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Abstract

The time-domain currentinduced in an infinitely long, finitely
conducting wire in the presence of a plane electromagnetic wave with its
magnetic field perpendicular to the wire axis is determined by first finding
the frequency-domain (phasor) solution. Thisis accomplished by using both a
magnetic vector potential and an electric vector potential, and then treating
the problem as a boundary-value problem. The time-domain current is found
by performing the inverse Fourier transform numerically. Results indicate
that the early time behavior is essentially that of a lossless wire, and the major
effectis that the current dies out for large time much faster with loss than
without loss.

“The research reported in this Note was sponsored by the Division of Electric
Energy Systems of the Department of Energy, and was performed under
Subcontract No. 7685 PAS38 with Martin Marietta Corp. for Oak Ridge

National Laboratory.. v )
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1. INTRODUCTION

When aninfinitely-long, finitely-conducting, and circular-cylindrical,
wire is exposed to a plane wave in (otherwise) free space, itisa relatively
straightforward, but perhaps lengthy, matter to analytically determine the
quantities of interest, such as induced current. This can be accomplished with
potential theory, treating the problem as a boundary-value problem. When
the desired quantity has been found, its time-domain form can be found by
means of the inverse Fourier transform (performed numerically), or by
finding (numerically) its unit-impulse response, and then using convolution
(numerically). Numerical infegration is required because of the non-standard

forms that occur.




Il. FORMULATION OF THE PROBLEM

Itis assumed that the electric field vector, the Poynting vector, and the
wire axis lie in the same plane. The geometry is shown in Figure 1. The
induced axial current for the perfect conductor case (o — «) is well known,1.2

and is given by
L (1)

[ = ——¢

Z wpgsin0 H (kg a)
where
E, = peak value of the incident electric field of the (phasor) plane wave.
o = 41 x 10-7 = permeability of air.
k, = kcos® = wVpe, cosb. -
ke = ksin0= wVp,e, sin?.
g, = 10-9/3611 = permittivity of air.
llf)( ke a)= Hankel function, second kind, order zero

0 = angle between the wire axis and the Poynting vector of the incident plane wave.
[I/Eg in dB"and ll/Ey in degrees versus w (logarithmic scale) are shown
(dotted) in Figure 2 for equation (1) withz = 0,a = 0.00715m and 0= 54° in
Figure 2 for the purpose of comparison with the finite loss case.

The task here is to produce a similar result for the case where the wire is
finitely conducting (6 = conductivity). Figure 1 applies to this problem as

well. Theincident field is

(2)
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Figure 1.
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Geometry of the problem.
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£ (4)

Hinc: _ 90 - Jk(xsin 0+ z cos 6)
y no
where n, = Vi /e, . Thisincident field is derivable from a z-directed magnetic

vector potential:

ine _ J o e—jk(xsin9+ z cos O) (5)
z wsinB®
JE , :
inc _ 0 e—]k(e cos ¢sin B+ z cos 0)
z wsin 0
Alne _ 15 e— szl‘e— ﬂ(e Q cos (6)
z wsin 0
The last exponential in (6) can be expressed in terms of ordinary Bessel
functions by way of the Fourier series so that
. JE - jk z ® .
inc¢ __ 0 A —n ¢ (7)
= —— J (k B
z wsin® © nzz_m‘] nl ee)e
This vector potential fits the general solution to the wave equation:
—ikz > . |
e z l gn Bn(kée)e,w (8)
n=—x .
where k2 = o2ue = (k"2 + (ké)2, and By, is any Bessel function or linear

combination of Bessel functions.
The total field consists of the incident field just described plus the
scattered field and the internal (to the wire) field. The internal field must be

finite on the z axis, so Bnh must be J,,. If Ee and (or) E,, as well as E,, exist



within the cylinder, then H; must exist within the cylinder since there will be
azimuthal and radial (respectively) components of current that must be
encircled by a magnetic field such that H; = 0. Thus, an electric vector
potential F; is also required for the internal field. The scattered field then
also requires both A;and F, in order that boundary conditions can be
satisfied at the wire surface (@ = a). Thus, for the incident, scattered, and

internal fields we must have the forms

on

—jk z
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in order to satisfy conditionsat =0, ¢ = a,and ¢ —w,
In terms of A, and F; the field is
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k= oV, > incident and scattered fields  (15)

k = wVpe cosO
Z 00

ke = oVpe, sin®

e= ¢ = eo(l + q/peo)

k=k'= oVie > internal field  (16)

