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Abstract

An approach to the problem of quantifying confidence in conclusions
drawn from results of experiments is presented, assuming an infinite
number of elements in the set from which the samples are being taken and
assuming dichotomy has been imposed. Three different kinds of experimental
problems are presented as examples of circumstances to which the approach

is applicable.

is treated in one of these problems.
are analyzed as computational examples.

Confidence in reliability of a missile guidance computer
Three general and four special cases
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PREFACE

Experiments are conducted in order to suggest and justify con-
clusions and predictions about the subject experimented upon. The
greater the amount of supporting experimental data gathered, the
higher the confidence one may reasonably have in conclusions drawn
from that data. Thus, confidence in a conclusion is a monotone
increasing function of the amount of experimental evidence support-
ing the conclusion. It is possible to quantify this confidence
precisely.

In this paper it is shown by reasoning directly from basic
principles how to quantify confidence in the case where the population
has been dichotomized by the experimenter. No further assumptions
are made regarding the distribution of the population.

The analysis begins with intuitively acceptable statements about
confidence and proceeds without recourse to devices, such as Bayes'
rule, use of which would be second nature for the statistician but
which are foreign to many engineers. It is hoped that this avoidance
of specialized terminology will make quantification of confidence
more accessible and acceptable to the conscientious worker who lacks
familiarity with the concepts of probability and statistics.
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Some Notes on Confidence and Reliability in an Infinite Population.

1. Consider three experimenters, each with a problem.

2. (Experiment 1.) Suppose the first experimenter is attempting to
discover the distribution or pattern with which a collimated stream of
protons is deflected after colliding with a target. (He may be per-
forming this experiment either in a laboratory or as a Monte Carlo
computer calculation.) As part of his effort to do this he monitors a
particular region of solid angle about the target to see what fraction
of the protons is deflected in that direction, Suppose that after one
hour he has observed that L protons have been fired at the target and,
of these, M have been deflected into the region of solid angle which
he is presently studying. The experimenter might then reasonably
guess that the probability is about M/L that the next proton fired will
be deflected into the instrumented region. Suppose the probability is
actually some real number P; then, in view of the data, with what
confidence may the experimenter assert that P is between, say, (M/L)/2
and (1 + M/L)/2 ?

3. (Experiment 2.) Suppose the second experimenter is attempting to
discover the value of a physical constant. He has made L measurements
of the constant and, of these, M have fallen inside a real interval
(r],rz). That is, the experimenter has found a fraction M/L of his
measurements to fall within the interval (rl,rz). ‘At this point the
experimenter may do any one of several things.

4. He may guess that he knows the distribution of numbers which his
particular measuring apparatus will yield, and from his set of measure-
ments make estimates of the parameters of that distribution. Typically
he will decree that measurements from his apparatus will be normally
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distributed (or at least that their distribution wil] have moments --
which it won't if it is, say, the Cauchy distribution -- so he can in-
voke the Central Limit Theorem and have their sample mean becoming
normally distributed with increasing sample size). So he will calculate
the finite mean and finite variance of his set of measurements. Using
these as the mean and variance he would have if he made an infinite
number of measurements, he will then announce to the world that the
actual value of the physical constant lies inside some interval

r3,r4) with “30 probability" (99.865%) (or 1a, or 20, or whatever).

If the experimenter is very conscientious he may even run a goodness-of-
fit test to see if his finite set of measurements really could have
come from a normal population, Unfortunately, even such a conscientious
experimenter sometimes omits to advertise the level of significance of
his fit test. Also, he sometimes does not tell the users of his
experimental results what other distributions would fit the data as
well.

5. Alternatively, the experimenter may admit that he does not really
know precisely how his apparatus distributes measurements. He does
know that he can partition all possible measurements into two classes,
those within the interval (r],rz) and those outside that interval,

He knows that, whatever the distribution of the measurements, there
exists some probability P that a single measurement wil] fall within
the interval. His best approximation of P, in view of his L measure-
ments so far, is M/L. With what confidence can the experimenter then
declare that P lies within the interval (p],pz), where Py and P, are
bounds picked as interesting by the experimenter?

