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Abstract

A common class of buried targets has Cp symmetry (N-fold rotation axis) for N = 3. This makes the
magnetic-polarizability dyadic decompose into longitudinal and transverse parts, each with its own natural
frequencies (pure exponential decays in time for magnetic-singularity identification characterized by diffusion in
metal). With appropriate three-axis coils (transmit and receive) above the ground surface, one can make
measurements, which can be used to locate and orient (modﬁlo sign on rotation axis) the target. This involves

maving the coils above the ground and orienting the coils so as to find certain nulls in the data. A procedure

(algorithm) is developed for this purpose.
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Abstract

A common class of buried targets has Cy symmetry (N-fold rotation axis) for ¥ = 3. This makes the
magnetic-polarizability dyadic decompose into longitudinal and transverse parts, each with its own natural
frequencies (pure exponential decays in time for magnetic-singularity identification characterized by diffusion in
metal). With appropriate three-axis coils (ransmit and receive) above the ground surface, one can make
measurements, which can be used to locate and orient (modulo sign on rotation axis) the target. This involves
maving the coils above the ground and orienting the coils so as to find certain nulls in the data. A procedure

{algorithm) is developed for this purpose.




1. Introduction

In a previous paper [5] general considerations of symmetry were applied to the identification of buried
targets. Both magnetic singularity identification (MSI) and electromagnetic singularity identification (EMSI) were

considered.

For EMSI, which is applicable 10 both metal and dielectric targets (with typical frequencies in the 100 MHz
to GHz regime), a significant identification signature has been pursued involving the lack of the hv (cross-pol)
component of the backscattering dyadic (in the usual h,v radar coordinate system) for targets with Oy or
Coo symmetry (body of revolution (BOR) with axial symmetry planes) provided the rotation axis is perpenicular to
the ground surface. Measurements using synthetic-aperture radar (SAR) have been made [8] and measures (norms)

of cross polarization have been introduced [6].

For MSI, which is applicable to metal targets (with typical frequencies from below 100 Hz into the kHz
range), symmetry introduces important simplifications in the magnetic-polarizability dyadic [3, 5, 11]. These can be
exploited in target location and identification, and this is the subject of the present paper.

After reviewing the role of symmetry in the magnetic-polarizability dyadic, we go on io consider the use of

symmetrical ¢oils (loops) in transmission and reception for detecting symmetry in the target. Then we go on fo

consider techniques for locating such targets and determining their orientations.




2. Symmetry in Magnetic-Singularity Identification

Summarizing from [2-5, 11] the magnetic polarizability dyadic takes the form
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where the presence of M (0) (DC response) indicates the presence of 2 permeable target (e.g., iron), this itself being

a target discriminant. The various terms have the properties

- —
~Ma=1, Mg = real unit vector for ath mode

M, =mreal scalar, 5, <0 (all negative real natural frequencies)

M(W ZM(-) = -) —'( ~)

v=]
(o)  (s) — (=) :
My, "« My, = 1"1"’1 (orthonormal) , My = real eigenvectors (three) 1.3)
— (w
My ~ = real eigenvalues (non positive, not necessarily distinct}
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(o) = 3 mi? w0 p©) (2.3)
v=1

—={0) —(0) —=(0)

My - My, = 1"1""2 (orthonormal) , My~ = real eigenvectors (three)

M ‘(,0) = real eigenvalues (non negative, not necessarily distinct) |
| _ ¥ for vy =g
Y2 710 for v # v

s = £} + jo = complex frequency or two-sided Laplace-transform variabie

In deriving these formulae the target is assumed linear and reciprocal. The external medium has no

significant influence provided its permeability i is the same astig. Furthermore transit times in the external

medium across the target and from target to transmitter and receiver (loops) are assumed small compared to decay

=3
times (—:a"l) of interest due to diffusion in the target. This also allows for the simple form of a constant M (=)

for the SEM entire function, this being the magnetic-polarizability dyadic of a perfectly conducting target of the

same shape [2].