0

= wVue cosB
z 00

k'e = V') - kf: m\/poeo\/e’/zo— cos’® / .
The four unknowns in the set (12), (13), and (14) are an, bn, ¢h and d, when

(9),(10), and (11) are used. The four boundary conditions are:

B -t B3y L= B, (17)
E:pm'e=a+ E;"lezaz E;"ﬁ(?:a | (18)

= 17, (19)
l{;lce=a+ HZ" - Hci1>m1@=a (20)

Thus, itis a straightforward, but lengthy, matter to solve for the unknown
coefficients.



The total axial current is given by

2n
- in _ in (21)
L= JO H¢‘1e=aad¢_ 2naH¢t1€=a'n___o
Thisis the sum of conduction and displacement currents
_ zna ’ —j(z;z ’
Izt— —p'— ke e coJl(kQa)
0 ‘
or, when ¢, is substituted,
I = -——-——4E“ e" . ! (22)
zt wp_sin 6 ke J (k' a)

H2(ka) — Qo "o @ H2(k -a)
o (N2 kot d,(Kpa) (kpa

Maxwell’s second equation (Ampere’s generalized law) shows that the
ratio of the conduction current to the total current (conduction plus

displacement) is given by

Izc (4] o 1 (23)

[zc+ lz g ot o+ Jog, 1+ jwaolo
Therefore, the axial conduction currentis

.4 _ '
(o 2P ke 1 1 (24)
A M 2 ’ .
wu, sinB O o kieo Jo(kga) H‘z’(k o 1+ J(oeo/o
o TR kot J,(kpa) 1 e

Several special cases need to be investigated.
Equation (24 should agree with (1) for ¢ — » or [from (16)] ¢’ - w and

k'e—> ©. The Bessel functions are oscillatory for large k', but

'8 .
P 1
? = = Ve /e — (/€)% cos?0 =0
kee sing 0 0
g —>w

and the second terms in both denominators in (24) disappear for ¢ - «.
Equation (24) is then identical to (1) for the perfect conductor case.

For very low frequency w — 0, or [from (16)] "'e'* 0,k; - 0, and



: 2 1
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The last inequality in the preceding set is the dominant one for most cases of

practical interest. Thus

4E
0
[ - ,
ZC 2 4
Wp sin@— j—wp sinGln(Xkea/2)+ —_—
° n ° na“osin8
w—>0
and :
. (25
1, (0)= ma% sin 0 E (0) (0= 0) (25)

This dc current is as expected. On the other hand, 'if the Hankel functionsin

(24) are retained, and the low frequency case reconsidered with

k'ee J(k’ea) ) 92

k' J(c) ~oasinoVige

1 1
= w<< 5
60110 asin O a’y o

as above, then (24) becomes

4E -
[~ ok ! (26)

* @y sinB (2) 1 (2)
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This same result (26) has been obtained from a somewhat different approach
and reported by Lee3. Thus, it can be seen that the last result is a good

approximation for low frequency:

w<< —
apuo

Frequency response data show that it is actually a good approximation for
0 < w = 109 in most cases of interest.

