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A STATISTICAL THEORY OF
ELECTROMAGNETIC FIELDS IN COMPLEX CAVITIES

T.H. LEHMAN, Consuitant
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Abstract- A statistical model for electromagnetic field variables in complex cavities is derived
from deterministic expressions for the fields. The deterministic expression for the electric
field in a cavity with perfectly conducting walls and an arbitrary shape is obtained by
expanding the vector potential in a complete set of vector functions which satisfy the wave
equation, the divergence condition, the boundary conditions and the orthogonality condition.
These results are extended to obtain the steady state expression for the electric field in
cavities containing infinitesimal dipole sources whose walls are good conductors.  An
expression for the eigenvectors s derived and this expression is used to evaluate volume
averages of simple functions of the cartesian components of the eigenvectors for cavities
whose shapes are sufficiently complex. [t is assumed that the position vector in the cavity is
a random vartable distributed according 1o a uniform distribution and the equivalence of
volume averages and expectation values is demonstrated. The steady state expressions for the
electric field are used in conjunction with the calculus of probability theory to derive the
statistical models. These models consist of a probability density function and both a spatial
and a temporal correlation function. Statistical models for the amplitude of the components
of the parual cavity fields, the magnitude of a component of the time averaged electric field.
the square of a component of the time average field. the time averaged component ot the
power densitv and the total energy density are derived. Potential applications of the theory

are discussed.
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1.0 INTRODUCTION

Since the turn of the century, statistics has played an important role in understanding
the nature of physics. More recently, statistics has played and is playing an increasingly
significant role in the understanding and interpretation of large system behavior. This
includes the areas of risk assessment, reliability, survivability and vulnerability assessment to
name a few. However, in general, statistics has not played a very significant role in areas of
technology concerned with the interactions of classical waves with large systems. For these
technologies, the major emphasis has been in developing large deterministic numerical codes
and large test facilities primarily for the purpose of simulating "worst case" events. As the
environments and systems of concern become more complex and/or susceptible, this approach
becomes less and less viable. It is not to be implied that these deterministic approaches are
without merit. The implication is there exists a general class of problems too complex to
address deterministically, i.e., the number of model variations is too large to even consider
generating the statistical models using Monte Carlo techniques. One such problem, the
characterization of electromagnetic fields in electrically large, complex cavities is addressed in
this paper. This problem, of course, is not the only one of concern [1]. However, it
potentially could provide a starting point for addressing the complete set of problems.

In principle, the instantaneous variations of classical EM fields in any cavity can be
followed in detail, i.e., analyzed deterministically, no matter how intricate the boundary
conditions. This is also true for particles in a cavity (box) whose motion is governed by
Newtonian mechanics. However, no one attempts to determine the instantaneous position and
momentum of each and/or every molecule in a gas. Experience has shown that many of the
important questions associated with the motion of gas can be adequately addressed and
answered using statistical techniques without a detailed knowiedge of the motion of the
individual molecules. ‘

Statistics has many faces and it is important to recognize that all statistical problems
are not equivalent. For example, randomly drawing colored balls from a box is not equivalent
to the "random motion" experienced by molecules in a box. No fundamental laws of nature
govern the distribution of the balls in the box, 1.e., the distribution is not constrained by the
laws of physics. The distribution of colors, for example, can be any pre-determined function.
The distribution functions themselves can be visualized as being random and their number is,
in principle, unbounded. On the other hand, the motion of the molecules must obey
Newtonian mechanics, no matter how "randomized" this motion may be. This establishes
constraints on the statistical models. They must be compatible with the laws of physics and
the results of model predictions must not violate these laws. As a consequence, only a few

*

(9]




statistical models (defined to be joint probability density functions and associated parameters)
are needed to characterize the properties of gases. In particular, for an ideal gas, the velocity
distribution is always Maxwellian, independent of the shape of the box. In addition, the
measurable parameters (temperature, pressure and volume) are related through the ideal gas
law.

The above properties of the statistical models and parameters have helped to guarantee
the success of statistical mechanics. The simple models for the idealized cases provide the
foundation for the statistical analysis of more complex problems. If, for example, the
statistical models for the idealized gas were dependent on the shape of the box (cavity),
statistical mechanics would be a more complicated branch of physics. Many more problems
would need to be addressed starting from first principals. It is these properties --simplicity,
robustness and the connection with deterministic classical physics-- which must be preserved
in the development of a viable statistical theory associated with electromagnetic fields.
Experimental evidence strongly supports the existence of such a theory.

Statistical characterizations of electromagnetic fields and their interactions are not new.
Statistics is used extensively in the theory of partial coherence, scattering from rough or
random surfaces and the propagation of EM fields through random media to name a few. In
addition, statistical techniques have and are being used to support the characterization of the
radar cross section of large complex objects [2]. However, the effects of electromagnetic
fields on the operation of electronic equipment in large systems are of primary interest in this
paper.

Historically, applications of statistical techniques to large system interactions for the
purpose of quantifying electromagnetic effects (EME) have not been very successful.
Empirical statistics are typically used to construct the statistical models from very sparse data
sets. Almost without exception, the results of these empirical efforts are inconclusive and it
1s usually assumed that the electromagnetic variables (power in watts, current in amps, voltage
in volts) are distributed according to log-normal distributions. Consequently, predictions of
the effects of electromagnetic environments on large systems often contain large errors, i.e.,
usually it is predicted that significant detrimental effects occur for nominal values of induced
voltages and currents well below the operating levels of the system electronics. The source of
this error can be attributed to the statistical models, i.e., the log-normal distributions. While
these distributions seem to be adequate for characterizing the variable near the mean of the
distribution, they are inadequate for characterizing rare or extreme events. Typically, the log-
normal distributions predict with a high probability of occurrence, the existence of induced
currents and voltages that are well above levels allowed by the physics of the interaction.



Most physical variables have upper or lower limits and sometimes both. It is for this .
reason that the use of truncated distributions is often recommended. However, this approach
only serves to transform the problem from one of finding the correct distribution to one of
finding the correct values for the "cut-offs". The solution to the second problem is often
equally as difficult or more difficult than the solution to the first. In addition, this approach
does not address the equally important problem, but usually more difficult one, of finding the
correlation functions for the complete set of random variables. An alternative to empirical
statistics is the derivation of the statistical models from physical models that characterize the
process or interaction of interest. This method is sometimes referred to as "objective
Bayesian statistics" and it is used exclusively in this paper.

The techniques of objective Bayesian statistics are not new and the method has often
been suggested as a possible alternative to empirical statistics. Specifically, for applications
of statistics to the interaction and coupling of electromagnetic fields to the electronics of
complex systems, the use of the techniques of objective Bayesian statistics are proposed in [3]
and [4]. In [3], a possible technique for the statistical analysis of load excitations on an
unshielded N-wire random cable illuminated by an incident time-harmonic field using the
reciprocity theorem in conjunction with a subset representation of a statistical ensemble is
discussed. In [4], the continuous wave coupling to a complicated electrical system in terms of
random small dipole interactions in the low frequency limit is analyzed. Both random .
coupling to the incident field and random interactions between dipoles are considered in this
paper. In both of these papers, the starting point for the statistical analysis is a deterministic
model of the relevant physical interactions.

In 5], questions regarding the analysis and use of less than perfect test data are
addressed. Although no statistical models are explicitly developed in this paper, probability
theoretic techniques are used in conjunction with physical considerations to address some of
these questions. The issues raised in this paper are of great importance and are usually
ignored. Since most large system data sets (both experimental and numerical) are imperfect,
techniques are needed for extracting the information needed by the ultimate users, i.e.
decisionmakers, designers, etc. Methods based on the techniques of Bayesian statistics may
help resolve some of these issues.

The deterministic characterization of the EM cavity fields is an integral part of the
formulation of the statistical model presented in this paper. The literature on the deterministic
analysis of cavities is extensive and it varies from analytical characterizations of canonical
shaped cavities to the numerical analysis of relatively simple cavity configurations (for

electrically large cavities), i.e. cavities containing only a few important system elements and .




features. The details of these deterministic characterizations are not discussed here. Only the
general properties of rectangular cavities are pertinent to the development of the statistical EM
model.

The history of the statistical analysis of EM cavity fields is not nearly as extensive nor
as diverse as its deterministic counterpart. In 1963, it was shown [6] that the distribution of
the components of the electric field vector Efr,t) in a rectangular cavity is gaussian (normal)
for frequencies in the optical region of the EM spectrum. Quantum electrodynamics
techniques are used in this derivation.

In 1968, a new technique [7] was suggested for making EM measurements in shielded
enclosures at microwave frequencies. The shapes of these shielded, rectangular enclosures are
made to be complex by the addition of an electrically large irregular shaped, metallic object
(a stirrer) to the interior of the cavity. This test method is referred to as mode-stirred
chamber testing or reverberation chamber testing [8]. Currently, this test method is used in
EMI/EMC testing. The results [8] of measurements performed in these complex cavities
indicate that variations in normalized average values are not significant from one frequency to
another and from one chamber design to another over a wide range of test conditions and
cavity shapes. These results suggest the existence of a model and/or theory that is valid for a
large class of complex cavity shapes and frequencies.

A result [9] that significantly impacted the development of the statistical models for
cavities was reported in 1988. In this paper, empirical statistics (goodness-of-fit tests) are
used to demonstrate that for a wide class of complex cavities (Q, frequency, shape and
volume), the power as measured by a uni-directional probe is distributed according to a chi-
squared distribution with two degrees of freedom (an exponential distribution). A theoretical
derivation for the observed distribution using a modal expansion of the cavity fields is also
presented. The results of this derivation are inconclusive because the mode expansion is not
complete and neither the complexity of the cavity nor the effects of a source on the
distribution is incorporated into the derivation.

In 1991, a statistical model [10] for mode-stirred chambers was presented. This
statistical model was derived by assuming that a large number of modes is excited in the
cavity and that the mode amplitudes are random variables. Using the central limit theorem, it
1s argued that both the in-phase and the quadrature contributions to a component of the
measured fields are normally distributed. It follows that the amplitude of a field component
is distributed according to a Rayleigh distribution and the square of the field amplitude
(power) is distributed according to an exponential distribution. These distributions were
verified using chi-squared goodness-of-fit tests. While this simple model is adequate for




deriving the distributions for an over-moded cavity, it does not provide the complete statistics,
i.e., the joint distribution functions including correlation coefficients. Also, it provides little
insight into establishing the range of validity of the assumptions used in the derivation.

In this paper, a statistical model for EM fields in complex cavities is derived. The
derivation is presented in two parts. The first part results in deterministic expressions for the
fields and the volume averages of field variables in arbitrarily shaped and electrically large
complex cavities. The details are presented in Section 2.0. The second part results in a
statistical model based on the deterministic expressions and is presented in Section 3.0.

The deterministic derivation begins by treating cavities in the usual fashion. The
steady state fields for a cavity with finite Q and an infinitesimal dipole source are expanded
in a complete set of orthogonal vector functions (eigenvectors). Next, a generalized
expression for the eigenvectors of an arbitrarily shaped cavity is derived. This generalized
expression for the eigenvectors is used to obtain volume averages of simple functions of the
eigenvector components in cartesian coordinates. A definition of a complex cavity is used to
perform this volume averaging.

The concept of a complex cavity is central to the evaluation of the volume averages.
The irregularity provided by the walls of a complex cavity is needed to insure that the
coherent contribution to the field intensities in the cavity are small. In this formulation it is
assumed that this contribution to the volume averages is vanishingly small and as a
consequence, only the contribution from the incoherent part of the fields is retained. In the
limit of randomly shaped cavity walls (with respect to wavelength dimensions), the cavity
fields can be visualized as resulting from the superposition of a large number of photons. In
this case, the location of each photon in the cavity as well as its propagation direction are
random.

The derivation of the statistical model! is straight forward. It is shown that the volume
averages are equivalent to expectaticn values of random variables when the position vector in
the cavity is assumed to be a random variable with a uniform density function. The moment
theorem of probability theory is used to show that the cartesian components of the
eigenvectors for a complex cavity can be treated as random variables distributed according to
a normal distribution. Using the calculus of probability theory, the deterministic expressions
for the fields in the cavity are used to derive the statistical model.

Finally, applications of the statistical models are considered. In particular, the
applicability of the model to the analysis of reverberation chamber testing and to RF system
survivability/vulnerability assessment is discussed. A brief description of a few elementary
concepts of probability theory is included as an appendix.
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2.0 DETERMINISTIC CHARACTERIZATION OF FIELDS IN COMPLEX CAVITIES

Some of the cavity development presented in this formulation is not new and can be
found elsewhere. It is included for completeness and closely follows the development given
in [11]. An ideal, arbitrarily shaped cavity (perfectly conducting walls) is considered first.
The usual assumption that the electric field E(r.z} and the vector potential A(r,¢} can be
expanded in a complete set of vector functions is made. The general properties of these
vector functions are established. Next, the results of the ideal cavity are used to find
expressions for the steady state electric field in a real cavity containing an infinitesimal dipole
source. These expressions are in terms of the source parameters , the Q of the cavity, the
number of modes excited in the cavity and the vector functions (eigenvectors) of the ideal
cavity. Finally, approximate analytical expressions for the eigenvectors of an arbitrarily
shaped cavity are derived. It would require considerable effort to evaluate these expressions
numerically. However, it is shown that they are adequate for obtaining the volume averages
of field variables when the cavity shape is complex and the cavity dimensions are large
compared to the wavelength.
2.1 The Ideal Cavity

Consider the source free cavity of Figure 1. It is represented as a finite volume ¥
bounded by an arbitrarily shaped, perfectly conducting surface S. The only restriction is that
the surface is closed, aithough certain non-simply connected, pathological shapes must be
excluded from consideration [9].

