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                                                                Abstract     
 
The analysis conducted within the framework of Transmission-Line Super Theory (TLST) has 
led to new formulations for the reflection and transmission coefficients of inhomogeneous 
transmission lines at high frequencies. In this paper, these results are derived and applied for 
the first time on practical non-uniform conductor configurations. The results obtained agree 
excellently with the exact TLST solutions, although the new expressions contain a certain 
approximation: the radiation phenomena are only considered within the individual 
inhomogeneous parts of the lines. 
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                                                      I. INTRODUCTION 
 
In a number of applications in electrical engineering and electronics it is necessary to 
calculate currents and voltages propagating in wiring structures, like, e.g., antennas and 
transmission lines. A well-known, convenient tool for such calculations is the classical 
transmission line approximation (TL). Classical TL leads to explicit analytical expressions 
and allows one to carry out qualitative analysis and engineering calculations for such systems, 
practically instantaneously. However, the TL is valid only up to frequencies for which the 
wavelength is comparable with the transversal dimension of the line. In modern electronics, 
however, the working range of the signal frequencies is continually to increasing. Moreover, 
the wiring structures can work as a receiver of intentional and unintentional interferences of 
different kind, and at the same time, the sensitivity of the modern semiconductor elements is 
also increasing. All these circumstances require the development of corresponding calculation 
methods. The pure numerical methods, like MoM, TLT, etc., have long calculation times; 
they also can only consider the specific case and don’t allow investigating the problem in 
general. The alternatives are different analytical and analytical – numerical methods.  
One of the most promising methods is the Transmission Line Super Theory, TLST, [1-8] 
which reduces the system of exact integro-differential equations (Mixed Potential Integral 
Equations – MPIE) to a system of the first order ordinary differential equations. This system 
looks like the system of inhomogeneous Telegrapher’s equations, but with complex-valued 
parameters and non-zero diagonal elements (see Section 2). The parameters of the system can 
be obtained using an iteration procedure, which, in turn, requires quite long calculations. 
However, in reality, the lines consist of some non-uniform regions (near terminal regions, 
different bends, lumped sources and/or loads, etc.), which are connected with each other by 
regions having a uniform structure of classical TL (wire is parallel to conducting ground). The 
solution for the current near the non-uniformities has a complex structure including different 
type of modes: leaky modes, radiation modes and TEM modes. Usually, the non-uniform 
regions are essentially shorter than the uniform regions. This means that the current in the 
long, central region(s) can be solved for in a simple manner. Their solutions look like 
solutions of inhomogeneous exact integro – differential equations for the infinitely long line 
(for the case of excitation by an external field) plus two solutions of homogeneous integro – 
differential equations for the infinite transmission line (forward and backward propagating 
TEM modes). The coefficients for the TEM modes are defined by the so called reflection 
(transmission) and amplitude coefficients for current waves [9, 10, 17]. Such a solution for the 
induced current (the so-called asymptotical solution) formally looks like a solution in TL 
approximation, but with other values of reflection and transmission coefficients1. Of course, 
for low frequencies, when one can use simple formulas for these coefficients, the asymptotic 
solution becomes a solution of the classical theory of transmission lines.  
To obtain these coefficients one can use an iteration method for the semi – infinite line (see 
[10], [12], [13]) with the same (left or right) terminal, but it requires some analytical 
calculations. Another method is a processing result of the TLST for shorter lines. It allows the 
developed methods and software of TLST to be used. Moreover, it installs a deep physical 
connection between the asymptotic method, TLST and SEM [13, 18]. The aim of the present 
research is to obtain the reflection (transmission) and amplitude coefficients for current waves 
using the method of Transmission Line Super Theory. General formulas are obtained which 

                                                 
1 Such representation is convenient for the analysis of the Singularity Expansion Method (SEM) of the poles in 
the first layer for such a transmission line system (see, e.g., [11]). Knowledge of these poles, in turn, allows one 
to obtain analytical results for the response in the time domain. 
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are then checked by calculating the simple, but not trivial examples of a straight and a bent 
horizontal line with risers. 
 
 
           II. ESSENTIALS OF THE TLST AND STATEMENT OF THE PROBLEM 
 
 

               1. Definition of the global parameters of TLST 
 
 Consider a thin wire of arbitrary geometric form, )(lr

 (where is the coordinate along the wire 
axis) above a perfectly conducting ground (see, for example, the non-uniform wire with 

vertical elements in Fig.1) which may be loaded and excited by an external field . 

l

)(rE i 

 

 
Fig. 1: Geometry of the transmission line structure. 

 
Using the zero boundary conditions for the total (scattering plus exciting) tangential electric 
field on the surface of the wire and the continuity equation for the induced current, we obtain 
a system of integro-differential equations for the “current and potential” pair (Mixed Potential 
Integral Equations – MPIE): 
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Here  is an exciting total tangential electric field (incident plus reflected), )(lE e
l )(l  is the 

scalar potential along the wire (in the Lorenz gauge),  the radius of the wire, and a L  is the 

total length of the wire. The functions  and  are the Green’s functions along 

the curved line for the vector potential and scalar potential, respectively, which take into 
account the reflection of  the ground plane: 
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The unit tangential vector ldlrdlel )()(


  of the curve is taken along the wire axis, )(~ lr


 is the 

radius vector reflected by the ground plane, and ldlrdlel )(~)(~ 
  is the corresponding unit 