Table 2.1 from [3] summarizes the implications of symmetry for the magnetic polarizability dyadic. For
finite-dimensioned targets it is the point symmetry groups (involving transformations which leave I?l —_r'zl
invariant for all ?1 and ?2 positions on the target) which are of interest [10]. Since we are considering only the
induced magnetic-dipole moment (magnetic-quadrupole and higher-order moments being neglected in the MSI
approximations), the possible types of dyadics simplify considerably. The various unit vectors !_w’a align é.ccording

to the various symmetry planes and axes, so that they line up as

Mo * Mgy, = (2.4)

—+ —-+ +1 (parallel or antiparallel)
0 (perpendicular)

— —
where we note the sign ambiguity on each Mg which can equally well be replaced by —M¢g in the dyadic

representation. In an appropriate Cartesian reference each can be represented by only one of the unit vectors as

- — - -
Mg =1y or 1y or Ig 2.5)

In following sections, we assume that the target has certain of the symmetries in the table. As we shall see,

the second entry (from Cp, or Dy symmetry) can be distinguished from the third (higher arder rotation/reflection).
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This third category, where the polarizability dyadic splits into a longitudinal (1, 1 ;) and a ransverse (1 ;) part,

has a two-fold degeneracy in the transverse part and is readily distinguishable from the second category. It is

interesting to note that, since we are dealing with only the magnetic-dipole part of the scattering, we do not need

Cooz Symumetry (as in the case of EMSI where wavelengihs in the external medium are of the order of the target

dimensions). For example, a three-fold (or higher) rotation axis is sufficient to obtain this transverse polarization

independence. This is convenient because Cp, symmetry (N-fold axis for various ¥ with axial symmetry planes})

models many types of mines and unexploded ordnance (shells, rockets, etc.). The fourth category in the table has

triple degeneracy, bui is not commeoenly employed for mines and UXO.

Table 2.1. Decomposition of Magnetic Polarizability Dyadic According to Target Point Symmeiries.

2
Form of M(s) Symmetry Types (Groups) Sg:{l;;gtg
- -+ = o R, (single symmertry plane)
M.(s) 1z 1z + M:(s) . . 1
~ C; (2-fold rotation axis)
> - -+
(M(s) » 1z = 0)
LS L, o5 Cra = Ry ® Ry(iwo axial symmetry planes)
My(s) Tz Tz + Me(s) Ix Ux + By() Ty Ty | py (three 2-fold rotation axes) 2
oL e Cy for N2 3 (N-fold rotation axis)
My(s) 1z Tz + M(s) 12 Sy for ¥ even and N 24 3
“ e 5 - tation - reflecti i
1, = 1-1z1;= double degeneracy (N -fold rotation-re ec on axis)
Dqg (three 2 - fold rotation axes pius
diagonal symmetry planes}
- H -
M(s) 1 O3 (generalized sphere) 4

—
1 = triple degeneracy

T, O, Y (regular polyhedra)




3. Measurement Coordinates

—
With the target at _?0 {which we can take as 0 for convenience) and the transmitter and receiver (sensoar) both at

g
rg we have

—
R=17y —7rpl, Ilp=—"__—2 (3.1)

Then with the transmitter loop approximated as a magnetic dipole we have at the target (guasi-static, near-field

approximation)
~ (inc) e
= - — And (inc)
H ()=—=[3TrRTR-1|-m (3
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:’_(inc) (inc) —
m  (s5) = m"s) 1, (3.2
—) . a . -
l = orientation of transmitter coil
And -+ = - = -+ = ) . .
1 = 1x1x+ 1yly + 1z1; = identity dyadic

Then the scattering has [2, 11]
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With the scattered field being measured at the receiver in the direction T_, , we have a signal proportional to
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This suggests that we define a normalized transfer function as

- - - = A & - - A -
T(s) = 15+|3 1g1g-1|+ M(s)+|3 1R 1R- s le

(3.5)
-~ {ine

- mline)
Hy(s) = T6n2R6 T(s)

containing the frequency and aspect-dependent information of the target.