S - vafinite concuctivity

Figure 1. An ideal cavity with arbitrary shape.



It is assumed that the electric field vector and the vector potential in the cavity can be
expanded in a complete set of vector functions #,{r) where r is the position vector in the

cavity or

E@r) = Y u,DEQ) (1)
k .

and

ArY) = Y u (D4, )
k

From Maxwell's equations, it follows that the cartesian components (cartesian coordinates are

used exclusively) of the vector functions #,(r) satisfy the second-order wave equation

2
©
Vu,, + C—:u,c = 0, S=X,Ys2 3)
and satisfy the divergence condition
Veu, = 0 @)

where ©, is an eigenfrequency (resonant frequency) of the cavity and ¢ is the speed of light.
Since the tangential components of the electric field and the vector potential vanish at the

surface of a perfect conductor, the boundary condition for the vector functions is

nxur),.s =0 )

where n is a unit vector normal to the surface of the walls of the cavity.
Using (3-5) and with the help of Green's theorem [11], it can be shown that any two
of these functions u,(r) and u,(r) corresponding tc two different eigenfrequencies ®, and @,

are orthogonal to each other or
f Vu(r)k- w ANAV = 8,4 (6)

and u,(r) is called an eigenvector. Also, it can be shown [12] that for an arbitrarily shaped
cavity with perfectly conducting wall and dimensions large compared to a wavelength, the
mode density dM/dw is

v
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do n2c?

where dM is the number of allowed modes in the angular frequency interval w to w+da.

The above properties of an ideal cavity are next used to develop the expression for the
field in a cavity having a finite Q and containing a source (a real cavity).
2.2 The Real Cavity

In the preceding formulation, the cavity walls are assumed to be perfectly conducting.
Sources are excluded because in the absence of damping, the mode amplitudes grow without
bound. If sources are included then the effects of dissipative forces must also be included. In
this development only linear ohmic losses (Joule heating) are considered.

In a strict sense, the formulation for cavities with perfectly conducting walls is not
applicable to cavities containing lossy materials (real cavities). A self-consistent solution for
the response of real cavities requires the total fields to be expanded in a complete set of
natural modes where each natural mode has a unique natural frequency. The natural modes
correspond to field distributions which are supported in the cavity in the absence of sources.
In this formulation, both the natural modes and the natural frequencies are complex variables.
The real part of the complex frequency insures that the undriven contributions to the fields
vanish after the source has been turned off. A self-consistent solution of real cavity responses
is, in general, very difficult and will not be attempted. Instead, an approximate,
phenomenological model is used.

To extend the above results of the ideal cavity to real cavities, the walls of the real
cavities are assumed to be good conductors. For this case, the eigenvectors of the ideal
cavity will be approximately equal to the natural modes of the ideal cavity and the expansions
(1) and (2) for the electric field and vector potential are approximately valid. (In structural
dynamics applications, this approximation provides satisfactory results except for those cases
where the structure exhibits heavy nonproportional damping.) With this approximation, the
functions defined by the terminology "eigenvector" and "natural mode" are synonymous. To
avoid confusion, the term eigenvector will be used throughout the remainder of this paper to
denote both. It should be noted that @, is not the complex part of the natural frequency. @,
is the free oscillation frequency (resonant frequency) of the ideal cavity and it is used in this
context in the remainder of this paper.

With the above approximation, loss must be treated as a phenomenological effect. A
modal damping coefficients ¥, is incorporated into the equations of motion for the modal
amplitudes to account for the loss.




Ignoring for the moment the effects of the loss mechanism and substituting (2) into (4)

yields
VAt = 0 (8)

~ everywhere in the cavity. This condition characterizes the Coulomb gauge. In this gauge, the

vector and scalar potentials satisfy the following equations [13]:

2 _ i = - 7+ _1_ é@. (9)
(V 02}4 HoJ CV( &]
and
vy = -£ (10)
€o

where j(r,1) and p(r,1) are the current and charge densities produced by electromotive forces
external to the cavity. Substituting (2) into (9) and using (3) yields

)y

k
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atZ

1, o
+ WA (t)]u =—j-cV (—] (11)
s € ot

Taking the innerproduct of (11) with #,, integrating over the volume of the cavity and using
the orthogonality condition (6), the differential equation for 4 ,(z) follows

40, WD) = F) - G0 (12)
dt?
where
RO = o[, de0 - woav (13)
and
G = of, V(%?) - w PV (14)

G(t) can be shown to vanish with the help of Gauss's theorem and the boundary condition
(5). For a linear ohmic loss mechanism, the damping term is proportional to the time
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derivative of 4,7} and including it into (12) yields the equation of motion for a driven
oscillator with damping or

d*A %) . dA(®
dt? L

+ Q0 = F®) (15)

where v,, as before, is defined to be the modal damping coéfﬁcient for the kth mode.

Now consider the cavity of Figure 2. It contains a sinusoidal dipole source located at
the position r, directed along the x-axis (the direction is arbitrary). It is assigned an amplitude
I, and an infinitesimal length A¢ A mathematical representation of the current density for this

source is

Jrp) = e AU S(r-ry)sin wt (16)

where O(r-ry) is the three dimensional Dirac delta function and e, is a unit vector in the x-

direction.

finite conductivity

Q
J

Figure 2. A real cavity with a source and arbitrary shape.

Substituting (16) into (13), the steady state solution of (15) is given in [14] as

A0 = Aﬂ—éakub(ro)sin(wt - ¢y (17)
€o



where u,(r,) is the x-component of the eigenvector evaluated at the location of the source,

1
Gp = ' (18)
\/yicoz F (0?2 - )P
and
o
tang, = ————. (19)
(i - w?)
Defining the cavity O to be the number of cycles required for the wave amplitude to be
reduced by a factor of e and using the natural frequency s,=-}%/2 % j(@}+7/4)'? of the
damped oscillator defined by (195), it follows that
2
2 _ 4o (20)
1 + 4x: Qk

where Q, is the O of the kth mode. For reasonable values of O, Y= 0,/nQ,, the expressions
for o, and ¢, become

(1)20)2 2 _112 21
k 2 2
T
and
[OPLO)
tand, = £ (22)

- .
“Qk(‘wk - (‘)2)

In the Coulomb gauge, the propagating electric field is given by Efr.t) = -8A(r.1)/0t
and the expression for the electric field is

I
E@rp) = -MEOQE @yl (rpu(rtycos(wt - . (23)
o

In principle, the above expression for the electric field in the cavity can be evaluated

deterministically once all of the eigenvectors for the cavity are known.
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2.3 A Generalized Expression for the Eigenvectors of an Arbitrarily Shaped Cavity

Analytical solutions for the eigenvectors exist for only a few cavities with canonical
shapes. The only other alternative is to use a numerical technique. As was implied earlier,
the numerical solutions are not satisfactory. Therefore, some other approach is required.

To derive the generalized expressions for the eigenvectors, solutions to the vector
Helmholtz equation for cavities with canonical shapes are examined. The properties of these
solutions are used to assume a form for the eigenvectors for cavities with arbitrary shapes.
Using this assumed ‘form, a method for constructing the generalized expressions is developed.
Arguments based on numerical solution techniques are used to establish the properties of the
parameters in the assumed form of the solution.

2.3.1 Assumed Form of the Solution

It is well-known [14] that the eigenvectors for a rectangular cavity can be expressed as

the sum of eight plane waves or as will be used in this derivation the sum of four standing

waves (this keeps the formulation real) so that

u(r) = Y UcosK;r 24)

i=1

where IKJ =k for all i. Here, k is the cavity wave number (k = @/c) and is specified by
three integers, ,m,p. Using the plane wave expansions for the cylindrical Bessel functions,
similar expressions follow for the eigenvectors of a right cylindrical cavity except that the
resulting expressions are in terms of a sum and an integral. 'This'sugges’ts that the
eigenvectors for any cavity can be expressed as the sum of a large number N of standing
waves or

4N

ury =Y U,cos(K, r+ %) 23)

n=1

where lKn | =k for all n as was the case for the rectangular cavity, ¥, is a phase factor and N
1s one for a rectangular cavity but in general, is a very large number for most cavity shapes
(infinite). For a rectangular cavity whose origin is one of the corners of the cavity, the phase
angle is zero and the wave vectors K, are functions of the dimensions L,.L,,L. of the cavity.
For a cavity with arbitrary shape, it is expected that the wave vectors K, will, in some sense,
reflect all the dimensions of the cavity.

It should be noted that the cosine functions of (25) do not form a complete set and
that each of them do not satisfy the boundary conditions except for the case of a rectangular

13



boundary. In order for (25) to be a valid expression for the eigenvectors, it must be shown .
under what conditions (25) satisfies (3)-(6).
It is easy to show that (25) satisfies the wave equation (3) without any restrictions.
Imposing the divergence condition (4) on (25) results in
4N
Y K, U,cos(K, r + %) = 0. (26)

as]

The divergence condition is satisfied if the amplitude vectors U, are chosen such that
E U =0 @7)
for all n. However, there exists another set of vectors W, such that

WU =0 and WK, =0 (28)

for all n. Therefore, if u, is an eigenvector, then

4N
w.) =Y WcosK, r+ %) (29)

n=l

is also an eigenvector. These two eigenvectors, in some sense, must correspond to the two
possible polarizations for transverse waves, To complete this demonstration, it is necessary to
show that the eigenvectors satisfy the boundary conditions and the orthogonality condition.
With the eigenvectors in the above general form, this demonstration is not possible.
2.3.2 Solution by Construction

While it can be argued that the vector coefficients and the phases can be chosen so
that (25) and (29) satisfy both the boundary conditions (5) and the orthogonality condition (6),
the solutions (26) and (29) are too general to be of much value. To put the above expressions
in a more useable form, the following prescription for constructing solutions for the
eigenvectors of arbitrarily shaped cavities is introduced. Using these constructed solutions, it
is shown that the amplitude vectors and the phases are, in principle, known. The prescription
for construction is as follows:
(a) It is assumed that all the wave numbers & for the eigenvalues @, are known. These
could have been determined by using some numerical technique such as the finite element
method. This results in a discrete set of values for & or & =k, k.,.k,..... In the following, the
subscript on £ is dropped and it must be remembered that & is not a continuous variable.
(b) The cavity volume is discretized into a large number N of identical cubic cells. Each cell .
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. has a volume AV =(Ax)’ such that kAx«/ and V= NAV.

(c) Each small cube in the discretized volume of the cavity is used to construct a much larger
rectangular cavity, i.e., a cavity with a volume on the order of the original cavity. Since these
large rectangular cavities do not really exist, they are referred to as virtual cavities.

~ (d) With reference to Figure 3, the nth virrual cavity is constructed as follows: First, each of
the six surface elements of the nth cubic cell is projected onto the walls of the real cavity.
This projection defines the six surface elements located on the walls of the real cavity as
shown in Figure 3. Remember that the cavity volume has been discretized and the cavity
walls are no longer continuous but are comprised of a large number of small square plates.
Each plate has a surface area AS = (Ax)’. Two of the projected surface elements lie in x-y
plane, two in the x-z plane and two in the y-z plane. Now all six of the small surface
elements are projected to w in both directions. The intersection of this set of six planes
forms the large rectangular virtual cavity shown Figure 3. The dimensions of this virrual
cavity are X,,Y,.Z, and the position vector to any one of the corners of the virtual cavity with
respect to the origin O of the coordinate system is denoted by r,. The set of virtual cavity
parameters are all deterministic (since in principal they are known by construction) but they
are not unique since the orientation of the coordinate system is arbitrary. Note that the set of

. N vinual cavities defines all of the dimensions of the real cavity within the accuracy of the
nth virztuy
real cavily guiscretized
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I Figure 3. The nth virual cavity construct.

15



spatial discretization scheme.
(e) Now it is assumed that the walls of each of the virtual cavities are perfectly conducting.
Then the set of all eigenvectors, u,,,(r) and w,, (1} for the nth virual cavity are

4
(T = 3 U, cos[K, - (r - 1)] (30)
i=1 _
and
4
W@ = 3 W, cos[K - (r - r)] (31)
i=1
where
_nl _mm _ Tp
x(n) = % CORE SN A (32)

L,m,p are positive integers, XY, Z, are the dimensions of the nth virtual cavity as before and -

r, 1s the position vector to one of the corners of the nth virtual cavity (Figure 3). For this
formulation, the four wave vectors are chosen so that they always lie in the upper half-plane

of k-space, i.e., their z-component is always positive or
Km]_ = (Kx(n)’Ky(n)’Kz(n))
K,; = (5,00, ,m)k,() 3
K,, = (-x,(,%,(m)x,))
Km4 = (—xx(n)’ _Ky(n)’Kz(n))'

The allowed frequencies are

w2 2 m? 2
_“=K2(n)=n_5+_2+1’_2 (34)
¢? X, Y, Z
and it follows from the divergence condition (4) that
K, U;=0 K, W, =0 U;W, =0 (35)

for all n and i.
(f) The final step in the prescription for deriving a generalized expression for the

16




eigenvectors of an arbitrarily shaped cavity is to chose one eigenvector from the infinite set of
eigenvectors for each virrual cavity. The criteria for selecting this virtual cavity eigenvector
is to simply choose the one whose eigenvalue is closest in magnitude to the eigenvalue & of

interest for the real cavity or
K(ml,mup) = k* (36)

where /,m,,p, are the values of the three quantum numbers for the nth virtual cavity which
provide the best approximation. The real cavity eigenvector for the eigenvalue & is written as

the superposition of all the selected virual cavity eigenvectors or

N
E B | 2y ei?
nal

uk(r)
(37)
N

Y Y U, co8K, (- ]t

n=] i=l

where it 1s assumed that the virtual cavity eigenvectors are valid throughout the volume of the
real cavity. For convenience the 7 subscript is assumed and the greek notation is dropped.