tangential vector. 
  Now, in order to define the global generalized transmission line parameters, consider an 

excitation of the transmission line by a lumped voltage source  located at the beginning of 

the line. The line is also assumed to be loaded by a lumped impedance Z2 at the far end. There 
are two possibilities to account for the source and the load: either to treat both of them as 
boundary conditions or treat both of them as sources (with unknown amplitude for the “load 

source”). For the second possibility the exciting field can be written as [5]: 
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  Of course, in the formal view (4) one can also represent a problem with excitations at two 
terminals, with excitation at the right terminal and loading at left terminal, etc. 
The admittance functions ,  have dimensions of conductance while the transfer 

functions for the potential ,  are dimensionless.  Now let the response 

functions ,  and ,   be solutions of the system (1 a,b) for the current 

and the potential with sources of amplitude 1 V 

)(1 lY

1K

(1 lK

)(2 lY

)(l K

) 2K

)(2 l

)(l)(1 lY )(2 lY

)( l , )(  Ll  located in the points 
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  For the potential )(l  along the wire one finds a similar equation:  
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  Now one is ready to look for the system of differential equations for the potential and current 
in TL-like form: 
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Because the values  and  are linearly independent, the equations (8) have to be 

satisfied for each column  and  (in matrix form):  
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Using equation (9) one can evaluate the equation for the parameter matrix :  )(ˆ lP
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It is easy to show that the choice of “basic” solutions does not influence the value of the 
parameters. In fact, considering a new system of basic functions as a non-degenerate linear 
combination of the previous one results in: 
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Then, calculating the parameters we have:  
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  Thus, it is shown that the system of integro-differential equations (1), with a solution which 
is defined by two independent constants, can be explicitly reduced to the differential 
equations (8) with parameters (9). These parameters are either global parameters in the full-
wave transmission line theory or the parameters of “Maxwellian circuits”, and they are 
complex valued. Moreover, they also describe the radiation of the system [4, 5, 6]. They 
depend on the geometry of the system, and, therefore, on the local geometric parameter l  
along the line. This fact was already established in [1, 2, 3, 6] with the method of the product 
integral, and in [14] by processing the numerical solutions for the current and potential with 
the Method of Moments. 

  The parameter matrix  depends on the gauge of the potential)(ˆ lP  . For example, it has a 
different form for the Coulomb gauge than it has for the Lorenz gauge. 
 
 

         2. Matrizant and its application for solution of TLST equations.  
 
   As mentioned in the previous sub-section, the parameter matrix can be defined on any pair 
of linear independent solutions of the integro – differential MPIE system (a homogeneous 
system), and this system is also a solution of the corresponding ODE system with parameter 

matrix  and some boundary conditions (which have not yet been defined). Further, it is 
convenient to consider the matrix of solutions, which satisfy the following boundary 
conditions:  
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Due to the linearity of the problem, if we have arbitrary boundary conditions , 
the solution for the coordinate l looks like:   
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The matrix 0
ˆ (lM j P  is called the matrizant, product integral or propagator [15]. It 

“translates” the solution from the point 0l  to the point  More generally written:  .l
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The matrizant can be easily calculated by the division of the interval  0 ,l l into small (limited, 

infinitesimal) subintervals  (il N ) and the calculation of the matrix product (product 

integral)2 is as follows:  
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For the homogeneous parameter line, when the parameter matrix is constant, the matrizant is 
just a matrix exponent:  
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Once the matrizant is known, it becomes possible to find a solution with the given boundary 
problems. For example, for the simple boundary problem, described in Fig. 1, one has for any 
point l : 
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But, here the current in the point  is unknown. To find it one uses the second boundary 
condition:  
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This yields two equations for the unknown currents:  
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2 Another way to calculate the matrizant is to use an infinite series of perturbation theory – Volterra series. This 
and many another properties of matrizant are described in [15].  
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Eq. (13) with (19a) yields the solution in an arbitrary point l . 
 
 
     3. Approximate equations for the global parameters of TLST (perturbation theory). 
 
The solution of system (8a, b) with parameter matrix  )(lP of (10) and usual boundary 

conditions for the currents and voltages (differences of potentials) in the points l  and 
 (obtained by the matrizant method described in the previous subsection or by any 

other method) yields the current and voltage distribution along the line for arbitrarily given 
values of the terminal sources and loads. The procedure is convenient, when the exact values 
of the functions ,  and ,  are known, from either known analytical 

solutions [4, 5] or numerical solutions [15]. Another way is to organize some iteration 
procedure. Generally, the approximate solution of the system (1) is defined in the first step. 
Then this solution is used to find the corresponding parameters, etc. In [1-3] and [7, 8] the 
static distributions for the current and potential were used as the lowest iteration step. The 
first iteration for the parameters was obtained after some numerical procedures.  
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its sources (4) yields the functions for the current of the first iteration,  and , of 
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backward propagating current waves: 
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its derivative. After straightforward calculations one obtains the parameter matrix in the first 
order approximation: 
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In Eq. (22) one has used the following expressions for the approximate “inductance” and 
“capacitance”, respectively: 
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Further, as mentioned in the Introduction, assuming that the matrix of parameters is known, 
one defines the reflection and transmission coefficients using the components of the 
matrizant.  In the next section, it will be shown how this knowledge can be used to calculate 
the response of a long line with relatively small non-uniform pieces.  
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 III. DETERMINATION OF THE REFLECTION- AND TRANSMISSION-COEFFICIENTS 
 