6. (Experiment 3.) Consider the third experimenter. Suppose that a
missile guidance computer is being subjected to electromagnetic or
particle radiation in a simulator. Suppose that sometimes a pulse of
radiation causes the computer to malfunction non-destructively but
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that at other times a pulse is not followed by a malfunction. The
experimenter has observed that in L pulses no malfunctions have
occurred on M occasions. He might reasonably guess that the
probability is about M/L that the next pulse (which might occur when
the missile is in use) will not cause the computer to malfunction.
Suppose the probability of no malfunction is actually some real
number P; then, in view of the data, with what confidence may the
experimenter assert that P is, say, greater than .5?

7. The reason for discussing these three experiments is to exhibit

a small sample of the wide range of situations in which the theory

of this note is applicable. They have in common that the experi-

menters do not really know, even after the experiment, how the

experimental results are distributed. Let f denote the unknown

probability density function which gives the distribution of measure-

b

ments of the variable being measured. Then S f(x) dx is the

probability that a single measurement will be less than or equal to
b

b, and S f(x) dx is the probability that a single measurement will
a

fall between a and b. If the measurement technique does not contain

any systematic error, the distribution mean

u = S x f(x) dx
(if it exists, i.e., if x*f(x) is integrable from -« to «) will be

both the expected value of a measurement and the “true" value of the
variable being measured.
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8. In the first of the three experiments at the beginning of this
paper, then, the unknown probability P would be

P = j; f(A) dA

over the
solid angle
of interest

In the second experiment,

2
P = S f(x) dx
"

In the third experiment,
1
. S F(x) dx
.5

In this paper we shall assume (as we did in an earlier note* on this
subject: "Some Notes on Confidence and Reliability in a Finite
Population", dated 18 February 1971) that the distribution of f is
unknown and that the only information the evaluator of the data can
get about it is from a finite number L of measurements.

9. (Assumptions.) We shall also assume the evaluator dichotomizes
the experimental results, so that each is either inside or outside the
region of interest to him. Let M be the number which fall inside the
region or interval of interest; then L-M is the number outside the
area of interest. Since L is not bounded by any finite number N for
the kind of experiments being discussed in this paper, i.e., since the
experimenter can always take more measurements and thereby gain more
information (unlike the situation in the earlier note, in which it

was possible for the experimenter to get all the information possible,

* Probability and Statistics Notes, Note 1.
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and thus achieve certainty, in only N, say 1000, experiments),
therefore P may be any real number between 0 and 1 (instead of being
restricted to proper rational numbers with denominator N).

10. (Confidence requirement.) We shall also define confidence so
that it satisfies the following requirement (as in the earlier note).
We want to discover if our results would be more likely if P = Py than
ifpP= Po- Let g(p,L,M) be the probability of getting exactly M
measurement values inside the interval of interest in L samples if
the infinite population, or set of possible measurement values,
actually has a fraction p in that interval. Then if g(p],L,M) =

= Zg(pZ,L,M), we would be twice as confident that P = Py as we would
that P = Pp- (Read that sentence again.) That is, our confidence in
P is twice our confidence in Py. We write C(pl,LkM) = 2C(p2,L,M).
One motivation for levying this requirement is the fact that
g(p],L,M) = Zg(pz,L,M) means there are "twice as many ways" we could
have obtained our results from a population for which P = Py as from
a population for which P = Py- So if we imagine that we are getting
our results from the union of two populations, one of each kind, then
before experimenting it would be twice as likely that from the union
we will get a set of experimental results of the kind we have

(L total, M interesting) from the Py Population as from the Py
population. Looked at another way, if both of these kinds of
populations will occur equally often in our future experience (the
maximum ignorance assumption), then in a large number of sets drawn
from randomly selected populations of these two kinds in the future
we will obtain sets of this kind (L total, M interesting) twice as
often from P populations as from Py populations. Hence, if we bet
strictly according to confidence defined subject to this requirement,
then over bets placed on many randomly encountered populations we
will "break even". In general, we require of our definition of
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confidence that P = p, denoted by C(p,L,M), that, given experimental
results L and M, then for any real number r

9(pysLaM) = v % g(pysL,M) =D>C(pysL M) = 1 Clp,,L.M).