There is a fundamental difference between the perfect conductor case
and the finite conductivity case for very high frequencies (or very early time in |

the impulse response). Itis advantageous to lets = jo or » = -js, 50 that

2 2¢ .
HPwasinb/e)= j= K (sasinB/c)—>| | ——— ¢~ sasinbl
° n ° msa sin 6
2 2 .
H;Z)(ma sinB/c)= — - Kx(sa sin 0/¢) = — c o~ Sasin bk
n nsa sin 6

ra)= ~ ____c____ sasin O/c
Jo(kea) In(sa sin Olc?-» l PR e
c .
d (kha)=~ — j I (sasinB/c)— — j —_— esasmelc
e T ! \J 21 sa sin 0

all for s » «. In this case (1) becomes

4E ,—stzcos 6/ — asin 6/c)

Lo > — — (27)

M, l 2c¢sin O Jr
Ia
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The exponential in (27) contributes the correct time delay such that the wave
strikes the wire and the current beginsatt = t' = 2 cos 8/c - a sin O/c. Ignoring the

exponential, the initial value theorem gives[E (s) = 1]

iz(0) = €im s [,(s) > o
§—>00

Thus, the impulse response isinfinite att = t' when it begins. Also, for very

early time |E(s) = £,

i) it 4 L
1 )=
e M, 2¢sin 0 Vit~ zcosO/c+ asin O/c

x ult — zcos0/c+ asin0/c) (6 —> o)

For the finite conductivity case (24) becomes

— s(z cos e — asi Y :
Hac e s(z cos e — asin Ok (30)
I (5)>2E o - - ,
zc o asin0 2

and the initial value theorem gives (ignoring the time delay)
i (0)=0 (31)

Thus, the impulse response is zero att = t’ when it begins. Also, for very early

(29)

time [Eq(s) = £,

) nac —
1L W=d4F o - \I t— z cosB/c+ asin®/c ult—t')
“ 0 2¢sin O

The inequalitie§ governing the early time behavior exhibited by (29) and (32)

are

w>>

—and w>> g/e

asin 0 N

Except for very small a and (or) 6, the second inequality isdominant and
requires w >> 108 for the usual conductor. Thus the asymptotic behavior

indicated by (29) and (32) is of extremely short range, and is unlikely to have

12



any effect when the impulse response is convolved with the usual time
functions that model the emp.

The case of grazing incidence (8 — 0) is interesting in that (1) predicts an
infinite currentinduced in a perfectly conducting wire. Equation (24) can be

written as

4 E0 1 (33)

I =
* M, ©sin®H?(wa sin8/0— f(8)

where

@Vsin®® + o/jwe J (ka) (34)

fe)= - 2 H'®(wa sin 8/c) LI
1+ o/jwe, ! J (kpa)

The first term in the denominator of (33) goes to zero as8— 0 (as in the

perfect conductor case), but
wV o/j(.)so 1 Jo(ka\/o/jma)

f0) » ——— (2/n)
1+ o/jo)eo 2 wa sin 6/¢ Jl(kav 0/j0)£0)

0—0
or f(8) » » for 8- 0. Therefore l,c — 0, and the induced currentis zero fore = o

when loss is present. This is an expected result.

A mathematical model4 that has been proposed to represent the emp is

1 1
E(@= E [z——~ ——| (35)
o o+ a, Jot+ a, .

where

E, = 52.5 x 103 volts/meter
a =4x106 sec-1

ag = 478x 106  sec'l

13



lll. RESULTS

Figure 2 is a frequency response graph of It(w) versus » (magnitude and
angle) for a typical case: 8 =54°; a = 0.00715 meters; and o = 2.31 x 105, 2.31
x 106, 2.31 x 107 mhos per meter [Eq(w) = 1]. For 0 < w = 107 the graph
indicates a behavior very similar to that for the current in a series RL circuit:
the main differences being that the slope is only about -18 dB/decade rather
than -20 dB/decade, and the phase begins to slowly increase after
approaching -90°. The oscillatory behavior of the Bessel and Hankel functions
(that determines the correct delay timé and very early time response) has not
been reached in Figure 2, but this behavior is not important fort > 10”7
seconds, because at w= 109 the magnitude response for the current (o= 2.31
x 107) is down by 126 dB. Furthermore the response-of (35) is down by 46 dB.
Thus, for the double exponential emp (35) the response is down by about 172
dB atw= 109 |