                                          1. Classical transmission-line theory 
 
From classical transmission-line theory for a thin and lossless wire above perfectly 
conducting ground one knows the corresponding physical equations for voltage and current 
 

  
    0

dU z
j L I z

dz
      and     

    0
dI z

j C U z
dz

   ,      1 dI
U z

j C dz
 


   (24a,b,c) 

From these equations one can derive forward and backward running voltage or current waves 
and, with their aid, define the reflection coefficients at both ends of a terminated line. In the 
following section and throughout the rest of the paper, the use of current waves is preferred. 
First, the reflection coefficient at the beginning of the line shall be determined. For this 
purpose it is assumed that an incoming wave comes from the right, is reflected at the 
beginning of the line and runs back to the right hand side of the line which is terminated by its 
characteristic impedance. This avoids reflections from the end of the line. Expressed in 
formulae, the current and voltage then read (using (24b, c) : 

                  and     1
 

jkz jkz

incoming wave
outgoing wave

I z I e R e


 
  
 
 

   jkz jkz  1 CU z I Z e R e              (25,a,b)  

 
Equations 25 a and b are now solved with respect to R and result in: 

                                           
   
   

2 Cjkz

C

U z Z I z
R e

U z Z I z




 
                                                          (26) 

Inserting the known solutions of classical transmission-line theory for  and U z  I z , 

whereby the matrizant elements are sine and cosine functions, results in 
 

                                  
   

   

cos sin

,0
sin cos

C

C

kz jZ kz

M z j
kz kz

Z

 
  
 


                                                  (27a)                       

 

and       
 
 

   

   
 
 

    0

cos sin
0

0 ,0
sin cos 10

C

C

kz jZ kz
U z U Z

I M zj
kz kzI z I

Z

 
                    

 


                      (27b)                        

 
one obtains for  0, TLz L  the constant reflection coefficient: 

                                                         0

0

C

C

Z Z
R

Z Z





                                                                 (28) 

In order to obtain the right hand side reflection coefficient R  one has instead of (25a): 

                    

                                       
2

 

TL TLjk z L jk z L

incoming wave outgoing wave

I z I e R e  


 
 
 
 
 

                                                        (29) 

and instead of (26) one gets: 
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                                                   
   

2 TLjk z L C

C

U z Z I z
R e

U z Z I z
 



 



                                              (30) 

Now, again using the proper matrizant expression for  U z  and  I z in (30) 

 

                          
 
 

 
 
 

   ,
1

TLTL L

TL TL TL

TL

U z U L Z
M z L I L M z L

I z I L

     
             

,                            (31) 

and arrives at the known result: 

                                                          C

C L

LZ Z
R

Z Z





                                                               (32) 

 
Eventually, it is also known from classical transmission-line theory that the current along the 
line can be expressed with the aid of the reflection coefficients as 

                                (
0

2 )
2

0

1 1
( ) · · · ·

1
TL

TL

jk L zjkz
jkL

C

I z U e e
Z Z R R e

R  


 


 
                           (33) 

Here, the quantity denotes the (horizontal) length of the line. The risers are not taken into 

account in cTLT due to the condition kh<<1. 
TLL

 The term in (33)  
                                                          0 0

jkz
CU Z Z e  

denotes the first outgoing current wave before it is reflected for the first time at the end. Thus 
it can be written as  
 

                              0 0:
2

Cjkz jkz
C

C

forward running wave

U z Z I z I z C z e U Z Z e
Z

 



   


                            (33a) 

 
The numerator of the middle quotient in (33a) is a forward running current wave which is 
normalized with 2 CZ . The function  C z  can be expressed by: 

                                         
2

Cjkz

C

U z Z I z
C z e

Z


    ,                                                         (33b) 

an expression that one will encounter again later on. 
At this point the question arises whether the above results of classical TL theory can be 
applied in a generalized form in TLST, and if so, under which restrictions.                                                        
 
 
                            2. The Reflection Coefficients at the ends of the line in TLST                                               
 
The first observation in a description of a classical transmission-line configuration in the 
framework of TLST is the inclusion of the risers at both ends of the line. Moreover, as a 
Maxwellian theory, in the TLST the line parameters become complex valued, depend on 
frequency and local coordinates, and the conductor radiates. Obviously, most of the radiation 
of electromagnetic energy is emitted around the bends connecting the horizontal part of the 
line with the risers. Since, however, radiation is a long-ranging interaction every part of the 
line is principally affected. Nevertheless, there is an extended part of the horizontal piece of 
the line, in which the radiation can be neglected and the TEM mode dominates. All other 
modes mainly occur around the bends. Thus, along the TEM mode sections of the line the 
potential represents voltage and can be measured. 
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For the following analysis it is assumed that along the considered non-homogeneous line 
sections exist that are dominated by TEM modes which separate those parts of the conductor 
which are non-homogeneous. De facto, this means that such non-uniform line parts which are 
separated by uniform line pieces do not interact by radiation. For a classical line configuration 
it follows that the radiation interaction between the two risers is neglected. To fulfill this 
requirement, the length of the line must be much larger than its height. 
 