We might rewrite this expression more generally to cover the case in
which we want to quantify our confidence that P is contained either
within interval (p],pz) or within interval (p3,p4). Then the reason-
ing at the beginning of this paragraph would require that

S g(p,L,M) dp = r * S g(p,L,M) dp =>
p] p3

= Cpyspysl M) = 1 » Cpgspysl M) » (1)

where C(pi,pj,L,M) denotes our confidence that P is;within the interval
(pi,pj) given L samples among which exactly M fall within the region
of interest. (The link between the notation in which C has three
arguments and that in which it has four is provided by C(p,L,M) =

= C(p,p,L,M).)

11. (Confidence axioms.) Also, we would like to feel that confidence
is similar to probability. That is, given the experimental results L
and M, we would like to be able to say that the measurement apparatus
and the subject being experimented upon are "probably" of such and

such character (although, since they are given, the probability that
they actually are is either O or 1). So it is natural to require con-
fidence to satisy the three basic axioms of probability theory. Applied

to disjoint intervals (p],pz). (P3,p4),..., these axioms, for
confidence, are:
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I1. C(O,],L,M) =]
111, C((PI,pZ) or (p3,p4) or ...,L,M) =
= C(p],pz,L,M) + C(p3,p4,L,M) + ...

Axiom I states that confidence may be zero, but never negative. Axiom
IT states that confidence is 1 that the unknown probability P is some
real number between 0 and 1; i.e., we are completely certain that
there is such a probability P. Axiom IIT states that the confidence
that P is contained in one or another of several nonoverlapping
intervals is just the sum of the confidences that P is in each one
alone.

12. (Existence.) Expression (1) tempts us to try: defining C(p,L,M) =

= g(p,L,M) for fixed experimental results L and M.h However, the fact

that g gives the probability of getting M values inside the interval

of interest given L and p, so that g is a discrete probability density

L 1

function, assures us that 3 g(p,L,M) = 1 but not that S g(p,L,M) dp
M=0 0

= 1. Consequently such a trial definition would leave Axiom II

unsatisfied. If instead we define confidence that P is contained in

the interval (Pysp,) by

P2
S g(p,L,M) dp
p
C(P] aPZ’L»M) = ]] » (2)

S g(p,L,M) dp
0

then all the requirements of the foregoing paragraphs are satisfied.
That g is Riemann integrable from 0 to ) will be clear when we derive
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its form in paragraph 14, below. Plugging this definition of C into
expression (1) and using the linearity of the Riemann integral shows
immediately that expression (1) is satisfied. The fact that g is it-
self a probability density function, and so satisfies the probability
axioms, and so is non-negative, is sufficient to assure that Axiom 1
is satisfied. That Axiom II is satisfied is immediate. Axiom III is
the natural definition of our confidence that P is in either (p],pz)
or (p3,p4) or ....

13. (Uniqueness.) A question which arises naturally at this point

is, does equation (2) define confidence uniquely, i.e., is the function
C as defined by equation (2) the only function which satisfies ex-
pression (1) and the three axioms listed in paragraph 11, within

our assumptions, above? To answer this, we begin by rewriting
expression (1) as:

P2

8 g(p,L,M) dp

Py C . C(py 5P,k ,M)
Py Clp3.py,L, M)
S g(p,L.M) dp

P3

Next, let C be any function which satisfies all our four requirements
for confidence, viz., expression (1) and the three axioms. Then by
Axiom II we know that C(0,1,L,M) = 1. For general Py and P, we may
therefore write:

E(p] :pz »L 9M)

E-(p] :DZ’L,M) 2 = =
c(0,1,L,M)
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P2

S g(p,L,M) dp
P

1 -
S g(p,L,M) dp
0

"
i

c(p]!pzyL)M)
C(0,1,L,M)

C(D]’DZQL;M)

So we know that T is the same as C for all permissible sets of values
of the parameters. Therefore C is the same function as C. Hence
equation (2) gives a definition of confidence which satisifies our
requirements uniquely.