—3
Figure 3.1 shows the general location of a buried target with a symmetry axis 1, corresponding to the
category 3 symmetry discussed previously which we can generally refer to as rotational. For convenience we define

_+
Cartesian (x, y, 7) and cylindrical { ¥, ¢, z) coordinates centered on rp with

z (3.6)
x = Weos{p) , y = Psin(g)

and the x axis (¢ = 0) is chosen as parallel to the ground surface. Above the ground we have primed coordinates
with _l)z' now taken as vertical (perpendicular to ground surface). The coordinates are centered at some height &
zbove the surface. Since we do not necessarily know the target location a priori, the x” axis is not in general
parallel to the x axis, but later we consider how to locate the x axis and thereby bring these into alignment. We
would also like to be able to move the sensor location to be located on the z axis to take full advantage of the
SyInmetry.
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Fig. 3.1 Measurement Coordinates




4. Cross-Pol Symmetry Detector

Before going on to the general case, let us consider a simpler case where we assume that

- — )
1, =1y (vertical target)
x’ = x, ¥y =y (transmitter/receiver directly above targer)
- —
lrp = 1g

Then we have, assuming the third symmetry category,

so that the longitudinal and transverse parts neatly separate.
Choosing, as a first case,

— —

| c = 1 z

we have

— —+ —
- 1,

T(s) =4 I M,(s)

- ) —
so that for 1 perpendicularto I ; we have

T(s) =0

4.1

(4.2)

(4.3)

(4.4)

(4.5)

— —
this being the case as 1; is rotated about the z axis. Of course, by reciprocity, one can choose 1, for the

— — —
transmitter perpendicular to 1, and rotate 1, to observe a null response for 15 in the z direction. Note that this




signature applies to category two and one symmetries as well due to the decoupling of longitudinal and ransverse

scattering.

Choosing, as a second case,

- — —
le 1 1

—
=1 y' (4.6)

from (4.2) we again have for the third symmetry category

T(s) = 0 .7

— — -

However, as we rotate [, around the z axis { 1 y» remaining perpendicular to 1) then for the second
—»

symunetry category we have a non-null response for 1 ;* not aligned parallel (or antiparallel) to the x or y axes of

the target. A non-null response in such an experiment also applies to the first symmetry category. Between these

two cases we have a discriminant between the third and lower symmetry categories.

One can design a set of three loops which do not couple to cach other by appropriate symmetry., For
example, each loop can lie in a separate plane of three mutually perpendicular planes with the other two planes as
symmetry planes of each loop. One can also have the loops have 2 common center so as to maintain a common
distance from the target. The loop structure can itself have the third symmetry category with respect to the z axis,
One can even have three identical loops at right angles with octahedral (O) symmetry, each loop utilizing four edges
of the octahedron. An example of such symmetry is the O3L (octahedral 3-axis loop) used for magnetic-field

measurements [9].




5. Co-Pol Symmetry Detector

Now generalize Section 4 by allowing 1, and 15 to assume all combinations of 1, 1y7,and 1z,

giving a full three-axis transmitler/receiver. In this case one can measure the full magnetic-polarizability dyadic,

noting the common R in (3.4) for aill the measurements. If one does not know R, then one obtains some scalar

~—

o
constant times M (s). The longitdinal/transverse decomposition as in (4.2) still applies for category 3 symmetry.

For lower order symmeuy the wransverse part is not in general diagonal but has mixed x’, y* components.

By measuring the 3 X 3 dyadic (factoring out the transmifter strength and receiver sensitivity) we have

S 1 - — - = =
X(S_ 2];1;—12]' M(S 1;114’*!\4[(5)
) 1672 RS [ 2()
(5.1
—- — ind
- [2 Iz 1;—‘ lz]
appropriate to category one and higher symmetry. Noting that
I 1= = «
2]7_17_—'[1 =Elzlz—lz (5.2)
we can transform the measurements as
S 1@ — And &S 1= — A4
X(s) = 512 lz=1z{" X(s) 512 lz— 14
(5.3)

which neatly exhibits the magnetic polarizability tensor times a distance-scaling scalar.  This type of
“deconvolution” actually requires no particular symmelry in the target, just that the ransrnitter/receiver lie directly
above the target (or more generally have the ' axis through the target, i.e., non vertical, and use the 7' direction
instead of the z direction (vertical) in the above.
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With the longitudinal and transverse parts separated one can explore the properties of M ((s) by
diagonalizing it. If it can be diagonalized with real, frequency-independent unit eigenvectors then the symumetry is
category 2 or higher. If the two eigenvalues are the same for all frequencies, then the orientation of the eigenvactors

is not unique due to the two-fold degeneracy, implying category 3 symmetry.