In the TLST the voltage  of cTLT is replaced by the potential  and the current  U z  l

 I z  by . The parameter l  denotes the natural parameter (arc length) along the line. The 

solutions for the potential and the current are assumed to be known by the matrizant. Then in 
analogy to the above considerations the generalized reflection coefficients are defined by the 
quotients of incoming and outgoing current waves: 

 i l

 

                      
   

2: jk l L C

C

i l Z l
R l e

i l Z l




 






      and        

   
2: Cjkl

C

l Z i l
R l e

l Z i l







 
              (34a,b) 

 
The investigated conductor configuration is depicted in Figure 2. 
                                

 
       Fig.2: Schematic line configuration. L denotes the total length, 

1L is the coordinate where the TEM region 

begins and  
2L where the TEM region ends. is the feeding source, 

0U 0Z  and 
LZ  are the terminations, h  is the 

height of the line above ground. 
 
 
As can be seen from Fig.2 the conductor is divided into three parts: Two inhomogeneous parts 
which run from  to  and from 0l  1l L 2l L  to l L . The third part of the line concerns the 

central TEM region, in which the classical solutions apply. 
As assumed the solution for the total line is given by the matrizant  ,0M L . Due to the group 

property of the matrizant the total solution can be broken down into partial solutions for 
certain sections of the line. For the case shown in Fig.2 one can write: 
 
                                              2 2 1 1,0 , , ,0III II IM L M L L M L L M L                                 (35) 

Here  2 1,II M L L coincides with the solution in (27a). At the connection points and , 

the line parameters have to be adjusted accordingly, so that the product solution gives the total 
solution (see Ref. [17]).   

1L 2L

 
                            3.  Calculation of the reflection coefficient at the end of the line 
 
To calculate  R l

 consider a current wave coming from minus infinity and running to the 

right end of the conductor. There it is reflected by  R l
 and runs back to infinity. An 

incoming wave from infinity was chosen to receive no reflections from the left end of the line. 
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This can also be achieved by terminating the line on the left side with the characteristic 
impedance (see Figure 3). 
           

 
                                                Fig.3: For the calculation of  R l

 . 

 
The quotient in (34a) is now expressed by the elements of the matrizant. Taking into account 
the boundary condition at the right hand side of the wire   L LL U Z i L      one gets via the 

matrizant relation 

                             
 
 

 
 
 

   , ,
1

L
l L Z

M l L i L M l L
i l i L

     
             


 L l L  ,  1                     (36) 

the desired final result for  R l
 :                                      

           
       

2 21 12 22 11

21 12 22 11

, , ,

, , ,
jk l L M ,

,
C L

C L

L C

L C

l L M l L M l L Z M l L Z
R l e

Z Z

M l L M l L M l L Z M l L Z
 



  


  


Z Z
                          (37) 

In a similar manner,  R l
  will be determined next. 

 
                         4. The Reflection coefficient at the beginning of the line 
 
In this case, it is assumed that a current wave coming from the right is reflected at the 
beginning of the line by  R l

 . This situation is illustrated in Figure 4. 

 
                               Fig.4: Conductor configuration to calculate  R l

 .  
 
Now the quotient (34b) is expressed by the matrizant elements taking into account the 
boundary condition at the left side of the conductor:    00 0Z i   . One has: 

 

                 
 
 

 
 
 

    0
0

,0 0 ,0
10

l Z
M l i M l

i l i

     
             


 0 l L ,     2                               (38) 

 
Then, insertion of  and from (38) into (34b) yields the following for l  i l  R l

 : 

 

                    
       

21 0 12 11 0 222

21 0 12 11 0 22

,0 ,0 ,0 ,0

,0 ,0 ,0 ,0
C Cjkl

C C

M l Z Z M l M l Z M l Z
R l e

M l Z Z M l M l Z M l Z

   


   
                      (39) 
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                         5. The current amplitude functionC
  for the starting outgoing wave 

 

The derivation of  is based on Figures 5 and 6.   C l


  
 

  
Fig. 5: Illustration for the derivation of  C l

 .               Fig.6:  Fig.6: Infinity formally is “replaced” by
CZ                                      

 
An infinite wire with a left-hand riser is fed by a voltage source . This means that only an 

outgoing wave exists, and for the current and for the potential one can make the following 
equations:  

0U

                                            and      jkli l C e
    jkl

Cl Z C e 
                                      (40a,b) 

The assumption of an infinite line is made to eliminate reflections from the right hand-side. 
However, reflections also do not occur at the end, even if the conductor is terminated by CZ  

(see Fig. 6). Therefore, the characteristic impedance occurs in the expression for the potential. 

Taking the sum of (40a, b) one obtains for  C l
 , the analogue result to (33b), namely the 

amplitude function of the outgoing wave. 

                                           
   

2
C jkl

C

i l Z l
C

Z





 e                                                                (41) 

Next, the result of (41) is represented with the aid of the matrizant and its elements. It applies: 
 

                                            
 
 

 
 

 
0 0 0

,0
0

l U Z
M l

i l i

   
    

  

i 



   ,                                            (42) 

or in terms of the matrizant elements: 
 
                                       11 0 0 12,0 0 ,0 0Cl i l Z M l U Z i M l i                                 (43) 

                                             21 0 0 22,0 0 ,0 0i l M l U Z i M l i                                       (44) 

 
Division of (43) through (44) yields CZ : 

 

                        
        
       

11 0 0 11 12

21 0 0 21 22

,0 ,0 ,0 0

,0 ,0 ,0 0C

M l U Z M l M l i
Z

M l U Z M l M l i

  


  
                                     (45) 

 
Equation (45) now can be resolved with respect to  0i  

 

                          
       

0 21 11

0 21 22 11 0 12

,0 ,0
0

,0 ,0 ,0 ,0
C

C C

U M l Z M l
i

Z Z M l M l Z M l Z M l

  
                           (46) 
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This   is inserted in equations (43) and (44), and then the resulting terms are used in (41).   0i

If one still takes into account that the determinant of the matrizant is 1, then one finally 

arrives at the desired result for :  C l


 

                               
0

0 21 22 11 0 12,0 ,0 ,0 ,0

jkl

C C

U e
C l

Z Z M l M l Z M l Z M l 
   

                (47). 