14. (g(p,L,M).) What is the form of g? The answer to this question
can be had directly from the verbal definition of g in paragraph 10,
above. If the subject being studied and the experimental apparatus
are such that the probability of getting a measurement value within
the interval of interest is p, then the probability of getting M in-
dependently taken measurement values within this interval is just
Prpx,. . 4p = pM. Similarly if the probability of getting a measurement
value outside the interval of interest is 1-p, then the probability
of getting L-M independently taken measurement values outside this
interval is just (1-p)(1-p)...(1-p) = (1-p)L'M. So the probability
of getting M measurement values inside the interval of interest and
L-M values outside that interval, for a total of L values, is just

gt = (L) " (1-p)tM (3)
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where the binomial coefficient (:3) takes account of the fact that
the M interesting measurepents could have shown up in the total of L
measurements in any of h different sequences. (Equation (3) is the
defining equation for the binomial distribution. The binomial dis-
tribution can be shown to become similar to the hypergeometric
distribution as the size of a finite population becomes large, so

it can be anticipated that under that condition some of the formulas
developed in this note may in practice be used in place of corres-
ponding formulas in the earlier note on confidence in finite popu-

lations, cited above. This fact arises again in paragraphs 24 and
25, below.)

15. (Confidence for infinite populations.) Plugging (3) into
(2) yields

P,

f p" (1-p)- M ap

p
c(p]opanoM) = ]] . (4)

f o (-p)t M gp
0

(This expression for infinite populations is analogous to equation
(4) in the earlier note, cited above, for finite populations.)

16. (Symmetry Theorem.) From this general expression for confidence
in an infinite population we can immediately establish two other

facts which can sometimes be of aid. Bear in mind that C(x],xz,x3,x4)
is our symbol for confidence that the actual probability P is

contained in the interval (x].xz) given that X3 samples have been

taken and, of these, X, were discovered to be in the region of interest.
Using these four parameters, in that order, we then prove the
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Symmetry Theorem: C(0,Q,L,M) = C(1-q,1,L,L-M)

Q
S ot (1-p)tM 4

Proof: €(0,Q,L,M) = ?

S pt (1-p)L-M dp
0

In both these integrals let us change variables by letting q =

(5)

1-p.

Then p = 1-q; dp=-dq;p=Q=>q=1—p=1-Q;p=1$q=l-p=

= 1-1 = 0; andp=0=(>q=]-p='|-0=]. The

1-Q
(1-q)b gt (-dq)

co.0,L,k) = ]

g (1-q)b ot M (-dq)
]

(1-q)b gt M dq
1-Q
] =
S (1-q)b LM dq
0

1

n

S (]_q)L-(L-M) qL—M dq

= 1-Q
1

S (]_q)L-(L-M) oM dq

0

C(]'Q’Q:LaL‘M)
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17.  (Symmetry Corollary.) From this Symmetry Theorem we have
immediately the

Symmetry Corollary: C(O,%uL,%J = %— (6)
Proof: By the Symmetry Theorem,
1, Ly _ 1 Ly _ L
C(O'§3L'§) = C(] 29]aLsL‘2) C(29 ’2) (7)

But, by Axioms II and 111,

C(O,xz,x3,x4) + C(X2|]’x3$x4) = ] (8)
Therefore
1, L Ly _
C( :29Ls ) + C(z: ’2) =
Combining this with equation (7) we have
1, Ly . 1oLy o1
2 C(O"é"l-)?) - ]=° C(O’Z’L’Z) 2 ’ C/].e.d.

