
C M1=0
C DO 18 M=1,LL
C K=M
C K2=M1+K
C S1=ABS(REAL(C(K2)))+ABS(AIMAG(C(K2)))
C DO 2 I=M,LL
C K1=M1+I
C S2=ABS(REAL(C(K1)))+ABS(AIMAG(C(K1)))
C IF(S2-S1) 2,2,6
C K=I
C S1=S2
C 2 CONTINUE
C LS=LR(M)
C LR(M)=LR(K)
C LR(K)=LS
C K2=M1+K
C STOR=C(K2)
C J1=0
C DO 7 J=1,LL
C K1=J1+K
C K2=J1+M
C STOR=C(K1)
C C(K1)=C(K2)
C C(K2)=STOR/STOR
C J1=J1+LL
C 7 CONTINUE
C K1=M1+M
C C(K1)=1./STOR
C DO 11 I=1,LL
C IF(I-M) 12,11,12
C 12 K1=M1+I
C ST=C(K1)
C C(K1)=0.
C J1=0
C DO 10 J=1,LL
C K1=J1+I
C K2=J1+M
C C(K1)=C(K1)-C(K2)*ST
C J1=J1+LL
10 CONTINUE
11 CONTINUE
M1=M1+LL
18 CONTINUE
 J1=0
 DO 9 J=1,LL
 IF(J-LR(J)) 14,8,14
14 LRJ=LR(J)
 J2=(LRJ-1)*LL
21 DO 13 I=1,LL
 K2=J2+I
 K1=J1+I
 S=C(K2)
 C(K2)=C(K1)
 C(K1)=S
13 CONTINUE
LR(J)=LR(LRJ)
LR(LRJ)=LRJ
 IF(J-LR(J)) 14,8,14
8 J1=J1+LL
9 CONTINUE
RETURN
END
II. DESCRIPTION OF THE SUBROUTINE YMAT

The subroutine YMAT(LX, LY, DX, DY, Y) uses the input variables
LX, LY, DX, and DY to calculate and to store \(\frac{\eta_n[Y]}{\Delta x \Delta y} \) by columns in Y where
\([Y]\) is the admittance matrix (1) dealt with in Part One. With regard
to the input variables, LX and LY are the numbers \(L_x \) and \(L_y \) (see (10)) of
subdivisions in x and y, DX is \(k \Delta x \) and DY is \(k \Delta y \) where \(\Delta x \) and \(\Delta y \) (see (12)
and (13)) are the lengths of the subdivisions in x and y. We require that
\(LX \geq 2 \), and \(LY \geq 1 \).

Minimum allocations are given by

COMPLEX TC(J1), TX(J1), TY(J1), YXX(J2), Y(M*N)

where

\[
J1 = (LX + 1) * (LY + 1)
\]

\[
J2 = \text{MAX} \ ((LX-1) * LY, LX * (LY-1))
\]

\[
N = (LX -1) * LY + LX * (LY-1)
\]

Here, MAX denotes the maximum value.

Nested DO loops 15 and 16 put \(I_x(s,t) \) of (42) in TC(JST), \(I_x(s,t) \)
in TX(JST), and \(I_y(s,t) \) in TY(JST) where

\[
s = JS - 1
\]

\[
t = JT - 1
\]

\[
JST = s + 2 + (t+1)(L_x + 1)
\]

As mentioned in Part One, the expressions for \(I_x(s,t) \) and \(I_y(s,t) \) are
similar to (42). The variables x and y of integration in (43) to (54)
are changed to \(kx \) and \(ky \) with the result that x and y is replaced by \(kx \)
and \(ky \) everywhere on the right hand sides of (43) to (54) and the dangling
factors of \(k \), \(k_x^2 \), \(k_y^3 \), and \(k_y^6 \) in (42) disappear. The logic inside DO loop 16
is best understood by building up a table of variables in YMAT versus expres-
sions in terms of variables appearing in Part One, Section III.
Variables in YMAT