The expressions for the eigenvectors become

N
u(r) =Y U, coslK, (r - r,)] (38)
n=1
and
. . N
wir) = Y W, coslK, (r - r)] (39)
n=}

where the magnitude of the wave vectors are equal or
k? = K = K, (40)

for all » and m, but, in general, their directions are not the same or

K <K, (41)

for n = m. It should be noted that the set of wave vectors K, contains all of the dimensions

of the cavity.
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Since the eigenvalues k, the dimensions of the virtual cavities and their location in .
space are all known, the only parameters yet to be determined are the vector amplitude
coefficients U, and W,. These must be determined from the boundary conditions and the
orthogonality condition.
2.3.3 Boundary Condition Considerations
The three vectors K,, U, and W, form an orthogonal set. It is convenient to express
their components in terms of the three Eulerian angles 6,, ¢, and y, [13]. In terms of these
angles, the components of K, are -

K _ = ksinf sing,
K, = -ksin6,coso, (42)
K, = kcosf,

the components of U, are

U, = U(cosy,cosd, - siny, sind, cosf,)
U,, = Ucosy,sing, - siny, cosd, cosd,) (43)
U, = U,siny, sinb,

and the components of W, are

W, = W (-sin{, cosd, - cosy, sing, cosd,)
W,, = W(-siny, sing, + cosy,cos¢,cos6,) (44)
W, = W,cosy, sinb

Both ¢, and 6_are known, since all of the wave vectors K, are known by construction and the

eigenvalue analysis or

K
¢, = tan”t| = (45)
-Kny
and
K
= eqs~l| (46)
8, = cos [k }

This leaves the values of U,. W, and w, to be fixed by the boundary conditions and the
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orthogonality condition. However, only N unknowns can be fixed by the boundary conditions
and only one can be fixed by the orthogonality condition. Therefore, U, and W, are chosen
to be the arbitrary unknowns. Their values are chosen to be U, = U and W, = W for all n.
Since both U and W are fixed by the same normalization condition, it follows that W = U.

For all cavities of interest, the number N of cavity volume elements 4F will be much
greater than the number N’ of cavity surface elements AS.. If point matching at the center of
each surface element is used to solve for the unknowns, there will be two equations for each
surface elements. However, the number N” = N-2N' will still be very large. This implies that
for a unique solution to exist, N” equations of constraint are required. These equations of
constraint result from the requirement that the eigenvectors u,(r) must be invariant under
rotations about the origin, i.e., the orientation of the cavity coordinate system is arbitrary.
Since the cavity space is discrete, there will not be an infinite number of allowed rotations.
For a sphere, one can show the number of allowed rotations is on the order of N.

The exact values of the v, are not needed for the derivation of the statistical model.
However, they are unique and can be determined by forcing the.eigenvectors expressions (38)
and (39) to satisfy the boundary condition (5) at the center of each of the surface elements.
The value of U is yet to be determined and it must be shown under what conditions the
expressions for the eigenvectors can be made to satisfy the orthogonality condition.

2.3.4 Orthogonality Condition Considerations -The Complex Cavity Definition

It is not possible to evaluate the coefficient U using (38) and (39) nor is it possible to
show, in general, that the two eigenvectors satisfy the orthogonality condition (6), except for
rectangular cavities or cavities with special properties. This is best illustrated by first
considering the evaluation of U. U is evaluated by using the orthogonality condition (6) for
the case when &’ = k. Substituting (38) into (6) and with the help of the identity

cosA cosB = %[cos(A - B) + cos(4 + B)], 47)

the orthogonality condition (6) for £’ = & becomes
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NVU?
2

+—22U U,[ cos[K, (r-r,) = K, (r-r )]V (48)

mm men

+—EZU Ufcos[K"(r r) + K -(r-r)ldV

n=1 m=1

where U,=U has been used. The first term on the right comes from the difference in the
cosine argument in the identity (47) which vanishes when m =n. The second term on the
right in (48) comes from the same cosine argument. Since the wave vectors were restricted to
be in the upper half-plane of k-space, none of the cosine arguments vanish when m #n. The
third term of (48) comes from the sum of the cosine argument in the /identity (47). Again,
because of the restriction on the wave vectors, none of these arguments vanish for any values
of n and m.

The integrals of the second and third terms in the right half of (48) are not, in general,
integrable; the only notable exception is for the case of a rectangular cavity, However, some
important observations can be made regarding these two integrals. If the shape of the cavity
is regular, i.e., relatively smooth compared to a wavelength, then the contribution of these two
integrals will be large. Their phase factors will be slowly varying functions because the
position vectors to the corners of the virtual cavities will all be highly correlated. As a result,
a large in-phase contribution is expected. It would also be expected that the values of these
integrals would be a function of the shape of the cavity. On the other hand, if the shape of
the cavity is electrically rough (very irregular compared to a wavelength), then the
contributions from these two integrals will be small. This follows, since the magnitudes of
the coefficients of the eigenvectors are the same so that one cosme term does not dominate.

In the limit of a random shape (again compared to a waveIength) it would be expected that

the contribution of these integrals would vanish. 7 .

The integrals of the form given in (48) are used to define cavities with complex
shapes. Specifically, a complex cavity is defined to be a cavity for which integrals of the
form contained in (48) are vanishingly small or




N
) f cos[K (r - r)ldV = 0. (49)
n=1

There is no way to a priori test to determine if a cavity is complex. The only way to proceed
is to assume cavity complexity based on experience with other cavities and then use
experimental data to justify the assumption. Any other approach must address the details of
each cavity separately.

With the above definition for a complex cavity, it is now possible to evaluate the
normalization coefficient U and to demonstrate the orthogonality of the eigenvectors. To
evaluate the normalization coefficient, the second and third terms on the right hand side are
assumed to be vanish and the value for U follows immediately or

v = 2, — (50)
For the case where £’ # k, the orthogonality condition (6) becomes

N N
0= lz 3 U"-Uf,f cos[K - (r-r,) - K- (r-r,)ldV
2n=1 m=1 v

(31)
1 N N
$ Y YU U cos(E,y (o, ) v Ky (eor )V

2n=l m=1

Since K,z K,, for all » and m, the two terms on the right hand side of (51) are always zero
for cavities with complex shapes and orthogonality is established. Finally, it must be
demonstrated that

fVuk- wydV = 0 (32)

for all k and &'. If k =k, then

Vv N
[ oy wydV = 52 U -w, )

+ two non-contributing terms.
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Since U,- W, = 0 for all n, (52) is satisfied. Using similar arguments, it can be shown that
(52) is satisfied for the case when k =k’

This completes the development of the generalized expression for the eigenvectors. It
has been shown the expressions (38) and (39) for the eigenvectors satisfy the wave equation
(3) and the divergence condition (4) without any restrictions. These expressions can be made
to uniquely satisfy the boundary condition (5) by enforcing the boundary condition at the
center of each small surface element. These results are independent of the shape of the
cavity. However, the orthogonality condition is more restrictive. While it can be shown that
orthogonality condition (6) holds for the trivial case, i.e. a rectangular cavity, it has not been
demonstrated that this is true for any arbitrarily shaped cavity. The additional requirement
that the shape of the cavity is complex must be imposed before it can be demonstrated that
the orthogonality condition is satisfied. Next, the expressions (38) and (39) for the
eigenvectors along with the definition of a complex cavity are used to find the volume
averages of the components of the eigenvectors.

2.4 Volume Averages for Complex Cavities

The generalized expressions for the eigenvectors as developed in the previous section
are of little use for obtaining exact values of quantities everywhere in the volume of the
cavity. However, as will be shown, they are adequate for finding the volume averages of
quantities of interest when the cavity is complex and electrically large.

The volume average <H> of a scalar quantity H(r) is defined by the integral

<H> = %} [ H@av. (54)

The quantities of interest are the volume averages of the components of the eigenvectors and
the volume averages of all muitiplicative combinations of these components. The moments of
the eigenvectors themselves are not considered. It is not clear if vector moments have any
physical or mathematical meaning.

Since it was assumed that the orientation of the cavity coordinate system is arbitrary,
the volume averages for one component must equal the volume averages for the other two

components or

<”k’:>=<u;>=<”£> (55)
and
<l‘£“k‘;> = <uk’?ué> = <uk’;uk’z> (56)




where m and [ are positive integers. This is called the isotropy condition. Also, the volume
averages for the components of the eigenvector w, must be equal to the averages for u,. The
x-component of #, will be considered first. Then, the volume averages for the product of two
different components are evaluated.
2.4.1 Volume Averages of a Single Component

The volume averages of all the powers of a single.component of the eigenvectors are
required for the development of the statistical model. In particular, the volume averages are
defined by

<ul> = %, [ wawrdv (57)

for all positive, non-zero m are evaluated.
(1) m = 1. Using (38) and (57) , the volume average form =1 is
L X
Sup> s o 3 Umfvcos[Kn-(r - r)ldV. (58)

n=1

From the definition (49) of a complex cavity, it follows that
<> = 0. (59)
(2) m = 2: The volume average for this case is

<ul> - 3LV (60)

This result follows from the orthogonality condition (6) and the isotropy condition (55).
(3) m = 3. The volume average for this case follows by substituting (38) into (57) and
applying the cosine identity (47) twice. This yields for the volume average

N 4
<up>= =3 Uplnelped [ cos®,av (61)
‘=

1
av i

where the arguments of the cosine are

23




Tl =K R, + KR+ KP-RP
¥, -K/R -K'R + KR, 62)
¥,=K'R +K'R - Kp'Rp
¥,=K'R, - K 'R, - Kp'Rp
and
R =r-r,. (63)

Since none of the ¥, can vanish, it follows from the definition of a complex cavity (49) that

< ué > = (. (64)

(4) m =4: The volume average for the case m = ¢ follows by substituting (38) into (57) and
applying the cosine identity (47) three times. This yields for the volume average

N 8
vu U U COS‘P,-dV. (65)
l,g,q BY et px qxizzl:fy

<u:z> =

1
8V

The arguments of the cosine in the above expression are
¥ =e KpR v e KR + ey K R, +e K R (66)

where ¢, equals +1 for all /; &, equals +1 for 7 = 1,2,3,4 and equals -1 for 7/ = 5,6,7,8; &,
equals +1 for even 7/ and -1 for odd i; and &,, equals +1 for 1,4,5,8 and -1 for i = 2,3,6,7.
Since ‘¥, can not be zero for i = 1,3;4,5,6, it follows from the complex cavity definition that
these terms do not contribute to (65). For i = 2, the argument of the cosine vanishes when

[ =pandn =g and when / = ¢ and n =p. It follows that

[ cosErav = V5,8,, + 8,8,). (67)

Using similar arguments for i = 7 and 7 = 8 it can be shown that

[ eos®,av = [ cos® dV = V3,8, + 8,8,). (68)

Substituting (67) and (68) into (65) yields
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3 N N
<ug> = 2L Y UL (69)

Defining the parameter S as

N .
s =Y U, (70)
n=1
(69) reduces to
<u> = 252 (71)

The quantity § is evaluated by writing U, in the form

U. = U (72)

nx nx

where @, is the direction cosine between the vector U, and the x-axis of the cavity's
coordinate system. S now becomes
al 1 2
S = U} @k - NU? (ﬁz @ﬁx) = NU?[®;1,.- (73)

n=1

In spherical polar coordinates, the average value of the direction cosine squared is given by

2 1 r2npn s 1 ,

(D10 = = Jo sin*Bcos*$dddd = 3 (74)

Using U? = (2/NV), § reduces to
s-2 (75)

3V
and (69) becomes
<u;> = _1.. (76)
3y?

or



4 1 2 (77)
<u> =1 3(3VJ

The rationale for writing (72) in this form will become immediately obvious.
(5) m =35: For this case, the approach is the same as was used for m=3. It follows that if m
is odd, there is no combination of the indices /,i1,p,q,7 for which the cosine argument will

vanish. Therefore, from the definition of a complex cavity

<ul> = 0. (78)
(6) m = 6: For this case, the volume average is
6 1 -
<uh> = _ZT/Z Z Uh qu COSIP dV (79)
=1 =1

The 32 angles in the above equation are similar to the ones given in (66) for m =4 except in
this case there are 6 indices: /,n,p,q,7,s. The thirty two angles result from applying the cosine
identity (47) five times, i.e. number of angles equal 2™'=32. Of the thirty two ¥, only 10
contribute. To show this, consider the following argument: For any of the ¥, 's to vanish,
each ‘¥ must contain an equal number of plus and minus signs similar to the discussion
associated with (66). For this case the number of plus and minus signs is m/2=3. There are
m!=6! ways to order the six K,-R, terms contained in each ¥, Many of these m/ ways do not
give independent distinguishable arrangements into groups of m/2 plus signs and m/2 negative
signs. Interchanges of the m/2 plus signs purely among themselves does not give anything
new and there are (m/2)! such interchanges. Similarly the (m/2)! interchanges of the m/2
negative signs does not give new arrangements. Thus the total number of independent
arrangements of the six KR, terms contained in a W, is m/[{m/2)!}?=20. However, the first
term in the cosine expansion is always positive; therefore, the number of non-vanishing angles
is reduced by a factor of 2 or the number of contributing terms is given by m/{2[(m/2)!}F}"
=10. Each contributing angle results in 6 identical terms (m/2)! where again m is the number
of indices. Therefore, (79) reduces to

60 N N N
<ui> - OS5 Uy ®)

or in terms of § as defined by (70)




<uh> = -——S3. (81)

6 5
U D> T —— . (82)
BT gp3
or
<ub> = 1-35[— 1Y (83)
B> 3y

(7) m =7 Since m is odd, there are no contributing terms and

< u; > = (, (84)

(8) m=38: For m =8, the volume average is

8 1 N N 2 132 (85)
L oy ® 4V,
<> 132V,Z=1: ;U "‘,Z,;fcos

Of the 2™'=132 angles, only m!/{2[(ms2)!F} =35 have combinations of the indices for which
they vanish. Here the same argument used for the case m =6 is applicable. Each of these
vanishing angles contributes (m/2)/=24 identical terms. As a result (85) reduces to

ON N N N
<u> - ST P S UL (86)

i=1 n=l p=1 g=1

or in terms of §

<ul> = 185 (87)
16
Using (75) for S results in
8 35 ,
<y.> = : (88)
= o7

or

27



4
<ul> = 1-3-:5-7(%,] : (89)

(9) arbitrary m: By induction, it follows that the volume average (57) for an arbitrary value

of m can be written as

35T - L)
<uls - 1:3:5:7(m D(SVJ for m even (90)

0 for m odd.