18. (L=1Land M =0.) Let us now apply these results to three
general and four special cases of recurrent interest. For the first
general example consider the case in which the samples come out all
of a kind, and since none stand out we'll say none are of interest.
Then L = L and M = 0 and we have:

0 q
S 00 (1-p)L0 g S (1-p)" dp
c(0,Q,L,0) = ? - ? .
o0 000 g S (1-p)" dp
0 0
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1-Q

qL (-dq) L+1 |1
= ] = ——_-_.Q__L+ ]- =
0 L+] ll -
S qL (-dq) %IT“ 0
|
1 -t
[+ L+ _
] .
[+
= 1 - (1)t . (9)

This is, then, the confidence we should have that in the Tong run
the fraction of samples which we will get which will be interesting
is less than or equal to Q.

19. (L=L and M = L.) Application of the Symmetry Theorem to this
result permits us to write immediately, as our second general example,

CO-F,1,L,L) = 1 - (1-p)LH]

This example is especially interesting from the viewpoint of the
reliability tester. For if F is the maximum tolerable failure ratio,
or perhaps the greatest tolerable chance of computer malfunction as

a2 result of pulsing being administered by the third experimenter

(cf. paragraph 6, above), and if all tests so far have resulted in
successes (non-failures), then this expression gives the confidence
one should have that the "true" success rate is 1-F or better, i.e.,
that the true failure rate is F or less. If we let R, for reliability,
be 1-F, then the equation of interest when test results have been
uniformly successful is therefore
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C(R,1,L,L) = 7 - gt . (10)

(This important fact may of course be deduced directly from equation

(4).)

20. (L =1andM=0.) Aspecial case of equation (9) arises when
it is possible to take only one sample, perhaps because occurrences
which qualify as samples are difficult to come by, and that sample

turns out not to lie in the region of interest. Then L =1 and
M = 0 and equation (9) reduces to
0(0,0,1,0) = 1- (™ = 1. (192 -
= 1- (204 ) -
= 20-¢° ;' . (11)

21. (L=1and M =1.) A second special case of interest which comes
to mind immediately is that in which only one sample can be taken and
that sample turns out to be of interest. Applying the Symmetry

Theorem to equation (11) yields at once that c(1-Q,1,1,1) = 2Q - QZ.

By equation (8) we have that €(0,1-Q,1,1) =1 - C(1-Q,1,1,1). Changing
variables by letting T = 1-Q, therefore, we obtain

(0,T,1,1) = 1 - (2q - Q%) =
= 1-20+0@ =
= (1-0° -

- 72

As with equation (10), this result may of course be had immediately
from equation (4):
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C(O’Q:]a]) ‘? =

= Q

This simple result is worth bearing in mind for those frequent
occasions in everyday 1ife when one is tempted "to generalize from
one data point". One can draw conclusions in such instances, and
such results as this enable one to assess how sure he should be of
such conclusions. For example, perhaps you are thinking of moving

to a new town, but someone has just told you there was signficant
earthquake activity in that area last year. If this is all the in-
formation you have on the occurrence of earthquakes in that area, then
you may still draw some quahtitative conclusions about the percentage
of years in which significant earthquake activity occurs in that area
over a period of time long enough to get a reasonable average but
short enough so basic geological conditions relevant to earthquakes
in that area do not change appreciably (e.g., so the town does not
get replaced by an ocean). In particular, you can conclude on the
basis of this fact about one year that the fraction of years in which
significant earthquake activity occurs in the area is less than or
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equal to Q (say %J with confidence QZ (25% if Q = %). Thus you can
be 25% confident that the probability is not more than 50% that one
Or more significant earthquakes will occur in the area of the town
next year (while you are there!). (Note that we assumed you had
only the one fact at your disposal, and therefore that you were
ignorant of ideas of earthquake periodicity, relaxation's preventing
immediate recurrence, etc.)

