RADIATION PROJECT PROGRESS REPORT NUMBER 14

A TWO-DIMENSIONAL, TIME-DEPENDENT, COMPUTER STUDY OF THE LOW-VOLTAGE, PARALLEL-PLANE DIODE

by

P. B. Ulrich

Electron Beams Branch
Plasma Physics Division

12 August 1969

Naval Research Laboratory
Washington, D. C.
A TWO-DIMENSIONAL, TIME-DEPENDENT, COMPUTER STUDY
OF THE LOW-VOLTAGE, PARALLEL-PLANE, DIODE

by

Dr. Peter B. Ulrich

12 August 1969

I. INTRODUCTION

The low-voltage, parallel-plane diode has been studied as a computer code check preliminary to a full relativistic treatment which is of ultimate interest. A one-dimensional, time-dependent study has been reported elsewhere.\(^1\) The next step in this development will be the addition of self magnetic fields at moderate energies before including, finally, the relativistic equations of motion.

II. GREEN'S FUNCTION

The method employed to take account of the particle interactions is the particle-in-cell approximation.\(^2\) One must calculate, therefore, a table of Green's functions for each mesh point, each table entry being due to an assumed unit charge in each cell. In the two-dimensional cylindrically symmetric case, we are dealing with rings of charge. If we consider the "walls" of the diode to be infinitely far away we can calculate the inter ring force for free rings. We then take into account the conducting planes at anode and cathode by the method of images.
Consider the potential at \(r, z \) of a uniformly charged ring, radius \(r' \) at \(z' \) (see figure 1).

\[
\Phi(r, z) = \frac{Q}{\delta n^2 \varepsilon_o} \int_0^{2\pi} \frac{d\phi'}{\sqrt{r'^2 + z'^2 - 2rr' \cos \phi'}}
\]

where \(a = \sqrt{r^2 + z^2} \) and \(\cos \psi = \cos \phi' \cos \phi \).

But, \(\phi = \cos^{-1} \left(\frac{r}{\sqrt{z^2 + r^2}} \right) \), so

\[
\Phi(r, z) = \frac{Q}{\delta n^2 \varepsilon_o} \int_0^{2\pi} \frac{d\phi'}{\sqrt{r'^2 + z'^2 + r^2 - 2rr' \cos \phi'}}.
\]

Let \(\alpha^2 = 4rr'/(z-z')^2 + (r+r')^2 \). Then,

\[
\Phi = \frac{-2Q\alpha}{\delta n^2 \varepsilon_o \sqrt{rr'}} \int_0^{\pi/2} \frac{d\phi}{\sqrt{1 - \alpha^2 \sin^2 \phi}}.
\]

Thus

\[
E_r = -\frac{\partial \Phi}{\partial r} = \frac{Q}{4\pi^2 \varepsilon_0 r \sqrt{(r+r')^2 + (z-z')^2}} \left\{K(\alpha) - \frac{[r'^2 - r^2 + (z-z')^2]}{(r-r')^2 + (z-z')^2} E(\alpha)\right\}
\]

and

\[
E_z = -\frac{\partial \Phi}{\partial z} = \frac{Q(z-z')}{2\pi^2 \varepsilon_0 \sqrt{(r+r')^2 + (z-z')^2}} \frac{E(\alpha)}{(r-r')^2 + (z-z')^2}
\]

where \(K(\alpha) \) and \(E(\alpha) \) are the complete elliptic integrals of the first and second kind, respectively

\[
K(\alpha) = \int_0^{\pi/2} (1 - \alpha^2 \sin^2 \phi)^{-1/2} d\phi,
\]

\[
E(\alpha) = \int_0^{\pi/2} (1 - \alpha^2 \sin^2 \phi)^{1/2} d\phi.
\]
These are approximated as follows\(^{(3)}\). Let \(\beta = 1 - \alpha^2 \), \(\gamma = \alpha^2 \log \theta \). Then

\[
K(\alpha) \approx 1.38629436 - 0.5\gamma + \beta(0.1119697 - 0.1213486\gamma + \beta(0.07253230 - 0.02887472\gamma)).
\]

and

\[
E(\alpha) \approx 1.0 + \beta(0.4630106 - 0.2452740\gamma + \beta(0.1077857 - 0.04125321\gamma)).
\]