From (39) and the isotropy condition (55), it follows that
<ug> = <UL > = <uT> = <wE> = <wh> = <wg >, 1)

2.4.2 Velume Averages of Products of Different Eigenvector Compeonents
In order to develop the statistical model, the volume averages of the product of two
different components of the eigenvectors are required. Two cases are of interest. For the first
case, two components having the same wave numbers k& = &' are considered. For the second .
case, the component wave numbers are not equal # =k&'.

Case 1 - k = k* Only two products need be considered. The rest can be inferred using the
isotropy condition (56). The first volume average of concern <u,u,,> can be shown to be

N
]. T 92
<ugdy,> = =Y UU (92)
by using the previously established procedures. The sum in (92) is easily evaluated by
writing the components of the U, in terms of their direction cosines or
N 1 X 03
- 2 - 2
YU, = NU (sz %di’@} = NU[ 9,9, (93)
n=l n=1
The average value of the product of the direction cosine in spherical polar coordinates is
- ]. 2npmo, 3 . - 94
(2.2, = = fo fo sin*@sindcosdpdddd = O. (94)

Therefore, it follows that




SUglhy,> = <Uply > = <ugly > = 0. (93)

It also follows immediately from the orthogonality condition (6) and the isotropy
condition (57) that

SUpWe > = <Ugwy > = <upgwe > = 0. (96)

For volume averages of the form <u,w, >, it can be shown that

N
-1 97
<Upw, > = Eg U W,y o7

This expression can be evaluated by writing both #,, and U, in terms of their direction

cosines in spherical polar coordinates. Then

U = U, 98)
= Usin6,cos,
and
_ /
W,y = Uy, / ©99)
= Usin6.sind, .

Since U,- W, = 0 for all n, it follows that

sin, sin6, cos(¢,- ¢,) + cos,cos6, = Q. (100)

This expression is satisfied if (there are a number of other conditions, but they all yield the

same result)

/

b= P =
6,- 0, =

n

b ]

(101)

fa o

Using (98), (99) and (101), then the average value of the product of directions cosines for the
two components becomes

l 2n rn . 2 . - 102
[@, @ 4nf0 [sin*6cosBsingcospdddd = 0 (102)

/
ny]aws' B

29



which upon substitution into (97) yields

SUWp > = 0. (103)

Similar arguments and/or the isotropy condition ($7) are used to evaluate the other two cross

- product terms. It follows that
Uy > = <Ugwg > = <ugwy> = 0. (104)
Case 2 - k #k* Fof this case, it follows directly from the complex cavity definition that
Ul > = <WWp > = <uw > = 0 5 = XY (105)

2.5 Summary of Deterministic Characterization

Before the results of the above development are summarized, it is necessary to express
the electric field in the cavity in terms of the etgenvectors #, and w,, given by (38) and (39).
A natural choice is to write the total electric field as the superposition of the contribution due
to the eigenvectors u, and the contribution due to the eigenvectors w,. The electric field
would then be given by

E(ry) = E(r) + E () (106)

where E, and E,, are the partial fields as determined by (23) using the eigenvectors u, and w,,

respectively. If
E E, =0 (107)

for all r £ V, then (106) would be the only solution. However, (106) is not the only solution
since, in general
usw, 0, (108)
f

Therefore, there exists another linearly independent solution for the electric field of the form

E,=E -E,. (109)

This follows since the amplitudes of the partial fields E, and E, are equal.

Using the two linearly independent solutiors, the deterministic characterization of the
fields in an electrically large, complex and lossy cavity can be summarized as follows:
(1) The total electric field £7r.y is expressed as a doublet in polarization space (in the
notation used in [1], it is a supervector) or |
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E ()
E,(r,1)

@ - 10

This notation is convenient for developing the statistical model. In this space the total electric
field is not a 6x1 vector with 6 Euclidean space scalar components, but is a 2x1 vector with 2
Euclidean space vector components. The matrix operations are independent of the Euclidean
space vector operations and it is usually less confusing to perform the matrix operations first.
Using (106) and (109), the total electric field in terms of the partial fields E, and E, is

E,(r1)
con = 1|1 1}@ r (111)
Al -1 \Ee

where 277 is a normalization factor and the symbol @ denotes the generalized dot product.
(2) For a cavity with a modal loss factor Q, containing an infinitesimal sinusoidal dipole
source with angular frequency w, length 47 and amplitude /, directed along the x-axis and
located at the position r,, the partial fields E, and E, are

Al w

E(ry) = Y au (rourcos(wr - ¢ (112)
€ 'k
and
All,w
E(rp) = - é°r =Y @@ rwrcos(et - ¢,) (113)
0 &
where the constants ¢, and ¢, are
o’oy - 14
%, = 22+(w2—wk) (114)
Tk
and
WO,
tand, (115)

) an(cof - ooz).

31



(3) The eigenvectors u, and w, are

N
u,( = Y, Uces[K, (r - rpl (116)
n=l
and
N
wr) =Y, W cos[K, (r - ryl (117)
n=l
where
K U =KW =U W =0 (118)
and

K:=k* & U=W =U-= (119)

n

for all n. N is the number of virtual cavities.
(4) All the volume averages of single components of an eigenvector for complex cavities are

1 m
35 (m-1)|—| f
<ul> = <> o 1:3:5(m 1)(3 ) or m even (120)

0] for m odd

for s =x,y,x and m a positive non-zero integer.
(5) The volume averages of products of the different components of the eigenvectors are all

zero or
<t > = <ww> =0 (121)
fors =s',
<uw > =0 (122)
for all s and s' and
S Upllys! > = < Wighpyr> = SlgWerr> = 0 (123)

for all s and s' when &' &,

32




. (6) The number of modes dM/dw in the interval dw is

2
ﬂldw _ Yo

dw. : (124)
do 723

Next, equations (110)-(124) are used to derive the statistical model for EM fields in complex

cavities.



3.0 THE STATISTICAL MODEL

The derivation of the statistical model for EM fields in complex cavities is presented
in two parts. In the first part, equations (116)-(123) are used to develop a statistical model
for the eigenvectors. In the second part, the eigenvector statistical model and equations (110)-
(115) and (124) are used to derive the statistical model for the fields in complex cavities.

Before either model can be derived, it is necessary to establish a correspondence
between probability theory and the deterministic cavity parameters developed above. This
correspondence is addressed next.
3.1 Random Variable Considerations

Consider the cavity of Figure 2. As stated in the introduction, the fields everywhere in
the cavity are known (the problem is deterministic). With reference to this cavity, the
following experiment is performed: A large number = of position vectors r; = r,r,,.....,Fz are
randomly selected with equal weight, i.e., every position in the cavity has an equal chance of
being selected. At each of these random positions, a field variable is measured. This field
variable could correspond to a component of the electric field or a component of an
eigenvector.

For this experiment, the position vector r in the cavity can be treated as a random
variable (r.v.). Since any position is equally likely, r is distributed according to a uniform
distribution and its probability density function f,(7) is

1
£ - 7 reV (125)
0

elsewhere.
If ris a r.v., the field variables are also r.v. since they are functions of r or for example
e, = U (1) (126)

is a random variable since it is a function of r. Using (A-12) and (A-13) of the appendix, the
expectation value e{u, (r)} of the r.v. 1, (r) can be determined if both the functional form of

u,.(r) and f.(r) are known or
elu (D} = [u (Y Hav (127)

where the volume integral extends over all space. Substituting (125) into (127) yields
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1
elu (N} = T/fyub(r)dV. (128)

The right hand side of (128) is equal to the right hand side of (54), the definition of the
volume averages used to obtain the results given by (120)-(123). Therefore, it follows that

elu (M = <u (> (129)

or, in general, the expectation value e{g(r)} of any function g(7) is equal to its volume

average <g(r)> or
g} = <g(®>. (130)

With the above equivalence relationship, it is now possible to develop the statistical model for
the eigenvectors of a complex cavity. In the remainder of this paper, the brackets < > will be
used to denote both average values and expectation values.
3.2 The Statistical Model for the Eigenvectors

For the case of a single r.v., the statistical model is usually defined as the probability
density function (pdf) or the cumulative distribution function (cdf) of the r.v. For this
problem, this definition is not appropriate since there are essentially an infinite number of
r.v.'s of interest, namely the six components of the two eigenvectors for all the cavity
eigenvalues k£ evaluated at the center of each of the N cells of the discretized space of the
cavity. For the case of more than one r.v., the statistical model is usually more complicated.
To illustrate consider the two random variables X and Y with pdf's f,(x) and f,(»),
respectively. The statistical model for this case is called the joint density function and is
denoted by

S ). (131)

Joint density functions are generally very difficult to determine or derive unless X and Y are
distributed according to a normal distribution and/or are independent r.v.'s, For example, if X
and Y are independent r.v.'s, then the joint density function is given by

Jed®y) = ff0)- (132)

No attempt will be made to write the complete joint density function for all the r.v.'s
contained in this formulation. Instead, the complete statistics will be established by finding
the pdf's for each r.v. and by establishing the statistical relationships (correlation,

orthogonality and dependency) between the r.v.
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3.2.1 The pdf's for the Components of the Eigenvectors .
The pdf's for the components of the eigenvectors can be derived from their average

values (120), the moment theorem (see Section A.5 of the Appendix) and the moments (A-32)

of a normal distribution with zero mean and a standard deviation of B. From these

considerations, it follows immediately that the pdf for u,(7) is

-
s
fow) = RS (133)
y y2up
and the pdf for w, (7} is
2
_ s
FulWy) = ——e & (134)
Wb. -

for all £ where s = x,y,z and

) _E (135)
T

Thus, the complete set of r.v. formed by all the components of the eigenvectors (with &
constrained by the definition of an electrically large, complex cavity) are all identical r.v.
distributed according to a normal distribution with zero mean and a standard deviation . It
is important to note that these distributions are independent of the values & of the
eigenvectors and the shape of the cavity (consistent with the definition of a complex cavity).
To compilete the statistics for the components of the eigenvectors, only the relationships

between these r.v. are required. These relationships are established next.
3.2.2 Statistical Relationships Between the Eigenvector Components

The statistical relationships between the components of the eigenvectors are
established by using the definitions presented in Sections A.7 and A.12 of the Appendix.
Two general tvpes of relationships are of interest. The first relationships establish the
dependency between components with different spatial subscripts, eigenvector type and/or
eigenvalue. It is shown that these r.v. are statistically independent. The second relationships
establish the dependency between similar eigenvector components at different locations within
the cavity. It is shown that these r.v. are correlated and dependent.
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3.2.2.1 Statistical Independent Random Variables
Using (121)-(123), the equivalence of volume averages/expectation values and the
definition of an orthogonal r.v. (A-25) of the Appendix, it follows that the sets of r.v.