22. (L=1L and M = L-1.) For the third general example consider
again the case in which this theory is being applied to reliability
testing. Usually in reliability testing one expects, at least at the
beginning of the testing, that "most" of the samples will pass the
test, or, in the case of our third experimenter, that the computer
Will not malfunction on most of the pulses. Perhaps failures occur
Just often enough so we know they are possible, perhaps just once in
the test series. Then if we let the successes be the occurrences of
interest, i.e., M = L-1, we may calculate

1 ]
g pt-1 (1-p)L-(L-1) dp S pt! (1-p) dp
C(R,1,L,L-1) = —R =

I

0
! ]
L-1_1
S (P~"'-p") dp (25- L+1)
R .\ _
1 L L+] 1
| ot1oh o (f" m) l
0 0
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1-RL 1-RL+]

. LI - (L) (1-RY)-L (1R
T ] T+T-0
L~ [+7T
= (L)(-rh) - LRy - (12)
= M LRt 4 . 03)

This gives our confidence that the actual fraction of successes in an
infinitely large random sample would be greater than or equal to

R. Looked at another way, this is the confidence we should have that
the probability is R or better that our next independent random sample
will be a success (i.e., non-malfunction, non-failure, within the
region of interest). Thus, this is the third exper1menter s confidence
in the reliability R of his computer after one malfunct1on in L tests,
where by reliability we mean simply the minimum actual success ratio.
(Cf. paragraph 19, above, for another case of interest in reliability
testing.)

23. (L=2andM=1.) A special case of this general example (our
third special case so far) arises when two samples have been taken
and the "ambiguous" results have been observed that “one sample has
gone each way". ThenL =2 and M = 1. Applying the Symmetry Theorem
to equation (12), and letting Q = 1-R, so that R = 1-Q, we have

€(0,Q,L,1) = (L+1)g- - Lot*!
Therefore
c(0,0,2,1) = (2+1)% - 202"
= 302 - 203 .
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(As usual, of course, this result could have been had directly from

equation (4).) In particular, for Q = %—we would have C(0 ] 2,1) =

’é')
= 3(%)2 - 2(%)3 = %-- % = %-. This is the result we would expect,

either from intuition or from the Symmetry Corollary (cf. equation (6)).

24. (L=5adM=4.) To give a somewhat more realistic specific
numerical example (our fourth special case), let us calculate the
confidence he would have if the third experimenter had performed five
tests in which he had observed a malfunction only one time, and if

he were interested in a reliability of 65%. Then he would have L = §
M=4, and R = .65. Applying equation (13),

»

C(.65,1,5,4)

5(.65)°"1 - (5+41).655 + 1. =

= 5(.65)% - 6(.65)5 « -

= 5(.07541889062) - 6(.1160200625) + 1. =
= .3770944531 - .6961743750 + 1. =

= 1. - .3190799219 =

.6809200781 . (14)
That is, after one malfunction in five tests the experimenter would be
Justified in having a confidence of 68.092% in computer reliability of
65%. (The reader may be interested in comparing this result with that
of a very similar example given in paragraph 9 of the earlier note,
cited above, on confidence in finite sample spaces.)

25. Numerical integration digital computer programs to calculate
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C(pl.pz,L,M) directly from equation (4) may easily be written for
arbitrary values of the parameters P1s Py L, and M. More importantly,
the reader should note that equation (4) may be reduced to such forms
as equation (13) "on the back of an envelope" and then, for modest
values of L, say 10 or 15 or S0, may be evaluated in a matter of
moments with the aid of a standard desk top electronic calculator.
This is how evaluation (14) was done. Thus if the population size

is very large, even though not infinite, it may be worth while to

use equation (4) in this note as an approximation of equation (4)

in the earlier note, cited above, simply because the calculation

may then be done with tools which are more readily available.
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