To take account of the conducting planes at cathode and anode we must superimpose a series of charges to give zero potential at these planes. One finds that, assuming a negatively charged ring as the primary source at \(z_s \), there will be positive images at \(2nD - z_s \) and negative images at \(2nD + z_s \) where \(D \) is the cathode-anode spacing and \(n \) runs through all integers, positive, negative, and zero.

We ran some tests for various combinations of source point and field point to determine how many images are necessary to adequately determine the fields. The results are given graphically in figure 2 and indicate that 20 images are sufficient.

III. INITIAL CONDITIONS AND THE INJECTION SIMULATION

In order to simulate a hot cathode we give the injected rings a temperature as follows. We assume a Maxwellian distribution in \(v_r \) and \(v_z \)

\[
f(v) = \frac{mv}{kT_e} \exp \left(-\frac{mv^2}{2kT_e} \right).
\]

We have at our disposal a random function generator, RANF, which gives, by repeated calls, a set of numbers \(\{R_i\} \) uniformly distributed between zero and 1. In order to transform this set to a set distributed according to \(f(v) \) we form the cumulative distribution function\(^{(4)}\)

\[
F(v) = \int_{0}^{v} f(v) \, dv
\]
which gives the probability that a ring have velocity \(v \) or less. We can specify the ring velocities by solving

\[
R_1 = F(v_1)
\]

for \(v_1 \). Reference to figure 3 indicates how a set of uniformly spaced points on the \(y \) axis projected through the curve \(F(v) \) gives a set of points on the \(x \) axis distributed according to \(f(v) \). Attention must be paid to the fact that, whereas the \(r \) velocities can be negative and positive, the \(z \) velocities are positive only.

A similar approach is used to insure a constant-density emitting area. Note that we have specified that the rings have equal charges. Thus, if we were to give a uniform random distribution of rings at the cathode we would have in fact specified a beam with a high-density core. Thus, we want

\[
f(r) = 1 \quad 0 \leq r \leq 1
\]

\[
\frac{1}{\pi} \int_0^{2\pi} \int_0^r f(r) \, r \, dr \, d\theta = r^2 = F(r)
\]

where we have normalized so that \(r=1 \) when the random number generator produces \(R_1 = 1 \). Figure 4 graphically indicates the solution of \(R_1 = F(r_1) \) for the initial radial coordinates \(r_1 \).

Although we inject a fixed number of rings per iteration and the iterations are separated by a fixed time difference, we can, nevertheless, simulate random injection times as follows. We specify the average number of electrons, \(n_{\Delta t} \), emitted in the time interval, \(\Delta t \), between iterations. The probability that \(s \) electrons will be emitted in \(\Delta t \) is given by the Poisson distribution

\[
f(s) = \frac{e^{-n_{\Delta t}}(n_{\Delta t})^s}{s!}.
\]
The cumulative distribution function is then

\[F(s) = \sum_{t=0}^{s} f(t). \]

Now, to simulate random injection we generate a random number \(R \) and compare it with \(F(s) \). If \(F(s'-1) \leq R < F(s') \) we generate \(s' \) additional random numbers \(\{ R'_i \} \). We would like to take the injection times to be at \(R'_i \Delta t \), \((i=1,..,s')\). But, for simplicity, we assume all particles injected at the same time but at varying small distances in front of the cathode given by \(z_i = R'_i \Delta v_i \) where \(v_i \) is the initial velocity of the ith electron.

IV. ELECTROSTATIC FOCUSING

The beam being studied is a finite cylinder of charge which expands along its length due to space charge repulsion. This expansion makes it difficult to compare quantitatively with the theory of the parallel-plane diode. There exists a method\(^5\), however, by which one can force the finite beam into laminar flow perpendicular to the electrodes. This gives the effect of an infinitely wide beam.