{ug (P AP): 5257
Wi (), Wy Ar): 525"} | (136)
{uks(r)swk/s/(r)}

are all statistically orthogonal for s5,5" = x,,z and k.k' = k. k,,........ The set of r.v. u,(r) and

w,(r) all have zero mean, therefore, the sets of r.v. are also uncorrelated (see the definition of
uncorrelated r.v's (A-24)). Since the r.v. are all normally distributed, the theorem presented in
Section A.13 of the appendix applies and it follows that the sets of r.v.'s given by (136) are
also all independent. This means that the joint density function for the two r.v., say u,(r)
and w (1), is

/.

uh,wb

(uw) = Ji,h(u)fwb(»v)- (137)

Similar forms for the joint density functions follow for any other combinations of the r.v.
contained in the set defined by (136).
3.2.2.2 Dependent Random Variables

The eigenvectors u,(r) and w,(r) of (116) and (117) are continuous functions of r.
Therefore, it follows that any two of these r.v.'s evaluated at two different positions, say
u,(r) and u, (r,) will not be independent. Their correlation coefficient can be determined by
using the definition of the correlation coefficient x f(A-43) of the Appendix] and the
techniques previously used for performing volume averages. From the Appendix, the
correlation coefficient of two similar components of an eigenvector is

<u(rug(r,) > (138)
ﬁZ

K[ub(rl) s uk_g(rz)] =

where B 1s given by (135) and

< ub(rl) > =< ub(rz) > = (), (139)

The expectation value of (138) is evaluated using the same techniques that were previously
used. Applying the isotropy condition (57) yields
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<u (r)u(r,) > = %< uy(r) ) >. (140)
Substituting (116) into (139) and with the help of the identity (47) and the complex cavity

definition (49), the following expression for the correlation coefficient is obtained

N
Kty (r )ty ()] = %Z:cos[Kn-(rl - (141)

n=|

The quantity on the right hand side of (141) is just an average value which is easily evaluated
using spherical polar coordinates. Since the wave vectors K, are restricted to the upper half-
plane of k-space, the integration is only over 27 steradian and the polar angle theta ranges

from O to /2. The correlation coefficient becomes

Kl ()] = ;ﬂ [ [ sin cos (k]r, -r,| cos6) do . (142)

Performing the integration yields

, - inklp -
K[t (r )t ()] = %—lr?l (143)
1 72

Using this value for the correlation coefficient, it is now possible to write the joint density

function for the two r.v. x=u,(r) and y=u,(r,) or

Axy) = (x? - 2xxy + y9) (144)

1 1
exp -
27 P21 p[ 2p%(1-x%)

where x is defined by (143). In the limit as & /r, - r_,/ —>00, tHe corrélation coeffgi?nt
approaches zero and the two r.v. u,(r,) and u,(r,) are uncorrelated and independent. It is
important to note that this statistic is dependent on the wave number of the eigenvector. The
statistical model for the eigenvectors are used nex: to derive the statistical model for the fields
in the cavity.
3.3 The Statistical Model for the Cavity Fields

The statistical model for the cavity fields follows from the deterministic expression for
the fields (111)-(115), the mode density (124) and the statistical model for the components of
the eigenvectors. Before the statistical model is derived, it is necessary to estimate the
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number of modes excited in a cavity with an average damping factor Q and introduce some
simplifying assumptions.

If a cavity is driven by a source with angular frequency ©, then the bandwidth in
which the modes will be excited is defined by

w(l ; L] <o < w(l _1_] (145)
20 20

To first order in inverse powers of O, the number of modes M excited in the cavity is

obtained by integrating (124) over the bandwidth or

[P (146)
72c3Q

To simplify the exprlessions for the fields, the assumption is made that in the
bandwidth defined by (145), each of the modal Q,'s is approximately equal to the average Q
of the cavity or

Q, = Q (147)

Also, it 1s assumed that in the bandwidth, the modal angular frequency ©, is approximately

equal to the excitation frequency ® or

W = W, (148)

Using the approximations (147) and (148), the coefficients c, and ¢, reduce to the simple
expressions

o = “_CZ? (149)
@
and
T
. (150)
b 2

The sign in (150) is unimportant and the positive sign will be used in the following. These
simplifying assumptions and expressions are incorporated into the derivation of the statistical
model for the fields in a cavity. The pdf's for the fields are derived first. This is followed by
a derivation of the statistical relationships needed to complete the statistics. Finally, the
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statistics of the energy density in the cavity are developed.
3.3.1 The pdf's for the Field Variables

To derive the statistics for the total fields (111), the statistics of the partial fields E,
and E, are developed first. These results are then applied to (111).
3.3.1.1 The Statistics of the Partial Fields

The field expressions for the partial fields E, and E, are identical upon the interchange
of u and w. Thus, only the expression for E, will be addressed and the subscript u is
dropped. Substituting (149) and (150) into (112) yields for the three cartesian components of
the partial field

K1+M[f2)

Gy Y WU (nsinet

k'=k(1-MP2)

K1+M[2)

8 Y, Hyru(nsinet (151)
k'=k(1-MP2)

K1+MJ2)
a Y ugru(rsinet

k' =H1-Mp2)

E(rp

E,(r)

E(r)

where &k = avc and the constant q, is

ALl
a, = £ . (152)

€W

It is immediately obvious from (150) that the presence of the source destroys the isotropy of
the fields in the cavity. The r.v. u,(r) , u,,(r) and u,.(r) are all independent r.v. that are also
independent of the wave number k. It follows that the products contained in the y and z-
components of the partial field are also independent. The r.v. u,(r,) and u,(r} are dependent
r.v. and their correlation coefficient depends on the wave number k. Therefore, the statistics
for the 3 and z-components of the partial fields are, in general different from the statistics for
the x-component of the partial fields.

The statistics for the partial fields are significantly simplified if it is assumed that
k /r-ro/ is much greater than one. Then the correlation coefficient (143) is approximately zero
and the two r.v. u,(r,) and u,(r) can be treated as independent r.v. since they are normally
distributed. When this is true, the partial fields are isotropic. For this case, the expressions

for the cartesian components of the partial field take on the simple form
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M
E(rp) = ayy &, sinwt
m=1

M
E(ry) = ay), Eyysinwt (183)
m;{l
Efrt) = a)y E,sinwt
m=l

where

§am = Ui (Tl (T)
§om = UpTdi (1) (154)
Eom = Up(TIu (D).

The free index & on the right hand side of (154) can be replaced with the free index m on the
left hand side because the statistics of each of the &'s are independent of the wave number £.
In addition, the set of €'s contained in (153) are all independent r.v. Since the &'s are the
product of two normally distributed independent r.v with zero mean and standard deviation 3
= (3V)!? it follows from (A-53) of the Appendix, that each of the &'s are distributed
according to the following distribution

R Eranid
f(®) = ?@Kc’(?J (155)

where K, is a modified zeroth-order Bessel function of the second kind. The pdf given by
(155) is valid over the range -0< & <. The characteristic function ®,(v) of & is given by
(A-55) of the Appendix or

1

The derivation of the partial field pdf's is completed by noting that each component

D (v) = (156)

(153) of the partial field contains the sum over A/ identical independent r.v. (here A is the
number of modes (146) excited in the cavity). Writing one of these sums as
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M
= = Z £ (157)

m=|

then the characteristic function ®(v) for = follows from (A-30) and the definition of the
characteristic function (A-16) of the Appendix or

Do (v) = [@ ()™ (138)
Substituting (156) into (158) yields

O (v) = [1 + B (159)

where B has its usual value. Writing (159) in the form

-12
2\ (160)
Do (v) = |1+ :Mﬁ \
= M
and using the limiting value definition for an exponential
x‘ n
lim |1 + 2| = e7 (161)
pce n,

the characteristic function dv) can be approximated by

-SMp*? (162)

D (v)=e ?

for large values of M, i.e, the expression (162) is valid when a large number of modes is
excited in the cavity. The range of the validity of (162) is still an open question and will be
discussed in more detail in the conclusion section. The characteristic function for a normal
distribution with zero mean and a standard deviation of ¥ is given by (A-33) of the Appendix
or

57 (163)
P(v) =e -

Therefore, in the limit of large M, the pdf for = is
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=2

F(E) = 1 (164)

V2nMp?

or E is distributed according to a normal distribution with a mean of zero and a standard
deviation of M?B* where M is given by (146) and B is given by (135). Of course, this
derivation is a re-statement of the central limit theorem, however, it is now possible to
determine its range of validity when applied to EM fields in cavities.

Defining a new r.v. X as

X = gyE, (165)
the cartesian components of the partial field due to the « eigenvector can be written as

E (rt) = Xuxsin w?
E (rp) = Xuys.mwt (166)
E (rp) = X sinwt.

Similarly, the cartesian components of the partial field due to the w eigenvector can be

written as

E (ry) = X, sinwt
E (rp) = X, sinwt (167)
E_(rt) = X sinwt.

The six X's contained in (166) and (167) are identical independent r.v. distributed according
to a normal distribution. Their pdf is

- X2
1 2Ma;p* 6
A = e M (168)
y2nMa,p
where (164), (165) and (A-19) of the Appendix have been used. This completes the
development of the pdf's for the partial fields. These results are used to derive the pdf's for
the total fields.
3.3.1.2 The pdf's for the Total fields
For an over-moded cavity (the number of modes M is large) and for positions in the

cavity sufficiently far from the source, the cartesian components of the total electric field € (r.1/
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are can be expressed in the following form:

. 11] (Ru
€ .n) = — © sin w?
V21 -1 (X,
(1 1] (X,
€ (ry) = L © sinwt (169)
V2|1 -1 vy
[ "
€,r) = = © sinwt
201 -1 (X,

where as before the X's are all independent r.v. with the distribution given by (168). The
time average of the square a component E of the total electric field is

E? - %‘ [[€lenoc mpa (170)

where T is the period of the driving frequency and the prime denotes the transpose. Upon
performing the indicated operations, the time average for the square of any component of the
total field 1s

E? - %(Xis f X2, (171)

Defining a new r.v. as

T == (172)

then (171) becomes
E2 -1 .12 (173)

or the magnitude of a cartesian component of the electric field is
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E - T, (174)

The pdf of any of the r.v. Y follows directly from (168) and (A-19) of the Appendix and is

- T2
D) = e 179)

VnMa,p?

The set of Y's are identical and independent normal r.v. with a zero mean and a

y - \F?{a"ﬁz' (176)

Therefore, it follows immediately from (A-37) of the Appendix that the pdf for the time

standard deviation ¥y of

averaged magnitude of a component of the electric field is

2

ES
E, 32 177
AE) = —%e 7, (177
2y?
a Rayleigh distribution (a chi-statistic with two degrees of freedom).
The pdf for the magnitude of the time averaged total field £ can be derived in a
similar manner. The total field is
12
E=|Y (2 + 1) (178)
5=xy2

Again, since the Y are identical and independent normal r.v. with a zero mean and a standard
deviation of v, it follows from (A-39) of the Appendix that the pdf for £ is

EZ
| - E o7 (179)
8y¢
a chi-statistic with 6 degrees of freedom.
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3.3.2 The pdf's for the Power Density .
The pdf's for the power density at a point in a cavity follows immediately from the

results for the fields presented above. The s-component of the power density P, follows from

the definition of the Poynting vector and Maxwell's equations and is given by

p -0 g - np (180)

4

where Z, , the impedance of free space, has been used. Using Z, for the impedance of the
propagating fields is valid since the partial magnetic fields are everywhere normal to the
partial electric fields. Defining a new r.v. g, as

2
g, = E, (181)

it follows immediately from (168), (173) and (A-38) of the Appendix that the pdf for ¢, is

L, (182)

Ra) =

an exponential distribution (a % -statistic with two degrees of freedom). Using (A-19) of the
Appendix, the pdf for P, can be written as

P,

I

1 )
ﬂPs) = .y 2

2v%

(183)

which again is an exponential distribution.
Similarly, the total power density P at a point in the cavity is expressed in terms of the

total electric field E as

P = nE2. (184)
Again, defining a new r.v. ¢ as
q = E (185)
the pdf for g is
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A = g2 (186)

© or a ¥ -statistic with 6 degrees of freedom. This distribution follows immediately from (168),
(178) and (A-40) of the Appendix. Using (A-19) of the Appendix, the pdf for P is

P
__P* o (187)

16(y*/n)°

which is also a y -statistic with 6 degrees of freedom.
3.3.3 The Comrelation Functions

To complete the statistics for the cavity, the correlation functions for the field and
power variables are needed. For the fields and field variables there will be two kinds of
correlation. The first kind is referred to as spatial correlation and results because the fields
are continuous functions of position, just as was the case for the eigenvectors. The second
kind is referred to as temporal correlation. This kind of correlation will occur when the
bandwidths of two driving frequencies, say @ and @', overlap. The statistics for the two
frequencies will not be independent because some of the same modes are excited by each
driving frequency. The spatial correlation functions are addressed first.
3.3.3.1 The Spatial Comelation Functions

Spatial correlation functions are developed for the amplitude of the components of the
time averaged electric field, the square of the components of the amplitude of the components
of the time averaged electric field and the power density associated with a field component.
To derive these correlation functions, it is necessary to develop the correlation coefficients for
the two partial fields E, and E,.
3.3.3.1.1 The Spatial Conelation Functions for the Partial Fields

From (166) and (167), the partial fields are

E (rp) = X (Nsinw? (188)

and

E (ry = X (Dsinwe (189)

where s=x.3.z. For an over-moded cavity and large separation distances between the source

point r, and the measurement point r, the X's are independent and identical normal r.v. with
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zero mean and a standard deviation I of

T = (Map® - /3. (190)

The quantities in (190) are as previously defined. Since the X's are independent r.v. with zero

mean, the only non-zero correlation functions are

<X ()X, (ry) > ' (191)

KX, ()X, 7] = =
and
KX, (7). X, ()] = : X‘”‘(r‘;‘}:‘“‘@ ~ (192)

where the definition of correlation given by (A-43) has been used.
To evaluate the expectation value in (191) and (192), recall that in terms of the
eigenvectors