This requires the design of coils for the three-axis measurement including both transmit and receive. Here
symmetry can be used to minimize the coupling of cne transmitter coil (¢.g., x*) to the other two (y" and 7). this is
the same problem as in Section 4 and the same use of three symmetry planes is applicable. However, the transmit
and receive coils in the same plane (e.g., x” = 0) need to have minimum coupling to each other while still
maintaining the previous symmetry to minimize coupling io coils on other planes. One way to do this is to use three
circular coaxial coils, two for transmit and one for receive [7], or conversely by reciprocity. Variations on this
scheme for selection of coil radii and numbers of turns are possible and need to be explored. An alternate approach
uses two coplanar coils, one each for transmit and receive, with the conductors crossing each other (perhaps at right
angles) with due care near the crossing position so that the mutual inductance between them is zero. Calculations
for a two-dimensional pair of such coils have been performed in [1 (Section 4)]. A variety of planar coil shapes
(elliptical, wiangular, etc.) are possible. Figure 5.1 shows an example of three such coplanar coil pairs on three

orthogonal symmetry planes. Higher order symmetries can also be incorporated.

‘I

Fig. 5.1 Three Non-Coupling Loop Pairs on Three Orthogonal Symmetry Planes
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6. Location and Identification of Symmetric Targets

>
Assume that the target of interest has category 3 symmetry so that M ((s) is doubly degeneratc. Now also

let the target be buried with some unknown position and orientation (as might be appropriate for certain types of

—_
UX0O). So the origin r o and the crientations of the (x, y z} coordinates are assumed unknown. However, the

— - — —
symmetry makes only 1 as the relevant orientation due to the degeneracy vis-i-vis 1y and 1 y. For

—
convenience, one can then take 1 , as horizontal (parailel to the ground surface).

— -

The sensors are located at r 5 and use the (x', y', ') coordinates. 1 7 is specified as vertical, but £’ and
¥' can be chosen arbitrarily parallel to the ground surface (horizontal), but mutually perpendicular. By moving the
sensors parallef to the ground surface and rotating them we would like to be able to locate and discover the

-
orientation 1 ; of the target (within the sign ambiguity on the direction of the z axis).

— — -
With some initial choice of r s and the horizontal direction 14 (1 being vertical), successive

b d — . - — - .
measurements with 1. and 1, taken asall choicesof 17, 1, and 1 definesa 3 x 3 dyadic

- - _—

R pm(s) L T, [3TaTe - T/ 45
5= —=—= ln -+ R1g — 1|+ M(s
nn 16x2RS " |
9 o =] >
=13 1Rplgp -1 1xg
1 - [ 5 = ] . -
= 31pglg—-11" stly iz, + M, (5)1:
IGIEZRG | I:Z() Z Z t() ]
[ - o ] =
K0 L 13 TRTr = 1| #,0)T2 T + #,(5) 1
s} = RIR — 5 z + 3
1672 RS g S
— = ~
-[3 1R1R - 1]
("_'}(Z) ~ ()
=X (5+ X (s
~ (Z) ()
— M(.S') —
X (s)= "26 e
167°R
v i 3P
X (9= 3
16n2°R
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() - — And - — - A
- = (5 — =+ = |= -
=[3 1R'1::|1R—1::|[3{1R'12}1R‘—' ]-Z]
5 o P o - =+ |- - - = - =
=9|ilR'lz} ]RIR—B[IR‘lz] 1Rlz+ lzlﬂ}'l‘].zlz
(6.1)
w{0) -+ - = Aad - = g
(D) =3 I1glIR~1| 17z-|3 1RI1R-1
9

& + =
Diagonalizing X (s) will, in general, not directly exhibit 1, or | g due to the mixing of the longitudinal and

transverse parts with the different frequency dependences of #,(s) and #,(s).