It is well known\(^6\) that the potential variation with distance in a planar diode is given by

\[V = Az^{4/3} \]

where \(A \) depends on the anode current. One also has

\[\frac{\partial V}{\partial r} = 0 \]

everywhere.

The desired potential distribution external to the beam is found from Laplace's equation. If an analytic solution can be found, then the real and imaginary parts of this solution are also solutions. Thus,
let \(z = z + ir \) (\(r \) measured from beam edge) so we have

\[
\varphi + i\psi = A(z + ir)^{4/3}.
\]

Hence

\[
\varphi = A(z^2 + r^2)^{2/3} \cos \left[\frac{4}{3} \tan^{-1} \frac{r}{z} \right].
\]

Thus there is a zero potential along a line passing through \(z = 0 \) and making an angle \(\frac{2}{3}(\pi/2) = 67.5^\circ \) with the beam edge. If an electrode at cathode potential is placed along this equipotential then the fields external to the beam will be such that the electrons will flow as if they were part of an infinite laminar beam. This is called the "Pierce Electrode". (5)

The existence of such an electrode is accommodated in two ways. First we note from figure 5 that if a ring arrives in region II an image will be produced in the Pierce electrode. The image of this image will be produced in the anode. Furthermore, if the ring also has \(r > b \) (not likely if the Pierce electrode works) we no longer have to take into account the infinite sequence of images in anode and cathode.

A more profound effect of the electrode is the distortion of the field lines from their formally rectilinear array. Consider the polar coordinate system in figure 6. Suppose the potential at the point \(R, \rho \) is

\[
v = R^p \sin \rho
\]

which is the correct conformal mapping for our problem if we set \(p = \pi/(\theta_o + \pi/2) \), for then \(u = 0 \) at \(\rho = 0 \) and \(\phi = \theta_o + \pi/2 \). The direction of the field at the point \(R, \rho \) is then

\[
\varphi = \tan^{-1} \left(\frac{\partial v}{\partial r} \right) = \frac{z \cos \rho - (b-r) \sin \rho}{z \sin \rho + (b-r) \cos \rho}.
\]

Along the field lines we have \(|E| = -V_0/D \). Hence

\[
E_r = \left(-\frac{V_0}{D}\right) \sin \phi
\]

6
and

$$E_z = \left(-\frac{V_o}{D}\right) \cos \phi.$$

This is true near the cathode. Near the anode the fields are still rectilinear. We add the curvature in ever increasing amounts as we pass from anode to cathode.

V. RESULTS

Figure 7 is a plot of the ring positions after equilibrium sets in for the case of a non-zero temperature and no Pierce electrode. Figure 8 indicates the result of installing a Pierce electrode. In order to better compare with Langmuir-Child theory we set the r-temperature to zero while leaving the z-temperature non zero, and the flow is shown in figure 9. The plot of potential versus distance is shown in figure 10 and is compared with the Langmuir-Child formula. Figure 11 is a higher-temperature plot to show the position of the potential minimum more clearly. Figure 12 shows the anode current versus time and compares the equilibrium value with the Langmuir-Child value. Figure 13 is a graph of the total number of rings in the system at any time. The equilibrium is maintained by removing those rings which are turned back to the cathode and those which reach the anode. The Pierce electrode drives all rings away from the extreme edge (in the r-direction) of the mesh so all particles passing through the potential minimum eventually make it to the anode.