X (1) = ay) .t (rou (). (193)
- k
Then
<X ()X ) > = g 3 < U T (ry) >< ty (b () > (194)
k/ k”

where the approximation that u,.(r,) and u,(r) are indeﬁéndent r.v. has been used. Since
< uk/x(ro)uk/&(ro) > = ﬁzﬁk/k// (195)

it follows that

<X ()X (r) > = alBY <t (rug(r) >, (196)
i/

From (140) and (143), the expectation value on the right hand side of (196) is

< uk’s(rl)u}c’s(rz) > = ﬁzxs(rprg) (197)
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where
sink’|r, -r.
Ko(rpry) = ———= nonl (198)
k'|r,-r,|
Using k'~ k and letting the sum in (197) go from m=/ to M yields
<X, ()X, (ry) > = Magsy(ryry). (199)
Substituting (199) into (191), it follows that
K[X (DX ()] = xg(r,1y) (200)
and
K[Xw‘g(rl)yxw(rz)] = Kg(rprz)- (201)

To find the correlation functions for the amplitude of the fields and the power, the
expectation value

<X (r)X(ry) > (202)

must be evaluated. From [15], the expectation value of the product of the square of two

normal r.v. x and y is given as
<x*y*> = <x?><y?> + 2<xy>2_ (203)
Therefore, it follows from (199} that
<X (r)Xi(ry) > = D1 + 2x5(r,m)]. (204)

A similar result can be shown to be true for the w expectation values.
Another expectation value of interest is

< X, ()X (r)] > (205)

From [15], the expectation value of the absolute magnitude of the product of two normal r.v.
x and 3 each with a zero mean and a standard deviation of I is given by
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"
<yl> = Eprsintr + 179 (206)
n .
where r is the correlation coefficient of the two r.v. Therefore, it follows that

< X rX ()] > = %W[wprz) sin™ ky(ror) + {150 207)

The correlation coefficients for the w components are the same.
3.3.3.1.2 The Spatial Comnrelation Function for the Magnitude of an Electric Field Component
From (171), the magnitude E, of a compcnent of the time averaged electric field is

E(@ = — X0 + 0. (208)
\/5
Defining a complex r.v. = as
E() = X0 + X, 00 (209)
/2 ,
it follows that
E(r) = [E(|. (210)
The mean of Z is
<E> = '_1.(<X"s>.+j< X,>) =0 7 (211)

/2
and the variance of = is

f< X:S> + <Xis>] = I, (212)

< ’EI2> =

N =

The covariance of the two complex r.v. Z(r, ) and Z(r.) is
COVIE()E(r)] = <[E°(r)-<E () I[E(r,) -<E(r)>]> = <E()E(r)> (213)

where the asterisk * denotes the complex conjugate. The expectation value on the right hand
side of (213) is easily evaluated using (190) and (199) or
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<E'(r)E(r)> = %FX@(H)XM%P+<st(r1)st(r2)>] = D2y(ryry). (214)

Using (210) it follows that |
<E(r)Efry)> = <|E@)[[EF)|> = <[E*(IEFr)|>. (215)

From (207) and (215), the desired expectation value is
2
<E(r)E(r,)> = %{xs(rl,rz)sm-lxs(rl,rz) + 1/1"‘3(’1”2)J- (216)

The magnitude of a component of the time averaged electric field E,(r) is distributed
according to the Rayleigh distribution of (177). Its mean is

<E> = EY = %1‘! (217)

<E32> - <ES>2 = (2—1) Yz = (1—%) I‘z_ (218)

and its variance is

The covariance of E(r,) and E(r,) is

COVIE(r),ELr,)] = <E(r)E[r,)> - <E(r)><E(r)>. (219)

Using (216)-(219) and the definition for correlation, it follows that

@yt sinegryry) + I-kkrury) - w74 (220)

K[Es(rl),Es(rg)] = 1 - 71/4

3.3.3.1.3 The Spatial Correlation Function for the Field Squared and Power Density
From (171), the square of a component of the time averaged electric field is

EXr) - %[Xis(r) + X (o). (221)

The expectation value of this r.v. evaluated at two different positions is



<EXr)EXNr)> = = <XAr)Xn)> + = <KX )
‘I ‘; (222)
" 7 KXl + 7 KX
Using
Ko )Ko(r)> = <Xog(r ) Xo(r)> = T* (223)
and (204), then
<EXr)Elr,)> = I‘“[l + x§(r1,r2)]. (224)

Since the square of a field component is distributed according to the exponential

distribution (175), its mean is
<E}> = 2y* = I? (225)
and itsi variance 1s
<E}> = 4y* = T*, (226)
The covariance of the r.v evaluated at two different position is
coVEX(r)EXry)] = <EXr)EXr)> - T* (227)

Then it follows from (224) and the definition of correlation, that the spatial correlation

function is
RE (rES(ry)] = xryry). | (228)

By inspection, the spatial correlation function for a component of the power density is the

same or

KP(rP ;)] = x5Try). (229)

3.3.3.2 The Temporal Conelation Functions
The temporal correlation functions for the field variables are derived in a manner
similar to the derivation of the spatial correlation functions. Since most of the steps are the
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same, much of the detail is omitted. Again, the correlation function for the partial fields is
derived first and these results are used to derive the correlation functions for the measurable
field variables.

3.3.3.2.1 The Temporal Correlation Function for the Partial Fields
' A component of the partial field due to the u eigenvectors can be written in the form

E (rp) = aX (K)sinot (230)

where the wave number k now corresponds to the driving frequency or

- _ 2% (231)
C C
and X(k) is written in the form
K(1+MP2)
X0 = X nlrugln). (232)
k'=k(1-M[2)

The expectation value of the X's evaluated at two different frequencies f, and f, is

AMR) ke (LMP)
<X k)X (k)> = ay > Y < ru > <uy (Du(r)> (233)
K=k (1-MJ2) K=y (1-MJ2)

where it has been assumed that both the cavity Q and the number of modes M excited are
approximately the same for f, and f,. Using

Uy (Pl (T)> = <up (P (N> = B840, (234)
then 1t follows that
<X (k)X (k)> = aMalp* = al? (235)

where oM is the number modes that are excited by both f; and f,. Obviously, if

e R A (236)
Lol g
then
a = Q. (237)



To estimate ¢, it is first assumed that the mode density in the bandwidth is constant or .

dil = ﬂ ~ %' (238)

If f,> f,, then the bandwidth &f in which modes are excited by both f, and f; is

where

Af = f, ~ S (240)
From (238) and (239), it follows that

@ =1- Q%r. (241)
Redefining o as

¢ = x{f;)5) (242)

then it follows from the spatial correlation development that
KX (D)X T = %lfi o) (243)

3.3.3.2.2 The Temporal Conelation Function for the Magnitude of the Electric Field
Following the same steps outlined in Section 3.3.3.1.2, it can be shown that

(2/1t)[1c7(f1,f2)8i11‘11c10"11f2) + \/l-lc:';(fufg)} - 7t/4. (244)

KESLER)] = T

3.3.3.2.3 The Temporal Correlation Functions for the Field Squared and the Power Density
Following the same steps outline in Section 3.3.3.1.3, it can be shown that

KIEXF)EZE] = ¥Hfify) (245)
and
KPP = o). (246)
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3.3.4 Energy Considerations

From total energy considerations, the statistical parameters derived above can be
expressed in terms of measurable parameters. In addition, the probability density function of
the energy density in the cavity can be determined. The total energy arguments are addressed
first.
3.3.4.1 Total Energy Considerations

Using the expression for the electromagnetic energy density

e(rp) = —;[eoEz(r,t) + RHA(nY), (247)

the expression for the total electric field (111) and Maxwell's equations, it can be shown that
the energy density of the propagating fields in the cavity is not a function of time and is
simply

e(r) = %Ez(r) - %E EXr). (248)

5=XY,2

Therefore, the total energy in the cavity is

€ e,V .,
ep = —?ofVEz(r)dV = 20 <E[>. (249)

Since the expectation value of a component squared of the total electric field is I, the total
energy in the cavity is

€p 2

_ 3V (250)

From antenna theory, the power radiated by an infinitesimal dipole source of length

Al 1s
Z
P, = ——(aly? (251)
12nc~
or
S5




(A = —‘ﬂP (252)
Zyw?

Using (252) and the definition of T, it can be shown that in terms of the power radiated into
the cavity

rz - 4m2 <P (253)
eV

Substituting (253) into (250) yields for the total energy in the cavity

- 2mp (254)

e
T O]

From conservation of energy, the energy lost per cycle due to Joule heating is

ep = P,T (255)

where T is the period of oscillation of the source or

-1 (256)
j;
Substituting (255) into (254) and solving for Q yields
g
Q=--I (257)

which is the standard definition of Q (the ratio of the total energy in the cavity to the energy
lost per cycle).
3.3.4.2 The Statistical Model for Energy Density

The pdf for the energy density follows immediately from (185) and (248) or

5 _3e
fey = 28,7 (258)

where
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7 =T (259)
|4

is the average energy density in the cavity. Similarly, the correlation functions can be shown
to be

k[e(r)e(ry] = Ks(ryry) (260)
for the energy density at two different points in the cavity and
k[e(fe()] = x{fify) (261)

for the energy density at the same point for two different cavity excitation frequencies.

3.4 Summary of Statistical Model

) The statistical model of the fields in a large over-moded, complex cavity can be
summarized as follows:

(1) The cartesian components of the steady state electric fields are random variables defined

by
XM
X,

sinwr (262)

11
€ (r) = L o
s \/j 1 -1

where s=x.y,z and the X's are identical independent normal r.v. with zero mean and a standard
deviation of T or

X
D) = e T (263)
y2nT
with
r2 = 47Q p (264)
eV

and P, is the power delivered to the cavity by an external source of energy. The correlation
coefficients for the random variables measured at different positions and the correlation
coefficients for the random variables measured at the same position for two different driving

frequencies are
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KX, ()X (1] = xg(rpry) (263)

and
®[X, X = x4 ) (266)
where
Ky(ryry) = Ezlkrl';r'f’ (267)
g L LL )
and
L Si
1 -=2"0 -f s—
T R R S At (268)
0 elsewhere.

(2) The magnitude of a cartesian component of the time averaged electric field is a r.v.
distributed according to a Rayleigh distribution or

EZ

E, T
fE) = e

(269)

where s=x,y,z. The spatial correlation function for E, is

(2/1r)[xs(rl,r2)sin'lrs(rl,rz) + \/l-rg(rl,rz)] - n/4 (270)
1 - =n/4

K[E(r),E(r)] =

and its temporal correlation function is

(2/7r)[r<7(f1,f2)sin"'r<70’1f9 + \/1"<§Cfuf2)1| - /4 (271)
1 - =n/4 '

k[E(MD.E(F)] =

(3) The square of a component of the time averaged electric field is a random variable

distributed according to an exponential distribution or
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E
RED = e © &)
The spatial correlation function for this random variable is
K[EXr)Es(r,)] = K?-(rl;r:,) (273)
and its temporal correlation function is
REFER] = xi{ffy). (274)

(4) A component of the power density is a random variable distributed according to an

exponential distribution or

3P,
3 or
AP) - o o o (275)
where
P, - Pu (276)
|4
The spatial correlation function for this random variable is
x[P,(r),P(r)] = xxr,r,) (277)
and its temporal correlation function is
K[P)PH] = ¥H{fufy)- (278)

The probability density function (275) best illustrates the role that the damping factor Q has

in characterizing the field distributions in cavities. The mean value <P> is

P,
P> =210 (279)
<P > (3V}Q

The quantity in the brackets on the right hand side of (279) is power density available to one
component of the electric field due to the external source. The damping factor Q behaves as
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a gain or amplification factor for the power density in the cavity.
(5) The energy density in the cavity is a random variable distributed according to a %°-
statistic with 6 degrees of freedom or

3e
Ry - U, (280)
2g?
where
3 =1 (281)
Z

is the average energy density in the cavity. The spatial correlation function for this random

variable is

k[e(r),e(r,)] =K§(rl,r2) (282)
and its temporal correlation function is

le(f)e )] = XHF ) (283)

This completes the development of the statistical model for the electromagnetic fields in
complex cavities. Some potential applications of theory as well as limitations of the theory
are discussed in the following section.
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4.0 CONCLUSIONS

The distributions and correlation functions for the field variables in lossy, complex and
electrically large cavities containing sources have been derived. These results are summarized
by (262)-(283). A discussion of these results is presented in Section 4.1. The derivation of
the statistical model required the introduction of a number of assumptions. The most critical
of these assumptions is the complex cavity assumption (49). A discussion of this assumption
is presented in Section 4.2. Other assumptions used in the derivation of the statistical model
included the large number of modes assumption (162) and the assumption that all of the
excited mode have equal energy, (147) and (148). These assumptions and their potential
impact on the tails of the distributions are discussed in Section 4.3. Finally, potential
applications of the statistical models are discussed in Section 4.4.

4.1 Discussion of Results

All of the field variables considered herein are shown to be distributed according to
know distributions. The amplitude of a component of a partial field is shown to be
distributed according to a normal distribution (262) and hence, the amplitude of the electric
field associated with one of the polarizations is also distributed according to a normal
distribution (the sum of two normal r.v. is also normal). This result verifies the assumption
used in [10]. However, this result is only valid in the limit of an infinite number of modes
being excited in the cavity. Since this is never the case, the error introduced by the
assumption (162) must be evaluated. This impact of this assumption and ways of bounding
the error are discussed in Section 4.3.

The magnitude of a component of the total electric field in a complex cavity is shown
to be distributed according to a Rayleigh distribution (269). This result is also in agreement
with the distribution reported in [10]. Since this distribution is derived from the distribution
for the amplitudes of the fields associated with the each polarization, it is only valid when a
large number of modes are excited in the cavity (an over-moded cavity).