<table>
<thead>
<tr>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_L</td>
</tr>
<tr>
<td>$(t - 0.5)k\Delta y$</td>
</tr>
<tr>
<td>Y_U</td>
</tr>
<tr>
<td>$(t + 0.5)k\Delta y$</td>
</tr>
<tr>
<td>X_L</td>
</tr>
<tr>
<td>$(s - 0.5)k\Delta x$</td>
</tr>
<tr>
<td>X_U</td>
</tr>
<tr>
<td>$(s + 0.5)k\Delta x$</td>
</tr>
<tr>
<td>R_1</td>
</tr>
<tr>
<td>$k\rho_o^2 + \frac{kr_o^2}{2} - j\frac{kr_o^3}{6}$</td>
</tr>
<tr>
<td>U_1</td>
</tr>
<tr>
<td>$1 + jkr_o - \frac{kr_o^2}{2} - j\frac{kr_o^3}{6}$</td>
</tr>
<tr>
<td>U_2</td>
</tr>
<tr>
<td>$-j + kr_o + j\frac{kr_o^2}{2}$</td>
</tr>
<tr>
<td>U_3</td>
</tr>
<tr>
<td>$-\frac{1}{2} - j\frac{kr_o}{2}$</td>
</tr>
<tr>
<td>EX</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>S_1</td>
</tr>
<tr>
<td>$k_x \log(y + r) + k_y \log(x + r)$ evaluated at x,y limits</td>
</tr>
<tr>
<td>S_3</td>
</tr>
<tr>
<td>$k_x^3 \log(y + r) + k_y^3 \log(x + r)$ evaluated at x,y limits</td>
</tr>
<tr>
<td>S_5</td>
</tr>
<tr>
<td>$\frac{k^3}{3} + \frac{k_x^3}{6} \log(y + r) + \frac{k_y^3}{6} \log(x + r)$ evaluated at x,y limits</td>
</tr>
<tr>
<td>$TC(JST)$</td>
</tr>
<tr>
<td>$I_c(s,t)$</td>
</tr>
<tr>
<td>S_5</td>
</tr>
<tr>
<td>$k^4 \left(\frac{yr^3}{12} + \frac{x^2yr}{8} + \frac{x^4}{8} \log(y + r)\right)$ evaluated at x,y limits</td>
</tr>
<tr>
<td>S_6</td>
</tr>
<tr>
<td>$k^5 x^2 y \left(\frac{x^2}{4} + \frac{y^2}{6}\right)$ evaluated at x,y limits</td>
</tr>
<tr>
<td>$TX(JST)$</td>
</tr>
<tr>
<td>$I_x(s,t)$</td>
</tr>
<tr>
<td>S_5</td>
</tr>
<tr>
<td>$k^4 \left(\frac{xr^3}{12} + \frac{x^2yr}{8} + \frac{x^4}{8} \log(x + r)\right)$ evaluated at x,y limits</td>
</tr>
<tr>
<td>S_6</td>
</tr>
<tr>
<td>$k^5 y^2 x \left(\frac{x^2}{4} + \frac{y^2}{6}\right)$ evaluated at x,y limits</td>
</tr>
<tr>
<td>$TY(JST)$</td>
</tr>
<tr>
<td>$I_y(s,t)$</td>
</tr>
</tbody>
</table>
In the preceding table, the first, second, and third S5 and the first and second S6 correspond respectively to the first, second, and third uses of S5 and the first and second uses of S6 in DO loop 16.

If \(L_y = 1 \), the logic between the statements 44 and 18 uses the fact that (27) is even in \(s \) to store \(I_c(-1,0) \) in \(TC(L_x+2) \). Similarly, \(I_x(-1,0) \) is stored in \(TX(L_x+2) \) and \(I_y(-1,0) \) in \(TY(L_x+2) \). If \(L_y \neq 1 \), the logic between statements 44 and 18 stores \(I_c(s,-1) \) in \(TC(s+2) \), \(s = -1,0,1,...L_x-1 \) and \(I_c(-1,t) \) in \(TC(1+(t+1)(L_x+1)) \), \(t = 0,1,...L_y-1 \) and similarly for \(I_x \) and \(I_y \).

Nested DO loops 19 and 20 store \(\sum_{j=0}^{n} y_{ij}^{xx} \) where \(y_{ij}^{xx} \) is given by (23) with

\[
(s - p) = JS - 2 \\
(t - q) = JT - 2
\]

in \(YXX(s-p+1+(t-q)(L_x-1)) \). See (34) for bounds on \(s-p \) and \(t-q \).