 C l
 approaches the classical value if one inserts the matrizant elements of (27a) into  (47). 

With this amplitude function for the current one obtains an important intermediate result. 
     
              6. Intermediate Result for the current of a horizontal line with two risers 
 

     At this stage the development of the formulae  R l
 ,  R l

 , and  C l
  it is possible to describe the 

current distribution along the line depicted in Fig.2. This is a conductor with two risers and a relatively 
long horizontal section. In a later step, such a line becomes more complicated by adding an additional 
scatterer in the central part of the line. 

To derive the current on the line, one starts at the left end with the outgoing wave .  This wave 

is reflected at the right end and runs back to the left:

  jklC l e



   jk L ljkLC l e R e 
 
  . At the beginning it is 

reflected the first time and again runs to the other side:   jkL jkLe R e R e 
 
   jkl

C l .  This process repeats 

itself infinitely often and can be summarized in two sums (see Fig. 7). 
 

                 
                            Fig.7:  Schematic representation of summing up the first three summands.  
 

                            (48)            

0 0

n n jk L ljkL jkL jkl jkL jkL jkL

n n

i l C l e R e R e C l e R e R e R e
 

      
      

 

       

        or shorter: 
 

                                              
  2

21

jkl jkL jkl

jkL

C l e R e
i l

R R e

  
 


 






 
                                                             (49) 

 
 This is an interesting intermediate result. First, it has its pendant in cTLT with Equation (33a). 
However, (49) has a much wider validity region: It is not only valid if  (classical theory) 
but also if . Thus, at these high frequencies of 1-4GHz, the risers at the ends can already 

1kh
1kh 

be “recognized” (resolved), unlike in the cTLT where the height of the conductor above ground 
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does not occur in (33a). Another remark to be made here concerns the definition regimes of the 
functions in (49). The total matrizant solution is divided into three separate parts, which are 
also solved separately and then later properly matched up again to derive the total solution. 

Thus, the quantities are defined in the following intervals:  C l
  in  1 2L l L  , 

 R l
 in 20 l L  , and  R l

 in 1L l L  . It should be noted that there is a common interval 

ch  funct re nd become constant: 1 2L l Lin whi  all three ions a defined a   .In this interval one 

observes a dominating propagating TEM mode. Therefore, it can ded that (49) is only 
defined in 1 2L l L  . However, there is another point of view from which the problem can be 

considered. Since the matrizant is known for the whole solution along the line, the local 
coordinate is not restricted to certain intervals in the above formulae containing the matrix 
elements of the matrizant. All quantities which enter (49) are defined over the total 
interval 0 l L  . Both perspectives must, however, guarantee that the TEM modes dominate 
in the v f the ends of the line. Between these two TEM-pieces the line may become 
again inhomogeneous. This will become the subject of the next chapters. 
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                    central part. 
 
In
embedded in two asymptotic regions (parts II and IV), each of which make connections to the 
risers (parts I and V). The two parallel parts of the line may have different heights above 
ground. At an appropriate point inside the scatterer a reference point .refL  is selected. If the 

scatterer represents a horizontal bend, then the reference point could be exactly at the bend 
point. 
Now, t
First, one can calculate all five parts of the line individually. When assembling the individual 
solutions one must, however, ensure that the line parameters are matched against each other at 
the joints. Or, one calculates the matrizant for the entire line and then splits it into several 
parts according to 
 

       1M L

e and

4 4, ,L M L

as all five partia

3 3 2 2L M L L M L   1, , L

ailabl

,0 M L ,

 case one already h l solutions av  they can b

0                   (50) 

e used to 

M L

econd

  

 
In the s
calculate all reflection- and transmission coefficients of the line. This takes place in several 
steps. 
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In step one it is assumed that a wave coming from the left is approaching the scatterer 
whereby one portion  of the wave is passing the scatterer and another portion 0D 


0R 
  is 

reflected by the scatterer. The configuration is depicted in Fig.9. 
 

 
                         Fig. 9: Representation for the calculation of  

0R 
  and 

0D 
 . 

 
Choosing a , the TEM region, then one obtains the usual equations: 1l II

             1 1

1 0 0
ref refjk l L jk l L

i l I e R e
  

     and        1

01 0 0
ref refjk l L jk l L

Cl I Z e R e   
   1      (51a,b) 

Solving for 0R 
 gives 

                                        
   

1 0

0

2 1
0 1

1 1

refjk l L C

C

i l Z l
R l e

i l Z l




 






 1                                                     (52) 

Note that the zero phases always occur at the locations of the reference points of the 
scatterers. 
For the transmission coefficient, the following equations are valid in zone IV . 
 