Table I gives the parameters of the problem. The appendix contains the program listings.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode Potential</td>
<td>10 Volts</td>
</tr>
<tr>
<td>Thermal Potential</td>
<td>0.1 and 0.5 Volts</td>
</tr>
<tr>
<td>Charge per Ring</td>
<td>(-1.6 \times 10^{-17}) Coulombs</td>
</tr>
<tr>
<td>Mass per Ring</td>
<td>(9.1 \times 10^{-29}) Kilograms</td>
</tr>
<tr>
<td>Anode-Cathode Spacing</td>
<td>(1.852 \times 10^{-3}) cm</td>
</tr>
<tr>
<td>Emission Radius</td>
<td>(1.32 \times 10^{-3}) cm</td>
</tr>
<tr>
<td>Maximum Number of Particles Available</td>
<td>1500</td>
</tr>
<tr>
<td>Number of Cells: (r) direction</td>
<td>7</td>
</tr>
<tr>
<td>Number of Cells: (z) direction</td>
<td>7</td>
</tr>
<tr>
<td>Time Step per Iteration</td>
<td>(2 \times 10^{-12}) seconds</td>
</tr>
<tr>
<td>Angle of Pierce Electrode</td>
<td>67.5° and 90° (no electrode)</td>
</tr>
<tr>
<td>Average Number of Rings Injected per Time Step</td>
<td>50</td>
</tr>
</tbody>
</table>
REFERENCES

FIGURE CAPTIONS

Figure 1 Geometry for calculating field at \((r,z')\) due to ring of charge, radius \(r'\), at \(z'\).

Figure 2 Plots of \(E_x\) and \(E_y\) for 5 different dispositions of ring source and field point versus number of images in cathode and anode plane.

Figure 3 Cumulative distribution function for Maxwellian velocity distribution (from Tien and Moshman, JAP 27, 1067, (1956) Fig. 10).

Figure 4 Cumulative distribution function for uniform distribution of emitted current due to rings of equal charge.

Figure 5 Image forces in Pierce electrode for rings for which \(\tan^{-1} b-rs/zs < \pi/2-\theta_0\).

Figure 6 Geometry for calculating field direction in neighborhood of cathode with a Pierce electrode.

Figure 7 Plot of ring positions for case of \(r\)-temperature of 0.1 Volts and no Pierce electrode.

Figure 8 Plot of ring positions for case of \(r\)-temperature of 0.1 Volts with Pierce electrode at 67.5° with respect to beam edge.

Figure 9 Plot of ring positions for case of zero \(r\)-temperature with Pierce electrode at 67.5° with respect to beam edge.

Figure 10 Plot of \(V(z)\) versus \(z\) showing depression of potential due to virtual cathode formation. Temperature = 0.1 Volts.

Figure 11 Plot of \(V(z)\) versus \(z\) for high temperature \((V_m = 0.5\) Volts) bringing virtual cathode out near first mesh point.

Figure 12 Plot of anode current versus time and comparison with temperature corrected Langmuir-Child value.

Figure 13 Plot of number of rings in diode versus time showing equilibrium between those injected at cathode and those lost to anode or returned to cathode by space-charge cloud.
\(\theta_0 = \text{Pierce Angle} \)

\[\tan \frac{b-r_s}{z_s} < \frac{\pi}{2} - \theta_0 \]

\[\tan \frac{b-r_s}{z_s} > \frac{\pi}{2} - \theta_0 \]

RING AT: \(r_s, z_s \)

IMAGE AT: \(r_i = 2d \sin(\pi/2 - \theta_0) + r_s \)
\[lz_i = 2d \cos(\pi/2 - \theta) - z_s \]

WHERE
\[d = \sqrt{(b-r_s)^2 + z_s^2} \sin[\theta_0 + \tan^{-1}(\frac{b-r_s}{z_s})] \]

Figure 5
$\theta_0 = \text{PIERCE ANGLE}$
PARTICLE POSITIONS AT TIME T = 7.80000e-011

NO PIERCE ELECTRODE
TEMPERATURE = 0.1 VOLTS

V₀ = 10 VOLTS

ANODE

CATHODE

Figure 7
Particle positions at time $t = 7,800,000$.