Nested DO loops 24, 23, 22, and 21 store \(\sum_{j=0}^{n} y_{ij}^{xx} \) where \(i \) and \(j \) are given by (30) and (32) where

\[
p = JP \\
q = JQ \\
s = JS \\
t = JT
\]

in \(Y(i + (j-1)N) \) where \(N \) is given by (69). If

\[
s - p \geq 0 \\
t - q \geq 0
\]

the subscript for \(YXX \) inside nested DO loops 24, 23, 22, and 21 is

\[
s - p + 1 + (t-q)(L_x - 1)
\]

The more general subscript

\[
|s - p| + 1 + |t-q|(L_x - 1)
\]

is a consequence of the fact that \(y_{ij}^{xx} \) of (23) is even in both \(s-p \) and \(t-q \).
Nested DO loops 25 and 26 store \(
\frac{\eta}{j} \Delta X \Delta Y \ Y_{ij}^{X}
\) where \(Y_{ij}^{X}\) is given by (24) with
\[
\begin{align*}
 s - p &= JS - 2 \\
 t - q &= JT - 2
\end{align*}
\]
in \(YXX(s-p+1+(t-q-1)(L_x-1))\). See (35) for bounds on \((s-p)\) and \((t-q)\).

Nested DO loops 30, 29, 28, and 27 store \(\frac{\eta}{j} \Delta X \Delta Y \ Y_{ij}^{X}\) where \(i\) and \(j\) are
given by (31) and (32) where
\[
\begin{align*}
 p &= JP \\
 q &= JQ \\
 s &= JS \\
 t &= JT
\end{align*}
\]
in \(Y((L_x-1)L_y+i+(j-1)\times N)\). If
\[
\begin{align*}
 s - p &\geq 0 \\
 t - q &> 1
\end{align*}
\]
the subscript for \(YXX\) inside nested DO loops 30, 29, 28, and 27 is
\[
s - p + 1 + (t-q-1)(L_x-1)
\]
The more general subscript
\[
|s - p + \frac{1}{2}| + \frac{1}{2} + (|t - q - \frac{1}{2}| - \frac{1}{2})(L_x - 1)
\]
for \(YXX\) is a consequence of the fact that \(Y_{ij}^{X}\) of (24) is odd about \(s-p = -\frac{1}{2}\) and odd about \(t-q = \frac{1}{2}\).

Nested DO loops 31 and 32 store \(\frac{\eta}{j} \Delta X \Delta Y \ Y_{ij}^{Y}\) where \(Y_{ij}^{Y}\) is given by (25) with
\[
\begin{align*}
 s - p &= JS - 2 \\
 t - q &= JT - 2
\end{align*}
\]
in \(YXX(s-p+(t-q)(L_x-1))\). See (36) for bounds on \((s-p)\) and \((t-q)\).

Nested DO loops 36, 35, 34, and 33 store \(\frac{\eta}{j} \Delta X \Delta Y \ Y_{ij}^{Y}\) where \(i\) and \(j\) are
given by (30) and (33) where
\[p = JP \]
\[q = JQ \]
\[s = JS \]
\[t = JT \]

in \(Y(N^*(L_x - 1) * L_y + i + (j-1)^N) \). If

\[s - p \geq 1 \]
\[t - q \geq 0 \]

the subscript for \(YXX \) in nested \(DO \) loops 36, 35, 34, and 33 is

\[s - p + (t-q) (L_x - 1) \].

The more general subscript

\[|s - p - \frac{1}{2}| + \frac{1}{2} + (|t - q + \frac{1}{2}| - \frac{1}{2})(L_x - 1) \]

for \(YXX \) is a consequence of the fact that \(Y_{ij}^{xy} \) of (25) is odd about \(s-p = \frac{1}{2} \) and odd about \(t-q = -\frac{1}{2} \).

Nested \(DO \) loops 37 and 38 store \(\sum_{j\Delta x \Delta y} Y_{ij}^{yy} \) where \(Y_{ij}^{yy} \) is given by (26) with

\[s - p = JS - 2 \]
\[t - q = JT - 2 \]

in \(YXX (s-p + 1 + (t-q) L_x) \). See (37) for bounds on \((s-p)\) and \((t-q)\).