                                2

2 0
refjk l L

i l I e D
 

0       and     2

2 0
ref

L

jk l L

Cl I Z e D  
  0
                    (53a,b) 

On the other hand, one has the relation: 
 

                                                  
 
 

 
 
 

1

1 2

1 2

,
l l

M l l
i l i l

   
    

  

2 



                                                (54) 

Equations (51a, b) are inserted into the left hand side of (54), while one uses (50a, b) together 
with the known Matrizant in the right hand side of (54). Then, one arrives at two equations for 

0R 
 and , and afterwards can solve them, which results in: 0D 



 

          
 

       
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0
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0 2
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2
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Z e
D l

CM l l Z M l l M l l Z Z M l l Z



 
  

                  (55) 

     and  
              

          
       


0 01

0 0

11 1 2 12 1 2 21 1 2 22 1 22

0 1

11 1 2 12 1 2 21 1 2 22 1 2

, , , ,

, , , ,
L Lref

L L

C C Cjk l L

C C C

M l l Z M l l M l l Z Z M l l Z
R l e

M l l Z M l l M l l Z Z M l l Z

 


     
    

 C

C

    (56) 

 
In step two a wave coming from the right is considered which is partially reflected ( 0R 

 ) and 

partially transmitted ( ) by the scatterer. Figure 10 sketches this situation. 0D 

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                                    Fig. 10: Sketch for the estimation of 

0D 
 and 

0R 
 . 

                     
Analogous to equations (51) and (53) one now starts with two similar equations: 

                        1

01 0 0
refjk l L

Cl I D Z e 
          and        1

1 0 0
refjk l L

i l I D e


                           (57a,b) 

 
   and 

       ,         2 2

2 0 0
ref ref

L

jk l L jk l L

Cl I Z e R e   


     
       2

2 0 0
ref refjk l L jk l L

i l I e R e
  


2    

    (58a,b) 

The right hand sides of (57) and (58) are inserted in the matrizant relation (59) 
 

                                               
 
 

 
 
 

2
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2 1

,
l l

M l l
i l i l

   
    

  

1 



                                                  (59) 

This again leads to two equations for the two unknowns 0R 
  and 0D 

 . 

 

             
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               (60) 
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       
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R l e

M l l Z M l l M l l Z Z M l l Z




     
    

 C

C

    (61) 

 
Based on the results of (55), (56), and (60), (61) the third step can be carried out: namely, the 

estimation of the current in the interval 0, refL   .  

By introducing a further reflection coefficient 0R 
  the subsequent calculation can be 

simplified. Its effect is shown in Figure 11. 
 

 
                                            Fig.11: Sketch of the effect of 

0R 
  . 
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In order to express 0R 
  in relation to all the other reflection and transmission coefficients, 

0R 
 , , 0D 


0R 
 , , and 0D 

 R
 , one assumes a wave coming from   that is partially passing 

through the scatterer ( ) and partially being reflected by the scatterer (0D  0R 
 ). At the end of 

the line it is again reflected ( R
 ) and runs backward, again partially passing through the 

scatterer ( ) and partially being reflected (0D 


0R 
 ). All parts of the waves passing through the 

scatterer coming from the right vanish at  . However, the scattering process between the 
inhomogeneous part of the conductor and the end of the line is repeated an infinite number of 
times (see Fig.12). 

 
                                            Fig.12: Definition of the reflection coefficient 

0R 
   

 
The distance between  (the coordinate origin for this process) and the end of the line  is 

denoted by . Then, one gets for

refL

refL

L

:L L 
0R 
 : 

 

                                    (62) 0 0 0 0 0 0 0 .....jkL jkL jkL jkL jkL

periodical part

R R D e R e D D e R e R e R D    
                         


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               
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  

   





   


         
             (63) 

 
 At this point, a result (49) of the previous chapter is used and rewritten on the present 
reflection coefficient 0R 

 . 

                              
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 
 

     


                                               (64) 

Replacing 0R 
 in (64) by expression (63) one obtains a longer equation for    1i l : 
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        

         


    (65) 

 

Finally, in the last step the current    2i l for ,refl L L    remains to be estimated. 

An incoming wave from the left 0
jklI e   ( ) passes the scatterer and is reflected at 

the end by

: refl l L 

R
 , runs via l back to the scatterer and there is reflected again. This process is 

repeated infinitely often (for explanations see Fig.13). 


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                   Fig.13:  Scattering process between scatterer and the end of the line. 
 
Translating the above scattering process into a formula yields: 
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                                                                                                                                                (66) 

In (66) all quantities are known except the amplitude function  0I l . This function is taken 

from the outgoing wave part from (64): 
 

                                                       
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                                                       (67) 

Equation (67) is now used in (66), 0R 
  is replaced by (63), and finally one obtains the result 

for    2i l : 
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, (68) ,refl L L  

With (64) and (68), the current distribution along the entire line is known, expressed in terms 

of reflection and transmission coefficients. The quantity C
  is taken from the previous 

chapter, as well as the quantities  R l
  and  R l

 .  