- $0,000,000$
- $5,000,000$
- $1,000,000$
- $1,500,000$
- $2,000,000$

$V_0 = 10$ volts

R-temperature = 0.1 volts

Pierce electrode

Anode

Cathode

67.5°

Figure 8
$V_T = 0.5$ VOLTS
$V_0 = 10.0$ VOLTS
$J_0 = 34$ amp/cm2
$z_m = 3.1 \times 10^{-6}$
$= 1.8 \times 10^{-6}$

Figure 11
Angle Current Density vs Time

\[J_0 = 2.33 \times 10^{-6} \left(V_0 - V_m \right)^{3/2} (D - z_m)^2 \left(1 + \frac{2.66}{\sqrt{V_0 - V_m}} \right) \]

= 34.36 amp/cm²

\(J_0 \) (Theory)
APPENDIX

Program Listing
PROGRAM TOODEE

TOODEE IS A TWO-DIMENSIONAL TIME-DEPENDENT CODE WHICH SIMULATES THE NON-RELATIVISTIC PARALLEL PLANE DIODE, THE MACROPARTICLES ARE CHARGED RINGS WHICH CAN MOVE LATERALLY BETWEEN CATHODE AND ANODE, THEY CAN EXPAND AND CONTRACT AS WELL, THE PARTICLES APPEAR AT THE CATHODE PLANE AT RANDOM TIMES, IN RANDOM AMOUNTS WITH A MAXWELLIAN DISTRIBUTION IN R- AND Z-VELOCITY, PARTICLES WHICH REACH THE ANODE OR ARE RETURNED TO THE CATHODE ARE SAVED FOR LATER USE; THIS PERMITS LONG RUNS WITH A MODEST EXPENDITURE OF MEMORY.

DIMENSIONED VARIABLES

Z,R PARTICLE COORDINATES
ZPR,RV PARTICLE VELOCITIES
EZX,ERS TWO-DIMENSIONAL TABLES OF FIELDS
FIRST ARGUMENT=FIELD POINT(MESH POINT)
SECOND ARGUMENT=SOURCE POINT(WITHIN CELL)
ER,EZ NET FIELDS AT MESH POINTS
VACUUM SUM OF SPACE CHARGE AND EXTERNAL FIELDS
EXT EXTERNALLY APPLIED FIELD
ZR STORAGE FOR PARTICLE POSITIONS AT LAST ITERATION - USED TO TEST FOR ANODE CROSSING ETC
EB STORAGE FOR NUMBER OF PARTICLES CROSSING ANODE PLANE PER ITERATION
ZM,RM MESH POINT COORDINATES
ZS,RS CELL COORDINATES
X,V USED FOR PLOT OF VOLTS VS X
TT USED IN PLOT OF ANODE CURRENT VS TIME
CHAR CHARACTER TABLE FOR PLOTTING

COMMON A,B,D,VZERO,VTHERM,OZETA,NSTEP,TSTEP,Q,HEIGHT,T,THER
COMMON/Z,Z(2500),EZ(2500),R(2500),RP(2500)
COMMON/FIELD,EZX(64,49),ERS(64,49),ERV(64),EZ(64),EEXTZ(8,8),
1 EEXTB(8,8)
DIMENSION ZR(2500)
DIMENSION BB(500),RM(8),RZ(7),ZM(8),ZS(7)
DIMENSION X(11),V(11)
DIMENSION TT(500)
DIMENSION CHAR(50)
DIMENSION PR(500),PI(50)

CARDS READ

CARD 1
VZERO EXTERNAL TUBE VOLTAGE - VOLTS
D ANODE-CATHODE SPACING - METERS
VTHERM THERMAL VOLTAGE - VOLTS (CATHODE TEMPERATURE)

CARD 2
0
B
WEIGHT

CARD 3

NP
NZ
NR
NSTEP
\Delta \eta, TSTEP

CARD 4

NCATH

CARD 5

NPL0T

CARD 6

CHAR(I)