Nested \(DO \) loops 42, 41, 40, and 39 store \(\sum_{j\Delta x \Delta y} Y_{ij}^{yy} \) where \(i \) and \(j \) are given by (31) and (33) where

\[p = JP \]
\[q = JQ \]
\[s = JS \]
\[t = JT \]

in \(Y((N+1)^1 * (L_x - 1) * L_y + i + (j-1)^N) \). If
\[s - p \geq 0 \]
\[t - q \geq 0 \]

the subscript for \(YXX \) in nested \(DO \) loops 42, 41, 40, and 39 is

\[s - p + 1 + (t-q)L_x \]

The more general subscript

\[|s - p| + 1 + |t - q|L_x \]

for \(YXX \) is a consequence of the fact that \(Y_{ij}^{YY} \) of (26) is even in both \(s-p \) and \(t-q \).
LISTING OF THE SUBROUTINE YMAT

SUBROUTINE YMAT(LX, LY, DX, DY, Y)
COMPLEX U, U1, U2, U3, U4, EX, TC(100), TX(100), TY(100), YXX(100), Y(2500)
DX2=1./(DX*DX)
DY2=1./(DY*DY)
DXDY=DX*DY
NX=(LX-1)*LY
NY=(LY-1)*LX
N=NX+NY
LXP=LX+1
LYP=LY+1
LXM=LX-1
LYM=LY-1
U=(0., 1.)
U4=1.666667*U
JST=LX+1
DO 15 JT=1,LY
JST=JST+1
YL=(JT-1.5)*DY
YU=YL+DY
YL2=YL*YL
YU2=YU*YU
Y1=(JT-1.5)*DY
Y2=Y1*Y1
DO 16 JS=1,LY
XL=(JS-1.5)*DX
XU=XL+DX
XL2=XL*XL
X1=(JS-1)*DX
X2=X1*X1
R2=X2+Y2
R1=SQRT(R2)
RU1=1.5*R2
U1=RU1+R1*(1.-1.666667*R2)*U
U2=R1-RU1*U
U3=-.5*R1*U
EX=COS(R1)-U*SIN(R1)
JST=JST+1
R5=XL2+YL2
R6=XU2+YL2
R7=XL2+YU2
R8=XU2+YU2
R1=SQRT(R5)
R2=SQRT(R6)
R3=SQRT(R7)
R4=SQRT(R8)
AYL=YL*ALOG((XU+R2)/(XL+R1))
AYU=YU*ALOG((XU+R4)/(XL+R3))
AXL=XL*ALOG((YU+R3)/YL+R1))
AXU=XU*ALOG((YU+R4)/(YL+R2))
S1=AXU-AXL+AYU-AYL
AYL=YL*AYL
AYU=YU*AYU
AXL=XL*AXL
AXU=XU*AXU
S3=XU*AXU-XL*AXL+YU*AYU-YL*AYL
XY1=XL*YL
XY2=XU*YL
XY3=XL*YU
XY4=UX*YU
S5=.3333333*(XY4*R4-XY3*R3-XY2*R2+XY1*R1)+.1666667*S3
TC(JST)=S1*U1+DXDY*U2+S5*U3+.3333333*(XY4*R8-XY3*R7-XY2*R6+XY1*R5)
J*U4)EX
YR1=YL*R1
YR2=YL*R2
YR3=YU*R3
YR4=YU*R4

1L2*~(YR3-YR1)+UX2*AXU-XL2*AXL)
S6=.25*DY*(UX2*UX2-XL2*X2)+.3333333*X1*DX*(YU2*YU-YL2*YL)
TX(JST)=.5*(YR4-YR3-YR2+YR1+4UX-AXL)*U1+X1*DXDY*U2+S5*U3+S6*U4
TX(JST)=TX(JST)*EX/DX
XR1=XL*R1
XR2=UX*XR2
XR3=XL*XR3
XR4=UX*XR4

S5=.8333333E-1*(XR4*R8-XR3*R7-XR2*R6+XR1*R5)+.125*(YU2*XR4-XR3)-Y
1L2*(XR2-XR1)+YU2*AYU-YL2*AYL)
S6=.25*DX*(YU2*YU-2*YL2)+.333333*X1*DY*(UX2*UX-XL2*XL)
TY(JST)=.5*(XR4-XR3-XR2+XR1+AYU-AYL)*U1+Y1*DXDY*U2+S5*U3+S6*U4
TY(JST)=TY(JST)*EX/DY
16 CONTINUE
15 CONTINUE