The square of a component of the time averaged total electric field is shown to be
distributed according to a ¥ -distribution with two degrees of freedom (272) (an exponential
distribution). Since this is a derived distribution, its validity is, of course, dependent upon the
same caveats as the previous distributions. This distribution is in agreement with the
distribution reported in [10] where it was shown that mode-stirred chamber data supported
this distribution at a 95% confidence level using chi-square goodness-of-fit tests. It was also
reported in [10] that "outliers" (values higher than those predicted by an exponential
distribution) were found for all test configurations. Outliers have not been observed

elsewhere [8]. One possible explanation for the existence of these outliers is discussed in
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Section 4.2. ‘

The power as measured along an axis of the coordinate system 1s shown to be
distributed according to a % -distribution with two degrees of freedom (275) in agreement with
the results reported in [9]. In [9], probability plots are presented for 7 different cavities
representing a wide class of different shapes and @'s (these include cavities found in aircraft
and ground vehicles). For each cavity considered, it was reported that the measured power
levels fell within the 90% confidence limits derived for the theoretical distribution.

The energy density in the cavity is distributed according to a *-distribution with six
degrees of freedom (279). In this form (279), the distribution for the energy density is not
easily recognized. A more familiar form is obtairied by considering the contribution to the

energy density from only one partial field or

e (P = %[Xix(r) F X0 + Xo0) (284)

where ¢, is the energy density associated with the u partial field. Since the X's are
independent normal r.v. with zero mean and the same standard deviation T, it follows from
(A-36) of the Appendix that the pdf for the partial energy density is

fe,) = 27 gl? e T (285)
(r)¥
where
T =, I? (286)

and I' is defined by (264). Thus, the pdf for the energy density associated with a partial field
has the same form as the pdf for the kinetic energy of a gas atom [16]. The pdf for the
kinetic energy of a gas atom is derived directly from the Maxwell velocity distribution.

In addition to the pdf's for the five field variables discussed above, the spatial and
temporal correlation functions for these variables have also been derived. Knowledge of these
correlation functions is required in most applications of the theory. This will be discussed in
more detail in Section 4.4. Correlation functions are extremely difficult to determine using
empirical statistics and virtually no data are available to support or confirm the theoretically
derived expressions. Currently, an experiment has been designed to indirectly measure the

spatial correlation functions.
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4.2 The Complex Cavity Assumption

The statistical model presented in Section 3.0 is only valid for electrically large
cavities with complex shapes. A complex cavity was mathematically defined by (49). As
previously stated, it will not be possible to a priori validate the complex cavity assumption for
every cavity of interest. The only practical way to proceed is to assume complexity based on
experience with other cavities and then use experimental data to justify the assumption.

This does not mean that no attempt should be made to validate the assumption. One
possible way to validate this assumption would be to numerically determine the mode shapes
of cavities with complex shapes. This is not a particularly difficult computation since the
walls of the cavity can be assumed to be perfectly conducting. The moment integrals of
Section 2.4 could then be numerically evaluated and the results compared to the theoretical
predictions. These numerical predictions would be useful for establishing the range of
validity of the complex cavity assumption. In addition, these numerical predictions would be
useful for providing estimates of the residual error introduced by the complex cavity
assumption. Estimates of the residual error in the moment integrals could then be used to
bound the errors in the tails of the derived distributions. Knowledge of these error bounds is
required for many applications of the theory.

In the previous section, the existence of outliers in measured mode-stirred chamber
distributions was discussed. The source of these outliers has not been established. Since the
mode-stirred chamber used for these measurements is essentially a rectangular enclosure with
a mechanical stirrer added to introduce complexi%y, it is not difficult to envision that there
could be some stirrer orientations for which the complex cavity assumption is not valid for all
the excited modes. These "outlier" modes could, in some sense, correspond to modes that do
not "see" the complexity of the cavity, i.e., the stirrer. The coherent contribution from these
"outlier" modes would dominate the measured response and the derived distributions would
not be valid for this case. These modes could, in principal, be eliminated by designing the
mode-stirred chamber enclosure so that all modes "see" the complexity of the cavity, i.e.,
design an irregular shaped enclosure with rough walls. ‘

In any event, the definition of cavity complexity is still an open issue. More work 1s
required before the concept of cavity complexity is fully understood. It is essential that the
error introduced by this assumption, particularly in the tails of the distributions, is bounded
before predictions based on the theory are accepted as gospel.

4.3 The Number of Modes and the Equal Energy Assumptions

In addition to the complex cavity assumption, two other assumptions were introduced

in the derivation of the statistical model. The assumption introduced into (162) (a large




number of modes is excited in the cavity) is used to show that the amplitudes of the partial .
fields are distributed according to a normal distribution. Also, it is assumed in (147) and in
(148) that the energy of every excited mode is the same. This assumption was used to
simplify the expressions for the partial fields. Since each assumption is applied to an "exact"
expression, one can, in principal, bound the error introduced by these assumptions.

For the number of modes assumption, the concern again is the error introduced in the
tails of the distribution. For even a very few number of modes, say M =3, the assumption is
probably valid if one is only concerned with values of the r.v. near the mean of the
distribution. However, if one is concerned with values of the r.v. in the tails of the
distribution, the approximation is probably not valid unless M is very large. Since the "exact"
value of the distribution for one mode is known, it is possible to estimate the error introduced
by this assumption and the magnitude of the error will be a function of the number of modes
M. One way to estimate this error is to express the error as a series in terms of Hermite
polynomials [15]. An effort to quantify this error will be initiated in the near future.

The second assumption is probably not as critical as the first assumption providing that
the cavity Q is large. However, this requirement is in conflict with the previous assumption
since the number of modes M is inversely proportional to Q (146). Therefore, the impact of
this assumption is not independent of the previous assumption and the two assumptions must
be addressed in parallel. Again, since "exact" expressions for the partial fields are known, the
error introduced in the distributions by this assumption can be estimated.

4.4 Potential Applications
There are a number of potential applications of the derived statistical model. Two

obvious applications are: (1) the analysis of mode-stirred chamber test data and (2) the
survivability/vulnerability assessments of systems containing large complex cavities subjected
to high frequency electromagnetic environments. These applications of the statistical model
are briefly discussed below.
4.4.1 Mode-Stimed Chamber Application

A mode-stirred chamber (MSC) is a test facility consisting of a metallic enclosure, a
source antenna located inside the enclosure and an electrically large and irregularly shaped
paddle wheel (stirrer) also located inside the enclosure. A test object is placed inside of the
enclosure and the respohse of the test object is measured for a large number of positions of
the stirrer. The location of the test object in the enclosure is unimportant as long as it is at
least one-half wavelength away from the walls of the enclosure. The costs associated with
constructing and operating this type of test facility are considerable less than comparable costs
associated with anechoic chamber testing. This includes source costs since the field strengths

64




in the cavity are enhanced by the Q of the cavity.

A deterministic characterization of the response of test objects to the MSC fields is not
feasible due to the geometric complexity of the cavity. As a result, a statistical
characterization is attractive since the MSC in some sense can be represented as a large
complex cavity.

Although, the statistical model developed herein is based on the assumption that the
position vector r in the cavity is a random variable, it easy to demonstrate that these statistical
models also apply to the fields in mode-stirred chambers. The probability density functions
and the correlation functions are shown to be independent of the shape of the cavity as long
as it satisfies the definition of a complex cavity. Therefore, the statistical model is valid for
the set of all complex cavities with constant volume 7 and constant Q. All of the cavities
belonging to this set of constant ¥ and Q complex shaped cavities is called an ensemble and
the volume averages can be replaced by ensemble averages. For each stirrer position, a MSC
represents a different shaped complex cavity having the same volume and Q as any other
stirrer position. Therefore, measurements performed at different stirrer positions correspond to
measurements performed for different members of the ensemble of cavities. As a result,
averages over stirrer positions are equivalent to ensemble averages which in turn are
equivalent to volume averages and the statistical models are applicable to the analysis of
mode-stirred chamber test data.

It can also be argued that since the volume of the cavity is not a function of frequency
and the theoretical value [8] of the O of the cavity is a slowly varying function of frequency
(O ~f”), then the cavity statistics can be generated by varying the frequency of the source
antenna over a limited frequency range (frequency sweeping). While this may be true for the
probability density functions, it is not true for the correlation functions. The correlation
functions dependent on the source frequency and as a result, the test object response in a
MSC is also a function of frequency. Therefore, the response of the test object must also be
a slowly varying function of frequency before frequency sweeping is a valid approach for
generating cavity statistics. -If the test object's response is not a slowly varying function over
the range of the frequency sweep, then the statistical models developed herein are no longer
valid.

Although many predictions made using the statistical model developed herein are in
excellent agreement with measured MSC data, there are still a number of open issues
associated with the statistics of mode-stirred chambers. These include: the optimum design of
the MSC stirrer and the enclosure itself, the effect of the test object on the Q of the cavity,
the validation of the correlation functions and the relationship, if any, of mode-stirred
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chamber test data to free field or anechoic chamber test data.
4.4.2 Survivability/Vulnerability Assessment Applications

There are two areas where applications of the statistical model to S/V assessment
problems may be valuable. These are: (1) test design and data analysis and (2) predictions of
probability of effect of EM environments on large systems.

Measurements of the high frequency response of complex systems and the analysis of
the resulting data have proved be notoriously difficult tasks to perform. Small changes in the
test configuration and/or small changes in the test object geometry often result in very large
changes in the measured responses. Statistical test techniques may prove to be useful for
resolving many of these difficulties. While the result of a given experimental configuration
may not be repeatable, the average value of many suitably randomized configurations may
provide accurate estimates of the invariant system parameters. Other than mode-stirred
chamber testing, the concept of system level EM statistical testing has not received much
attention. This concept needs to be explored in more detail before more concrete statements
concerning its applicability can be made.

In the past, predictions of the probability of effect of EM environments on large
complex systems have usually not provided very meaningful or satisfactory results. For very
large systems, the most common result obtained is that the system will be adversely affected
at very low field levels of the EM environment. Experimental evidence usually does not
support these predictions. For most of these predictions, log-normal distributions have been
used to characterize both the stress and strength of the system elements. Log-normal
distributions are attractive choices for these distributions because the two parameters
associated with the log-normal distribution are shape and scale parameters and thus, it is
possible to approximate many measured distributions with this distribution. It has been well-
known for many years that this distribution is probably not correct and that the error
introduced by the tails of these distributions is a major contributor to the meaningless and
unsatisfactory probability of effect predictions.

The consequence of choosing log-normal distributions i1s more apparent when the
stress or strength are expressed in the units of dB. Under this transformation of variables, the
new distribution is a normal distribution and conszquently, the random variable extends over
the range from minus infinity to plus infinity. Since most physical variables usually have
upper or lower limits (sometimes both), it is clear that for many applications. the normal
distribution is inadequate, particularly for describing the tails of distributions,

From a physical point of view, the derived distributions for the cavity fields are much
better behaved. For example, the distribution for a component of the power density is an
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exponential distribution. Under the transformation of the variable from watts per meter’ to
dB-watts per meter’, the new distribution is given by the smallest element Type I extreme
value distribution defined by (A-42) of the Appendix. Although the random variable for this
distribution also extends from minus infinity to plus infinity, in the limit of large power

densities, the distribution f(P) is approximately

AP =e™, (287)
Thus for large values of power density, the probability that power density equals or exceeds a
given level approaches zero much faster than for the case of a normal distribution or for that
matter most conventional distributions. In effect, the derived distributions have a built-in
"cut-off" in agreement with the physics of the interaction. As a consequence, the derived
distributions potentially have the capability to resolve the issue associated with the low field
level predictions of adverse system effects. More work is required before this can be
demonstrated. This will also require the development of strength distributions that are in
better agreement with the physics of the failure mechanisms.
4.5 Concluding Remarks

A statistical theory of the electromagnetic fields in complex cavities has been
presented. Their are many open issues and questions associated with this theory which
remain to be resolved and answered. These include the range of validity of the assumptions
used in the derivations and the impact of these assumptions on applications of the theory.
Notwithstanding these questions and issues, the models resulting from a statistical
characterization of the electromagnetic fields in complex cavities are relatively simple when
compared to their deterministic counterparts. Admittedly, the statistical models are not
capable of predicting the values of field variables at every instant and location within the
cavity; however, in the absence of perfect data sets, they provide a simple alternative to more
conventional, deterministic approaches. The robustness of this theory suggests the potential
applicability of statistical characterizations to other classes of EM interaction problems. This

would include experiment design and the analysis and interpretation of test data.
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APPENDIX
PROBABILITY THEORY CONSIDERATIONS

A.1 INTRODUCTION

This appendix is intended to help readers familiarize themselves with some of the
techniques of probability theory used in this paper. It is not intended to be a complete
dissertation on probability theory; but rather, an aid to readers with some familiarity with
probability theory. For a more complete treatment of probability theory, it is recommended
that the readers refer to the references provided at the end of this appendix.

It should be made clear at the beginning of this appendix that probability theory is an
axiomatic theory and does not depend upon a particular definition of probability. The
calculus of probability theory can be developed by requiring probability to satisfy three
postulates [A.1]. In this paper, there is no need to become intertwined in the controversy
between the frequency and subjective interpretations of probability.