A special case of the above general scatterer would be a horizontal line conducted 
horizontally above ground with a bend. In this case, some formulae can be simplified 
 according to 0 0 0R R R    

0 0D D D   , , and 0


0 LC CZ Z .  
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                   V. NUMERICAL EXAMPLES AND DISCUSSION 
 
 
Recently, a numerical example was shown [17] for a uniform TL above a conducting ground 
plane with risers on each end. The horizontal length of the line was 200 cm and the height 
over ground was 5 cm leading to a total arc length of 210 cm for the TL. It could be shown 
that the matrizant of the whole line can be composed of the matrizants for the riser regions 
(using TLST) and the classical matrizant for the asymptotical uniform part between the riser 
regions. It was also shown that the current in the asymptotical region can be calculated using 
the concept of advanced reflection coefficients R

  and R
  which can be calculated using the 

parameter matrix elements of the TLST analysis of the riser regions. In the following section, 
non-uniformity is also allowed in the middle region of the TL. This non-uniformity can be 
local, as for example a single bend in the line, or there can be a region with distributed non-
uniformity.   
 

                            1.     Horizontal line with one bend  
 
First, a single local bend in the middle of an otherwise uniform TL with risers on each end is 
investigated. The TL configuration is shown in Fig. 14.  
 

 
         Fig. 14: Uniform TL with risers at each end and a 90° bend in the middle of the TL.  
 
The height of the risers is h = 5 cm. The length of the horizontal part between the risers is 200 
cm and there is a 90° bend exactly in the middle of the line. In TLST the natural parameter of 
the TL is the arc length l. The top of the left riser is at l = 5 cm, the horizontal bend at l = 105 
cm, the top of the right riser at l = 205 cm and the end of the line at l = 210 cm. This leads to a 
total TL arc length of L = 210 cm. The position of the horizontal bend is designated by Lref = 
105 cm. On the left side the TL is driven by voltage source with U0 = 1 V and source 
impedance Z0 = 50 . The line is terminated with load impedance ZL = 50  at the right end. 
 
For the TL configuration of Fig.14 a TLST analysis [8] was performed leading to the local, 
frequency dependent and complex valued TL parameter matrix elements shown in Fig. 15. 
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         Fig. 15  : TLST parameter matrix elements for the TL with risers and 90° bend from Fig. 14 at a  
   frequency of 1 GHz corresponding to the per unit length inductance of a classical TL. 
 
Regarding the real part of the TLST parameter matrix element P*(1)

12 – corresponding to the 
per unit length inductance L’ of a classical TL – the deviations from the classical value in the 
riser regions and at the 90° bend in the middle of the TL are obvious (Fig. 15 left). But there 
are two regions between the risers and the middle bend were the classical L’ values are 
reached and, therefore, the TEM mode is dominant. This is true for the arc length region from 
about l = 22 cm to l = 88 cm and l = 122 cm to l = 188 cm. In Fig. 15 (right) the imaginary 
part of the L’ correspondence is shown to be zero for the classical TL, because in classical 
transmission-line theory radiation effects do not occur. In TLST radiation effects are included 
and, therefore, the parameter matrix elements are complex in general. Although radiation is a 
cooperative process of the whole TL [7], the troughs at the riser positions and at the horizontal 
bend indicate the most radiating parts of the TL where there is a distinct non-uniformity of the 
line. The matrizants introduced in section II are calculated using the elements of the TLST 
parameter matrix P*(1) [8]. 
 
For further investigation of the TL model (Fig. 14) the arc lengths l1 and l2 are set in the 
respective asymptotic regions using l1 = 55 cm and l2 = 155 cm. According to the formulas in 
section III.2 the reflection coefficients 2( )R l

  and 1( )R l
  for the line ends are calculated    

where 2( ) ( )1R R l R l      because of symmetry. For the local scatterer (horizontal 90° bend 

in the middle of the TL) at arc length l = Lref = 105 cm (reference point) the reflection and 
transmission coefficients were calculated according to the formulas in section III. Because of 
the symmetry of the TL in relation to the reference point, one can write 0 0 2 0 1( ) ( )R R l R l      

and . Fig.16 shows the frequency dependency of the mentioned 

coefficients. Both terminating impedances on the left and right end of the TL have a value of 
50  resulting in a constant classical reflection coefficient Rclass = 0.73. Because of radiation 
effects and the generation of non TEM modes in the non-uniform, bent TL, the TLST 
reflection coefficient |

0 0 2 0 1( ) ( )D D l D l    

|R decreases from the classical value at higher frequencies.  
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         Fig. 16: Advanced and frequency dependent reflection and transmission coefficients for the TL with 
   risers at the ends and a local bend in the middle of the line. 
 
The TLST transmission coefficient  for the local scatterer is 1 for low frequencies and 

decreases also for higher frequencies. The corresponding reflection coefficient 
0| D |

|0| R  is 0 for 

low frequencies and increases for higher frequencies because of the mentioned radiating 
energy losses and the generation of non TEM modes, mainly in the vicinity of the non-
uniform parts of the TL. The reflection coefficient 0R 

  is a kind of combination of the right 

hand reflection coefficient R
  for the termination of the line (including the riser effects) and 

the transmission and reflection coefficients of the local scatterer and0D 0R .  

 

 
 

         Fig. 17: Current in the left hand asymptotic region at position l1 of the TL configuration 
    according to Fig.14. 
Part of the initial electromagnetic wave coming from the voltage source on the left side of the 
TL bounces back and forth between the scattering center at the right hand riser and the local 
scatterer (90° bend) in the middle of the TL. This is the reason for the oscillation in the course 

of 0R 
 .  
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Using formula (64) for the current in the left hand asymptotic region at l1 it can be shown that 
there is an excellent agreement with the current resulting from a pure TLST calculation. This 
situation is shown above in Fig. 17.  
The correspondence for the current in the right hand asymptotic region at position l2 
(according to formula (68)) with the pure TLST calculation is also excellent. The frequency 
dependent course of |I(l2)| is shown in Fig. 18. 
 