Figure 3 is a frequency response graph of [I,yE, in dB and |I,/E,in
degrees versus w (logarithmic scale) forz = 0, a =0.00715 meters, o= 2.31 x
107 mhos per meter, and 6 = 5°, 18°, 36°, and 90°. Except for very small vélues
of 6, the magnitude response curves break at small values of w, whereas the
poles of the input function are at w= 4 x 106 and 478 x 106. This behavior
makes it extremely difficult to obtain izt(t) by numerical inversion of (22).
Nevertheless, results are shown in Figure 4 fora = 0.007I5, o= 2.31 x 107,
and 6= 18°, 36°, 54°, ana 90°. The perfect conductor (c— ») case from Barnes2
is shown for purposes of comparison. As can be seen, the difference is very
small, and even if the conductivity is reduced by a factor of 10, the difference

issmall. The reason for this is obvious in Figure 2. The difference in the

14
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perfect conductor case and the finite conductivity case only occurs at low
frequency, and this primarily affects the late time response.

A simple approximation for (22) that can be made for late time is:

I t((o)z nago sin0 E (w)b " (36)
z b+ (jo)
Since
k-1 2
t b k-1, ___b__tilk-l___ e
Mk)  I'(2k) [(3k) b+ jo©
izt(t) can be found by convolution:
"" (-1 )n+ l(h)“d 1
9
i ()= na“osinOB b » ———
L= mn 0w = [(nk)
n=1
t = (t=—x) -l t— x)
° [ xnk— lle 1 —e 2 ldx (37)
(3}

The simplest way to find appropriate values of k and b is that of choosing a
frequency in the middle of the range considered to be important and then
forcing the magnitude and phase (separately) of (36) to agree with Figure 2.
This gives two equations and two unknowns. Foro= 2.31 x 107, a = 0.00715,
and 0= 54° (as before) this procedure givesk = 0.9111and b = 54.77.
Results are shown in Figure 5. They agree very well with the perfect
conductor case, indicating that (for o= 2.31 x 107) the loss is unimportant for
early time. For late time this loss is bound to make the current go to zero
sooner than with no loss. .

Results for a particular late time case using equation (37) are shown in
Figure 6. This case is foro= 2.31x 107, 3 = 0.00715, and 0= 54°. Results are

as expected.
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Finally, the unit-impulse response for the current has been calculated
fora = 0.00715,0= 2.31 x 107and »,8 = 90°, 54°, 36°, 18°, and 5°. Notice that
Esw) = 1 for the unit-impulse response, and it is measured in ampere-meters
per volt-second or meters per ohm-second. The only case for which an
appreciably difference occurs is that for 0= 5° (very low angle). Inspection of
Figure 3 reveals why this occurs. Remember that the solid curves (o —» «) will
goto +«astgoes to zero, but this behavior is of such short range that it
cannot be shown for the time scale used. On the other hand, foro= 2.31 x
107 (dotted part), the curves will go to zero as t goes to zero, but this also
cannot be shown on Figure 7 for the same reason as given in the preceding

sentence.
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IV. CONCLUDING REMARKS

For conductor sizes and conductivities like those found in overhead
power transmission lines the time-domain induced current differs negligibly
from that of the perféct conductor case fort = 0 up to aboutt = 10-4s. Fort
> 10-4s the finite conductivity brings the current down sooner than it would
come down foro— ». This statement is true for all angles (6) one would
normally expect for an emp. If, however, 6is small, both Figures 3 and 7
indicate that a small difference exists for the induced current between the
perfect conductor case and the finite conductivity case. This is an important
consideration because when the wire is placed above a finitely conducting
ground the incident field plus the field reflected from the ground may be

larger than the incident field alone for low angles. Thisisinvestigated in a

separate work.
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