IF(LYM) 44,44,45

J1=LXP+1
J2=J1+2
TC(J1)=TC(J2)
TX(J1)=TX(J2)
TY(J1)=TY(J2)
GC TO 46

45 J1=2*LXP+1
DO 17 JS=2,LXP
J1=J1+1
TC(JS)=TC(J1)
TX(JS)=TX(J1)
TY(JS)=TY(J1)
17 CONTINUE

J1=1
DO 18 JT=1,LYP
J2=J1+2
TC(J1)=TC(J2)
TX(J1)=TX(J2)
TY(J1)=TY(J2)
J1=J1+LXP
18 CONTINUE

46 J4=LX+2
JY=0
DO 19 JT=2,LYP
DO 20 JS=2,LX
J3=J4
J4=J4+1
J5=J4+1
JY=JY+1
YXX(JY)=.5*(TC(J4)+(JS-.5)*TC(J5)-(JS-3.5)*TC(J3)-TX(J5)+TX(J3))
1*2*(TC(J5)-2.*TC(J4)+TC(J3))

20 CONTINUE
J4=J4+2

19 CONTINUE

37
JY=0
DO 24 JT=1,LY
DC 23 JS=1,LXM
DC 22 JQ=1,LY
JTO=LXM* |ABS(JT-JQ)|+1
DO 21 JP=1,LXM
J1=JTO* |ABS(JS-JP)|
JY=JY+1
Y(JY)=YXX(J1)
21 CONTINUE
22 CONTINUE
JY=JY+NY
23 CONTINUE
24 CONTINUE
IF (LXM.EQ.0) RETURN
J4=2*LXP+1
JY=0
DO 25 JT=3,LYP
DO 26 JS=2,LX
JY=JY+1
J4=J4+1
J3=J4-LXP
YXX(JY)=(-TC(J4)+TC(J3)+TC(J4+1)-TC(J3+1))/DXDY
26 CONTINUE
J4=J4+2
25 CONTINUE
JY=NX
DO 30 JT=1,LY
DO 29 JS=1,LXM
DO 28 JQ=1,LYM
JTO=2*(JT-JQ)-1
J2=LXM* |ABS(JTO)|-1)/2
DO 27 JP=1,LX
JSP=2*(JS-JP)+1
J1=J2* |ABS(JSP)+1)/2
JY=JY+1
Y(JY)=YXX(J1)
IF (JTO*JSP.LT.0) Y(JY)=-Y(JY)
27 CONTINUE
28 CONTINUE
JY=JY+NX
29 CONTINUE
30 CONTINUE
JY=0
J4=LXP+2
DO 31 JT=2,LY
DO 32 JS=3,LXP
J3=J4
J4=J4+1
J5=J4+LXP
JY=JY+1
YXX(JY)=(-TC(J4)+TC(J3)+TC(J5)-TC(J5-1))/DXDY
32 CONTINUE
J4=J4+2
31 CONTINUE
JY=NX
DO 36 JT=1,LYM
DO 35 JS=1,LX
DO 34 JQ=1,LY
JTO=2*(JT-JQ)+1
J2=LX*(ABS(JTQ-1)/2
DO 33 JP=1,LX
JY=JY+1
JSP=2*(JS-JP)-1
J1=J2+(ABS(JSP)+1)/2
Y(JY)=YXX(J1)
IF(JTQ*JSP*.LT.0) Y(JY)=-Y(JY)
33 CONTINUE
34 CONTINUE
JY=JY+NY
35 CONTINUE
36 CONTINUE
JY=0
J4=LX+2
DO 37 JT=2,LY
DO 38 JS=2,LX
JY=JY+1
J4=J4+1
J5=J4+LXP
J3=J4-LXP
YXX(JY)=.5*(TC(J4)+(JT-.5)*TC(J5)-(JT-3.5)*TC(J3)-TY(J5)+TY(J3))+0
1Y2*(TC(J5)-2.*TC(J4)+TC(J3))
38 CONTINUE
J4=J4+1
37 CONTINUE
JY=(N+1)*NX
DO 42 JT=1,LYM
DO 41 JS=1,LX
DO 40 JQ=1,LYM
JTQ=LX+ABS(JT-JTQ)+1
DO 39 JP=1,LX
J1=JTQ+ABS(JS-JP)
JY=JY+1
Y(JY)=YXX(J1)
39 CONTINUE
40 CONTINUE
JY=JY+NX
41 CONTINUE
42 CONTINUE
RETURN
END
III. DESCRIPTION OF THE SUBROUTINE PLANE