 

 
 

         Fig. 18: Current in the right hand asymptotic region at position l2 of the TL configuration,  
   according to Fig.14. 
 
 

                                          2.  Simple one line simulator 
 
Now, the local non-uniformity in the middle of the TL is replaced by a distributed non-
uniformity. The course of the TL is defined so that there is still a left and right hand 
asymptotical region between the left and right hand risers and the distributed non-uniformity 
is in the middle part. The actual geometry is displayed in Fig. 19. One can think of a 
projection of an open TEM waveguide structure onto the vertical axial plane (yz-plane). The 
total dimension of the TL in z-direction is again 2 m. Because of the risers and the distinct 
vertical extent, the total arc length with L = 252.5 cm is significantly larger. Starting with arc 
length l = 60 cm there is a slope up to the top bend which is also defined as the reference 
point with Lref = 144 cm. From the top bend there is a relatively steep decline towards the 
right hand asymptotical region, which again is at a height of 5 cm above the conducting 
ground plane. 
Fig. 20 shows the L’ like real part of the P*(1)

12 parameter matrix element of TLST analysis 
along the TL arc length for a frequency of f = 1 GHz. It is obvious that there is significant 
deviation from the classical constant value. The bends of two risers, i.e.,  the top bend and the 
bend between the right-hand end of the distributed non-uniform region and the right-hand 
asymptotical region, lead to distinct troughs in the real part of L’. In the left slope region there 
is little oscillation, while in the steeper right hand slope region oscillation is obvious, which 
shows the presence of leaky modes [18]. It is also obvious that actual TL values (real part of 
L’) in the asymptotical regions do not fit to the classical values as well as in the previous 
example (see Fig.15). The reason for this is that the assumptions for an asymptotical region 
are not fulfilled very well because of the shortness of the horizontal TL parts. But, later on, it 
is shown that even with these restricted conditions the current in the asymptotical regions can 
be calculated quite accurately.   
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         Fig. 19: Construction details of the TL with left and right hand risers and a vertically distributed 
  non-uniformity in the middle part. 
 

 

 
          
              Fig. 20: Real part of L’ like TLST parameter matrix element for the TL with risers and distributed 
   non-uniformity in the middle part, according to Fig.19. 

 
The appropriate reflection coefficients for the riser parts and the reflection and transmission 
coefficients for the distributed non-uniform middle part were calculated according to the 
formulas in the previous sections using the TLST matrizants for the actual TL configuration 
from Fig.19. The results are shown in Fig. 21. Of course, now the values for 0R 

  and 0R 
  differ 

because there is no longer any symmetry for the TL model. However, it can be generally 
shown from (55) and (60) that and 0D 


0D 
 are always equal to each other. If this does not 

result from the numerics then the asymptotic regions around the scatterers were not chosen 
large enough.  In order to not overload Figure 21 only the “+” values are shown. 
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         Fig. 21: Advanced and frequency dependent reflection and transmission coefficients for the TL with 
   risers and distributed non-uniformity in the middle of the line (simple one line simulator) 

 
Because of the stronger non-uniformity of the middle part in the actual TL model, the 
transmission coefficient  is significantly smaller and the reflection coefficient 0D 



0R 
 significantly larger than in the previous example, while reflection coefficients for the line 

ends remain nearly the same. The shown coefficients of Fig. 21 were calculated for arc length 
l1 = 35 cm, which is in the left hand asymptotic region (see Fig 19). The “-“coefficients 
needed for the further current calculations were calculated for arc length l2 = 226 cm lying in 
the right hand asymptotic region. 
 

       
 
         Fig. 22: Currents (magnitude) in the asymptotical regions at l1 (left) and l2 (right) using advanced 
   reflection and transmission coefficients in comparison with pure TLST calculations. 
 
Using the appropriate calculated coefficients for the current determination according to (64) 
and (68) it can be shown that the agreement with pure TLST calculations is again very good. 
The results are shown in Fig. 22 for the current at arc lengths l = l1 (left) and l = l2 (right). 
Although the requirements for an asymptotic region are not perfectly fulfilled, as discussed 
above, the developed evaluation procedure seems to be quite tolerant of this fact. 
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                                            VI. CONCLUSION 
 
In the TLST, the derived generalized reflection and transmission coefficients in this paper are 
used to calculate the currents along practical layouts of non-homogeneous transmission lines. 
The obtained results were compared with those of an exact TLST calculation, and an excellent 
agreement was observed in the investigated high frequency region. Note, that for the 

derivation of the R s  and , parallel conductor sections with dominating TEM modes 

were necessary between the central scatterer and the non-homogeneous risers. Thus, radiation 
interaction was restricted only within the individual inhomogeneous conductor parts. Even an 
extension in the higher GHz realm (up to 4 GHz) did not change the excellent agreement of 
the results for the currents. The representation of the currents in terms of local and frequency 
dependent reflection and transmission coefficients lead to formulas which resemble those of 
classical TL theory. In particular, the formulas are quite practical when solving for current 
poles in the complex plane, and thus facilitate an SEM analysis [19]. 

0D s
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