A.2 DEFINITION OF A RANDOM VARIABLE
A real random variable (r.v.) X is a real function whose domain is the space € fi.e. a
process of assigning a real number X({) to every outcome € of an experiment =] such that:
1. The set {X<x} is an event for any real number x.
2. The probability of the events {X=+o} and {X=-o} equals zero:

P{X=+e} = P{{=-o} = Q, (A-1)
The distribution function of the r.v. X is the function

F(x) = P{X<x} (A-2)

defined for any number x from - to . Thus, for a given x, F(x) equals the probability of
the event {X<x} consisting of all outcomes { such that X({)<x, For brevity, it is usually said
that F(x) equals the probability that X<x. The distribution function has the following
properties:

(a) At x=-00 and x=—0 its values are:

F(-) = Q F(+®) = 1. (A-3)
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(b) It is a nondecreasing function of x:
F(x) s F(x) Jor x;<x, (A-4)
(c) It is continuous from the right:
F(x*) = Fix). (A-5)

The distribution function is often referred to as the cumulative density function (cdf).

The derivative

. 9FQ) A-6
Sx) = (A-6)

of the distribution function is called the density (function) of the r.v. x (it is also known as
the frequency function but is usually referred to as the probability density function or pdf).
Since the derivative of F(x) may not exist everywhere, one can distinguish several types of
random variables. In this paper, only distribution functions that are continuous functions of x
are considered. For this case, the number of points at which F(x) is not differentiable need
only be countable. From the monoticity of F(x), it follows that f(x) is nonnegative or

£x)=0 (A-T)
and from (A-3) and (A-6) that
["fadx = B> - F(-29) = 1. (A-8)
It also follows that
F(x) = f _:ﬂu)du. (A-9)

A3 THE EXPECTED VALUE AND MOMENTS OF RANDOM VARIABLES
The expected value of a real r.v. X is defined by the integral

X = [“afwar. (A-10)
If the r.v. ¥ is a function of r.v. X or ¥ =g(X), then the expected value of V' is given by

el¥t = [yfydy (A-11)
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or
eltt = elg(M)} = [Te)f(Wdx (A-12)

where f,(x) and f;(y) are the pdf's of the r.v.'s X" and Y, respectively.
The moments m, of a r.v. X are defined by

my = eXY = [“x*fixdx (A-13)
where k is a non-zero positive integer.

A.4 THE CHARACTERISTIC FUNCTION OF A RANDOM VARIABLE
The characteristic function ®(v) of a r.v. X is the Fourier transform of its density
function f(x) and is used to simplify certain operations involving x. Therefore,

o) = f:ef"xﬂx)dx (A-14)

or
d(v) = ele/. (A-15)

The density function f(x) can be expressed in terms of ®(v) by the integral

1 o ~vx -
fx) = 5 f_:]?(v)e g0 (A-16)

known as the inversion formula.

A.5 THE MOMENT THEOREM
The derivatives of the characteristic function of a r.v. X are related to its moments by

d ") _ .
dav” /

m (A-17)

»
The proof of (A-17) follows by expanding the exponential in (A-14) or

Q(v) = f_:ﬁx)(l A O_\;:_)n + + dx.
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Assuming that term by term integration is valid, then

fa \3
®(v) =1 +jvm + -+ ——("’!) m, o+ (A-18)
n

and (A-17) follows.

The above operation holds if the moments n, are finite and the sertes converges
absolutely near v = 0. In this case d(Vv) is given by (A-18) and therefore f(x) is uniquely
determined from its moments.

A.6 FUNCTIONS OF A SINGLE RANDOM VARIABLE

Consider the case where the r.v. ¥ is a function of a single r.v. X such that ¥ = g(X).
If both g(X) and the pdf f,(x) are known, then it is possible to derive the pdf f,(y). Some
examples that are used in the text of this paper are presented below:
Example 1: The pdf of y when y =a + bx where a and & are constants

1) = T;_Ff*(y 2 “] (A-19)

Example 2: The pdf of y when y = I/x
£, = _l_zfx{l] (A-20)
yo\y
Example 3: The pdf of y when y =¢*
1
f0) = ——fln y) (a-21)
0 Iyrf’fan

Example 4 : The pdf of y wheny = In x
F0) = efie?) (A-22)

Example 5: The pdf of y when y =x’

1
= —[f{+ + fy(- A-23
5 > &[fx( VYY) + fy(-v¥)] ( )

A.7 UNCORRELATED, ORTHOGONAL, INDEPENDENT RANDOM VARIABLES
Two r.v. X and ¥ are called uncorrelated if
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elX1} = elXleiY. (A-24) .

They are called orthogonal if
X 0 (4-25)
and independent if
S&xy) = flXHO)- (A-26)

If X and Y are independent, then they are also uncorrelated. However, if X and ¥ are
uncorrelated, they are not necessarily independent.

A.8 FUNCTIONS OF MORE THAN ONE INDEPENDENT RANDOM VARIABLE

In the main text, it will be necessary to determine the pdf of a random variable that is
a function of more than one independent random variable. In general, it is usually possible to
derive the pdf of a r.v. Z that is a function of two random variables X and ¥ when the pdf's
for both X and ¥ are known. Some useful formulas for implementing these derivations are
given below:
Example 1: The pdf of the sum of two independent random variables (z =x +y) is

JA2) = ffx(ulfy(z - wydu = f i@ - w)f(w)du (A-27)

Example 2: The pdf of the product of two indépendent random variables (z = xy) is

1A = f Fi—ifx(u)f,(é]du = f -l—i—rfx(f}/,(u)du (A-28)

Example 3: The pdf of the quotient of two independent random variables (z = x:z) is

JAD = f lu|fz)f (wydu = f —‘%—'fx(u)f,(g)du (A-29)
22
Example 4: The pdf of a sum of » independent random variables (z =x, = - - - —x,) is
JAD = fi@ * -+ f,(D (A-30)
i.e. the pdf of z is the convolution of the pdfs of x,. . . .., : X,
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A.9 THE NORMAL DISTRIBUTION
The normal (or Gaussian) distribution is the most frequently ‘'used statistical model. Its

pdf is
) 2
= 267
f®) 27 ¢ ’ (A-31)

-0 < X < o —oo<x0<co,ﬁ>0

where x, and [ are the mean and standard deviation respectively of the distribution. If x,=0,
then the moments m, of the normal distribution are given by

1. e e s - n
m 3 (n - P for n even (A-32)
? 0 for n odd.

The characteristic function ®(v) of a normal distribution with zero mean is

-2 p%? A-33
d(v) =e 2 . (A-33)
A.10 CHI AND CHI-SQUARED STATISTICS
Consider » independent normal r.v,, x,,. . . . x,, with a mean of zero and a standard
deviation of B. Their % and %" statistics are defined by
2 _ 2 2 (A-34)

) 3
X.=\/;l+..'+xn Yy =" 7 X ot X

The number » is called the number of degrees of freedom of these statistics. Their respective

densities are given by

”
I W S TT (A-35)
KO o
and
£ = 1 r(n-zwe_ziaz (A-36)
T 2¢pT(ny2)




where I'(z) is the usual gamma function [A.3].
In the text of this paper, two values of n are of interest, namely n = 2 and » = 6. For
the case when n = 2 i.e. two degrees of freedom, the y-statistics is

2
- X
£ = Le ¥, (4-37)
X Bdl
a Rayleigh distribution. Similarly, the x*-statistics is
1 -2
2
L) = —e ¥, (A-38)
an exponential distribution.
For the case when n = 6 i.e. six degrees of freedom, the 7(-statistics is
a4
fo) = 2-e (A-39)
b4 8ﬁ6
and the 7y -statistics is
T
= 28 A-40
f;(}’) = ——-6-6 . ( )
168

A.l11 A USEFUL EXTREME VALUE STATISTICS

Many electrical engineering parameters are expressed in term of dB. For example,
power is often expressed in terms of dB-watts. In this case, the relationship between power p
in watts and power P in dB-watts is given by P = /0 log p. Consider the case when the

power p is a r.v. that is exponentially distributed or

f,,(P)= > Py (A-41)

where p, is the mean of p. With the help of (A-19) and (A-22) and the identity log x =
0.43429In x, 1t can be shown that the power P in dB-watts is distributed according to a
smallest element Type I extreme value distribution [A.2] or
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foP) = %ex %(P - py - YPE - (A-42)

In the above equation P, and B are the location and scale parameters and are given by P,=
Bin p, and B = 4.3429. The mean P’ of the distribution is given by P’ =P, - 0.557f and the
standard deviation for the distribution B' is given by B' = 1.283p. Thus, the standard
deviation for this distribution (an extreme value distribution derived from an exponential
distribution) is always 5.57 dB. This is an interesting distribution because for large values of
P, the distribution behaves as exp(-e’). Therefore, for large values of power (in dB), the
probability density function approaches zero much faster than the more conventional
distributions. Effectively, the distribution has a built-in "cut-off."

A.12 THE CORRELATION COEFFICIENT

In order to complete the statistics of more than one r.v., it is necessary to specify the
linear relationship between the random variables. A standardized measure of this relationship
is called the correlation coefficient. For the two random variables, x and y, the correlation

coefficient x is defined by

ellx - xOv - y! _ covxy)

_ (A-43)
e = xBely - yB  PePy

where (x,.y,) are the means and (B, ,B,) are the standard deviations of the two r.v. When

k = 1, the two r.v. are said to be positively perfectly correlated i.e y = kx ~ ¢, where & and ¢
are constants. When « = -1, the two r.v. are said to be negatively perfectly correlated i.e.

y =-kx ~c. When kx = 0, the two r.v. are said to be uncorrelated.

A.13 A USEFUL THEOREM FOR NORMAL RANDOM VARIABLES

In section A.7 of this appendix, it was stated that two uncorrelated random variables
are not necessarily independent. A theorem in probability theory states: "If two jointly
normal r.v x and y are uncorrelated, then they are independent." The proof of this theorem
follows trivially from the expression for the joint density f(x,») of two normal r.v. with zero

means or

fxy) =

L (5 2ery | y_ﬂ (A-44)

1
exp ~——————[ =
27,81 - ¥ p{ 20 - )| p2 BBl
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If x = 0 i.e. the two r.v. are uncorrelated, then f(x,y) =f.(x)f,(y) and from (A-26) if follows
that x and y are independent. The importance of this theorem will become evident in the
main text where it is easy to demonstrate that two r.v. are uncorrelated. However, the much

stronger statement of independence follows only because the r.v. are normal.

A.14 THE PDF OF THE PRODUCT OF TWO INDEPENDENT NORMAL R.V.

In the main body of the text, the pdf for the product of two independent and normal
r.v. is required. Since (a not very intensive) literature search failed to unveil such a pdf , the
derivation of the distribution is presented here. The derivation is not very difficult and must
exists somewhere in the open literature.

Consider the r.v. z defined by z = xy where x and y are independent normal r.v each
having a zero mean and the same standard deviation 3. Then from (A-29), the pdf of z in
terms of the pdf's for x and y 1s given by

S U W N PO (A-45)

Since the above integral is an even function of u, the pdf can be written as

S@) = -—l—zl(z) (A-46)
nf

where the integral /(z) is given by

. : 2
I(z) = fo —llzex —2—:}3( 24 Z—Z}Jdu (A-47)

u

The above integral is evaluated by first taking its derivative with respect to z and integrating

by parts to yield

Taking the second derivative of I(z) and setting v = z/B” yields the second order differential

equation for /(v):
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V) + V') - v = 0. (A-49)

The solution to this equation is given in [A-3] as

1) = Alu(é} + BK, é} (A-50)

where A and B are constants and Iy(x) and K(x) are modified zeroth-order Bessel functions
of the first and second kind, respectively. Using the fact that the pdf of z must be symmetric
about z = 0 yields the following result

_ 1 2] IZI}] (A-51)
= —[Al| =L | + BK]—].
0 - )

The constant 4 can be set to zero since the pdf must be finite at z = £co. The constant B can

loape -

where the fact that the integrand is an even function in z has been used. The above integral

be determined by using (A-8) or

can be evaluated by using the identity [A.3]

1.2 A-52
~ = - [ cos(ank(bryds (A-52)

where ¢ = (@ — b°)"”. Setting a= 0 and & = B, it can be shown that B = |, so that £,(z) is

T “(l;l] o

The characteristic function ®,(v) of f,(z) is given by
& (v) = —2 [“cos(vaky = ldz (A-34)
nB2 0 B2

where cos(vz) and sin(vz) have been used as even and odd functions of z, respectively. The
integral of (A-54) is evaluated using the identity (A-52) with @ = v and & = B This yields
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@ (v) = I (A-55)

J1 + pov?
for the characteristic function of the product of two independent normal random variables.

A.15 ORDER STATISTICS

In evaluating test data, the distribution of the largest and/or smallest observation is
often of interest. These distributions belong to a class of statistics referred to as order
statistics.

Order statistics is defined as follows: Let X ,X,,.....X, be a random sample from a
probability density function f,(x). The n observations are arranged in ascending order so that
Xy SXp s S X,, where X, is the smallest sample from the observation and X, is the
largest. X, is called the first order statistic and X, is called the nth order statistic. In
general, X, is called the mth order statistic and it has m-/ observations smaller than it. It
can be shown [A.4] that the pdf for the mth order statistic is

Fr® = m(,’;][FX(x)]"' Sl - B ) (A-56)
where Fy(x) is the distribution function of f,(x) and the quantity in the brackets is the

binomial coefficient. For m = I, (A-56) provides the pdf of the first (smallest) order statistic

as

fx, &) = nll - Fy@I"” ). (A-57)
For m =n. (A-56) provides the pdf of the last (largest) order statistic as
Jx &) = AlF@1" " fy@). (A-58)
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