S
Note that if #,(s) = M,(s), we have the case of category 4 symmetry in which X (s} is readily
® - - - . _F’ - - - - - -’
diagonalizable, giving eigenvectors as + 1 g (giving direction to the target) and two vectors perpendicular to 1 g.

—_
Which is 1 g is distinguished by the non-degenerate eigenvalue, the other two vectors having equal eigenvalues.

—)
In such a case we can choose 1, arbitrarily.

An alternate approach for category 3 symmetry involves recognition of the target by the natural frequencies

Ser, and S, in

My(s) = My(e) + EM“:["_S“:]_i

_ z » (6.2)
#,(s) = Fy(=) + 3 Moy [s—sa,]
&S &)

Having identified which kind of target is present, then construct any convenient parts of X (s5) and X (5
(just one each large M a, and M a, may be sufficient). The important point is that one obtains angular functions

that one can investigate for locating and crienting the target.

13




It is interesting to note special cases for the angular functions in (6.1). A first case has

—+ — o
1p =t1, (longitudinal observer)

(6.3
H(z) —_ — H(r) — )
B =41 z lz 1 e = lz
A second case has
- — And — —
1R 1, =0, 1;-1r = Ipgr (ransverse observer)
(6.4)
H(z) — — H(') - — —
2] =1;11; , © 31p1Rr + 1
While these are simpler expressions, a remarkable relation between the two for both cases is
AN C) BN () N
()] -0 =x O (all 9 components zero) (6.5)

) o)
=0 -0

So a question arises as to whether such a zero dyadic can be used to determine whether such cases as above can be

distinguished in an experiment. Note that (6.5) is equivalent to

EXCIX () PN ()] ol
X (X (s)=0=X (- X (9 (6.6)
in a frequency-independent manner.
So define
o PN CIPN )
e =0 - B8
2 (6.7)
— A - — -+ And - - —+
=|:31R1R—1] lzlz-|:31R1R—1]-lz-|:31RlR—1]

Noting that we have an inverse

14




-+ = o]t 3=+ =+ Al
31pir -1 =-2—1R1R—1 (6.8)

ARY)
we can dot multiply this on both sides of @ , which is the zero dyadic iff

H(z) - — - = H2 o
Q = ;1,31 1R -1 - 1z (6.9)

is the zero dyadic. This is the zero dyadic iff the vector

—9(3) — - — HI And
e = Iz |31gIR -1 s 1¢ (6.10)

— - -
is the zero vector O . Define a transverse vector 1 by

—

—’
Iy 1z =0 (6.11)

which is then a linear combination of 1 and 1 y. Dot multiplying this with @  gives a scalar

(4) - - = 72 -
Q = 1;-i131plp -1 ~ 1y (6.12)

(3)
— —
Then @ s the zero vector iff @(4) is zero for all possible 1,. Note that no z component of the vector need be

A —
considered since it is annihilated by 1 ;. Consider two linearly independent choices of 1. First we have

— . — -3
I;+ lp =0 (perpendicularto T g and Iz)

o —+ - — hd - = Ad —
@ 1z -|(31R1R - 1]- lpip - 11+ 1;

- - | - —
BI:IR-lz:llR—lz]-]:—l;] {6.13)

Il
1

15




_.+
independent of 1 g. Second we have

- — —+
1; inplaneof 1 g and 1,

@

] - = And —+ :
1:'|:31R1R+1:|'1r (6.14)

which is zero iff

— —
I~ 1y =0= lp ==x1; (firstcase)or

It

¢ (second case) (6.15)

)
Therefore ©®  is the zero dyadic iff one of the two cases ((6.3) and (6.4)) applies.

So now we have a test from our data in (6.6) for whether we have positioned our sensor so that one of the

two cases applies. Defining a norm

& (2) o0
X

N(s) = {s)+ X (s (6.16)

in some convenient way (2-norm, root span, largest element magnitude, etc.) gives a scalar which is zero iff one of

the two cases applies. Of source, real data has noise so some minimum is sought.

One form an experiment might take is as follows. Keep the senscr on the sensor plane (a constant height A
above the ground). Case 1 has a straight line through the target parallel to iT z. intersecting the sensor plane in
one point F except in the special case that T z is horizontal (perpendicular to T 7). (See fig. 6.1.) Case 2 has
T R perpendicular to and determining a plane (the target plane) passing through the target and perpendicular to

— - -- —+ —
1 ;. The target plane intersects the sensor plane in a straight line C (except in the special case that 1; = 1,).