The subroutine PLANE(TH, LX, LY, DX, DY, P) uses input variables TH, LX, LY, DX, and DY to store \(\frac{1}{2\Delta x\Delta y} \) times the plane wave measurements (59) to (66) in P(i), P(N_x + i), P(N + i), P(N + N_x + i), P(2N + i), P(2N + N_x + i), P(3N + i), and P(3N + N_x + i) respectively where

\[
\begin{align*}
i &= p + (q-1)(L_x - 1) \quad \text{in (59) and (65)} \\
i &= p + (q-1) L_x \quad \text{in (62) and (64)} \\
N_x &= (L_x - 1) L_y \\
N &= N_x + L_x (L_y - 1)
\end{align*}
\]

Both angles \(\theta \) and \(\phi \) appearing in (59) to (66) are equal to TH radians.
The arguments LX and LY of PLANE are the numbers \(L_x \) and \(L_y \) of subdivisions in the x and y directions and DX and DY are the electrical lengths \(k\Delta x \) and \(k\Delta y \) of the x and y subdivisions. We require that LX \(\geq 2 \), and LY \(\geq 1 \).

Nested DO loops 51 and 87 store \(\frac{1}{2\Delta x\Delta y} \) times (59) with

\[
p = JP \\
q = JQ
\]
in P\((p + (q-1)(L_x - 1))\). Nested DO loops 82 and 88 store \(\frac{1}{2\Delta x\Delta y} \) times (62) with

\[
p = JP \\
q = JQ
\]
in P\((N + N_x + p + (q-1)L_x)\). Nested DO loops 83 and 84 store \(\frac{1}{2\Delta x\Delta y} \) times (64) with

\[
p = JP \\
q = JQ
\]
in P\((2N + N_x + p + (q-1)L_x)\). Nested DO loops 85 and 86 store \(\frac{1}{2\Delta x\Delta y} \) times (65) with

\[
p = JP \\
q = JQ
\]
in P\((3N + p + (q-1)(L_x - 1))\).
LISTING OF THE SUBROUTINE PLANE

SUBROUTINE PLANE(TH, LX, LY, DX, DY, P)
COMPLEX U, U1, P(200)
U=(0., 1.)
LXM=LX-1
LYM=LY-1
NX=LXM*LY
N=NX+LYM*LX
N4=N*4
DO 89 J=1, N4
P(J)=0.
89 CONTINUE
SN=SIN(TH)
CS=COS(TH)
X2=DX*CS
X3=.5*X2
S1=-SIN(X3)/X3
S2=S1*S1*SN
DO 81 JP=1, LXM
S5=JP*X2
U1=S2*(COS(S5)+U*SIN(S5))
J1=JP
DO 87 JQ=1, LY
P(J1)=U1
J1=J1+LXM
87 CONTINUE
81 CONTINUE
IF(LYM.EQ.0) GO TO 90
DO 82 JP=1, LX
S5=(JP-.5)*X2
U1=S1*(COS(S5)+U*SIN(S5))
J1=N+NX+JP
DO 88 JQ=1, LYM
P(J1)=U1
J1=J1+LX
88 CONTINUE
82 CONTINUE
90 Y2=DY*CS
Y3=.5*Y2
S1=-SIN(Y3)/Y3
S2=S1*S1*SN
J1=2*N+NX
IF(LYM.EQ.0) GO TO 91
DO 83 JQ=1, LYM
S5=JQ*Y2
U1=S2*(COS(S5)+U*SIN(S5))
DO 84 JP=1, LX
J1=J1+1
P(J1)=U1
84 CONTINUE
83 CONTINUE
91 DO 85 JQ=1, LY
S5=(JQ-.5)*Y2
U1=S1*(COS(S5)+U*SIN(S5))
DO 86 JP=1, LXM
J1=J1+1
P(J1)=U1
86 CONTINUE
85 CONTINUE
RETURN
END
IV. DESCRIPTION OF THE PROGRAM TO PLOT PATTERNS

This program plots patterns of the transmission cross section per square wavelength τ/λ^2 read from direct access data set 6.

Punched card data is read according to

```
READ(1,22) NTH, NP
22 FORMAT(20I3)
READ(1,22)(LP(K), K = 1, NP)
READ(1,10)(SCL(K), K = 1, NP)
10 FORMAT(6E11.4)
```

The patterns of τ/λ^2 are read from direct access data set 6 according to

```
REWIND 6
J1 = NTH*NP
READ(6)(TA(I), I = 1, J1)
```

$TA(J + (K-1)*NTH)$ is the value of τ/λ^2 at angle $(J-1)*\pi/(NTH-1)$ radians on the Kth pattern. Here, $J = 1, 2, \ldots, NTH$ and $K = 1, 2, \ldots, NP$. If $LP(K) = 0$, the Kth pattern is not plotted. If $LP(K) \neq 0$, the Kth pattern is multiplied by $SCL(K)$ and then plotted in inches.

Minimum allocations are given by

```
DIMENSION LP(NP), SCL(NP), SN(NTH), CS(NTH),
    TA(NP*NTH), X(NTH), Y(NTH)
```

DO loop 15 plots the Kth pattern if $LP(K) \neq 0$. DO loop 16 puts tick marks on the vertical axis drawn by statement 25. DO loop 18 puts tick marks on the horizontal axis drawn by statement 26. Statement 27 plots the pattern whose horizontal and vertical coordinates have been stored in X and Y by DO loop 20.
LISTING OF THE PROGRAM TO PLOT PATTERNS

// EXEC FORTGCLG
// FORT. SYSIN DD *
DIMENSION LP(25), SCL(25), XX(4), YY(4), SN(73), CS(73), TA(1168)
DIMENSION X(73), Y(73)
READ(1, 22) NTH, NP
22 FORMAT(20I3)
WRITE(3, 11) NTH, NP
11 FORMAT('NTH NP*/1X,2I3)
READ(1, 22) (LP(K), K=1, NP)
WRITE(3, 23) (LP(K), K=1, NP)
23 FORMAT('LP*/1IY,79I3)
READ(1, 10) (SCL(K), K=1, NP)
10 FORMAT(6E11.4)
WRITE(3, 24) (SCL(K), K=1, NP)
24 FORMAT('SCL*/(1X,6E11.4))
XX(1)=1.
YY(1)=1.
XX(2)=1.
YY(2)=9.
XX(3)=1.
YY(3)=5.
XX(4)=5.
YY(4)=5.
PI=3.141593
NTH=PI/('NTH-1)
DO 19 J=1,NTH
ANG=(J-1)*NTH
SN(J)=SIN(ANG)
CS(J)=COS(ANG)
19 CONTINUE
CALL PLOTIN
REWIND 6
12 J1=NTH+NP
READ(6) (TA(I), I=1, J1)
WRITE(3, 14) TA(I)
14 FORMAT('TA=*,E11.4)
J1=0
DO 15 K=1,NP
IF(LP(K),EQ.,0) GO TO 21
25 CALL LINE(XX(1),YY(1),2,1,0,3)
S3=9.
DO 16 J=1,9
17 CALL SYMBOL(1.,S3,14,13,90..-1)
S3=S3-1.
16 CONTINUE
26 CALL LINE(XX(3),YY(3),2,1,0,3)
S1=5.
DO 18 J=1,4
CALL SYMBOL(S1,5.,14,13,0..-1)
S1=S1-1.
18 CONTINUE
DO 20 J=1,NTH
J2=J1+J
S1=TA(J2)*SCL(K)
X(J)=1.*S1*SN(J)
Y(J)=5.*S1*CS(J)
20 CONTINUE
27 CALL LINE(X(1),Y(1),NTH,1,0,3)
CALL PLOT(6.,0.,-3)
21 J1=J1+NTH
15 CONTINUE
 CALL PLOT(5.,0.,-3)
STOP
END

/*
//GO.FT06F001 DD DSNAMF=EF0034,REVI,DISP=OLD,UNIT=3330,
 DCB=(RECFM=VS,RLKSIZE=2596,LPECL=2592)
//GO.SYSIN DD *
19 1
 0.1000E+04
/*
//