16
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Fig. 6.1 Geometry for Target Location and Orientation




Referring to fig. 6.1, we have a side view containing the target axis. The target plane, sensor plane, and line C are
parallel 10 our line of sight. In this view, the target coordinates fix our orientation. The sensor coordinates have '

up, but x’ and ' (mutually orthogonal) are oriented at some unknown angle in the sensor plane,

S0 now move the sensor location in some straight line (reversing direction if necessary), keeping the height
h fixed until our norm in (6.16) is nulled (not exactly zero due to noise). This finds a point on C (case 2, unless the
path is paralle] to C or passes through the point £ ). Next move along C, keeping N(s) nulled; this determines the
orientation of the x axis of the target. Now the sensors can be rotated about the 2' axis so that x is parallel to x.

move along C until one finds

Xy x(5) = Xy x(s) contains only #,(s)(no #,(s))

(=" 5’)

(x",2") (6.17)
(¥ x)

(z'.5)

0 for (n.m) =

Xrm(5)

At this location, which we can call A, the signal is partially split in that the ransverse part is exhibited in
X +,x(5). The observer is now on a vertical plane passing through the target and containing the z and y axes. This

is also a location of relatively strong signal along C.

Next at A the sensors can be rotated around the x' axis unti] the z” axis is parallel to the z axis, and the y'

axis is parallef to the v axis, by observing {using (6.4)) that

X, (s} = Xy ,(s) containsonly M (s) (no M,(s))
Xy y{s) = Xy ,(s) contains only #,(s) (no #,(s)}

— —

Tk =T, (6.18)
S 1 - -5 - - = _ L

X(S)=-16?R—6 M;(S lxlx+41y]). +Mz(s)[z]_z

This results in the complete physical diagonalization of the signal dyadic {only three non zero components).
—
Furthermore, this determines the orientation = 1 ; as can be seen from a z-oriented magnetic dipole at the target

giving a magnetic field perpendicular to the target plane everywhere on this plane.

From B move the sensors perpendicular to C in the sensar plane until &, is found (Case 1). From our

— - .
knowledge of + 1 ; we know the direction to Fy. We can also carrect for some measurement errors by noting that

18
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at By N(s) alsohas 2 null. From * 1, we have the target orientation, with B we have a line through the target,

_’
and with A (or merely the target plane containing C and perpendicular to + 1 ;) we have ?0 , the target location.

In magnetostatic detection of buried ferrous targets, one can use gradiometer techniques to locate the target

S
from its induced magnetic-dipole moment [11 (W. M, Wynn, Ch. 11}). With symmetry, one can also use M (0) in

{2.1) (for the case of ferrous targets) to extend the use of magnetostatics provided one has 3-axis magnetostatic
illumination (using other than the earth's magnetostatic field). Utilizing the full description with the decomposition
into longitudinal and transverse natural frequencies and modes gives yet more information for target identification as

well as location and orientation,

19




7. Concluding Remarks

In order to apply this technique to the location and orientation of a buried rotational target { Cpy for N = 3),
one needs to separate M,(s) and A,(s) in the target scattering. If one has identified the particular type of target
(mode] of mine or UXO) from the natural frequencies (M5I sense), then one can use the fact that one set of the s,
(say s(z)a) belongs to A7,(s) and another set (say s(‘)a) belongs to M,(5). In the previous discussion the
residues of these natural frequencies can be used in place of #,(s) and #M,(s) to find the various nulls. So
implementation of this technique may rely first on sufficiently accurate identification of the target and measurement

of residues.

It is not necessary for the transmitted and receiver coils to be small compared to R provided they have
sufficient symmetry (rotation and/or reflection} to align appropriate axes/planes with those of the target. Thereby
one can increase the sensitivity of the measuring apparatus. Of course, away from these symmetry nulls the

functional form of the response is more complicated than that in (6.1) if he coils are too large to be characterized by

magnetic-dipole moments.
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