CARD 7

THETA

READ 80, VZERO, D, VTHRM
FORMAT(6E10.3)
READ 81, Q, D, WEIGHT
FORMAT(4E10.3)
READ 82, NP, NZ, NR, NSTEP, \Delta \eta, TSTEP
FORMAT(4(5I15,2E10.5))
PRINT 83, VZERO, VTHRM, Q, D, WEIGHT, NP, NZ, NR, \Delta \eta, NSTEP, TSTEP
FORMAT(7H1VZERO=E12.5/8H VTHRM=E12.5/3H Q=E12.5/13H D=E12.5/3H R=E12.5/8H WEIGHT=E12.5/4H NP=15/4H NZ=15/14H NR=15/27H \Delta \eta=E12.5/7H NSTEP=12/7H TSTEP=E12.5///)
READ 65, NCATH
FORMAT(5I15)
PRINT 84, NCATH
FORMAT(39H AVERAGE NUMBER OF INJECTED PARTICLES =15)
READ 85, NPL0T
M=1
T=0,
READ 300, (CHAR(I), I=1,50)
FORMAT(50A1)
READ 86, THETA
FORMAT(4E10.3)
C INITIALIZE PLOT
CALL PLOT(1,61,50,,0,)
DO 301 I=1,50
CALL PLOT(2,1,CHAR(I))
A&D
B=1, E=7,
RANG=0,
NAMEDE=0

C CELL DIMENSIONS, OR BY D4
DZ=D/FLGAT(NZ)
D=4/FLGAT(NR)

C SET UP MESH POINTS RM, ZM AND SOURCE POINTS RS, ZS
NR1=NR+1
NZ1=NZ+1
ZM(1)=0,

DO 11 J=2,NZ1
ZM(J)=DZ*FLGAT(J-1)-DZ/2,

11 DO 3000 J=2,NR1
RM(J)=FLGAT(J-1)*D

RS(J-1)=SQRIF(1,5*(RM(J-1)**2.+RM(J)**2.,)

3000 CONTINUE
PI=3.1415926

C ASSIGN ALL INITIAL VELOCITIES AND RADIAL POSITIONS
CALL INITIAL(DZ, NP, NCATH, U)
MS=0

C TOTAL NUMBER OF SOURCE POINTS
NS=NR*NZ

C TOTAL NUMBER OF FIELD POINTS
NF=NR1*NZ1
NF2=NF/2
PI=3.1415926

C CALCULATE FIELDS FOR DIODE WITH A PIERCE ELECTRODE
DO 4090 J=1,NZ1
DO 4090 K=1,NR1
IF(RM(K), GT, B) GO TO 4091

PHI=ATANF(ZM(J)/(B-ERM(K)))
GO TO 4092

4091 PHI=ATANF((ZM(J))+(B-ERM(K)))

4092 CONTINUE

RR=SQRIF(ZM(J)+ZM(J)+(B-ERM(K)))(B-ERM(K))
F=PI/THEITA/PI/2,
ARG=ATANF((ZM(J)+COS(PI)B-ERM(K)))*SINF(PI)B-ERM(K))/ZM(J)*
SINF(PI)B-ERM(K)+COS(PI)B-ERM(K))

IF(ZM(J), GT, D/2.) ARG=ARG+(D-ZM(J))/(D-ZM(J))
IF(RM(K), LE, U,) ARG=0,

EXTZ(J,K)=(*VZERO/D)*COSF(ARG)
EXTR(J,K)=(*VZERO/D)*SINF(ARG)

IF(J, LE, NZ1) EXTR(J,K)=0

4050 CONTINUE

EXTZ(1,6)=(*VZERO/D)*COSF(PI/4,-THEETA/2,)
EXTR(1,5)=(*VZERO/D)*SINF(PI/4,-THEETA/2,)

4060 FORMAT(6+EXTZ)
PRINT 1006
1006 FORMA((EXTZ(I,J), J=1,NR1), I=1,NZ1)
PRINT 1009
1009 FORMAT(6H EEX(R)
PRINT 1010, ((EESTR(I,J),J=1,NR1),I=1,NZ1)
1010 FORMAT(6(1X,E12.5))
C SET UP TABLE OF FIELDS AT EACH MESH POINT DUE TO SINGLE CHARGE
C IN EACH CELL
C PERMITTIVITY OF FREE SPACE FARDS/METER
EPS=8.85E-12
C0NST=-Q/(4.*P1*P1*EPS)
INDEX =0
DO 101 I1=1,N4
DO 101 I2=1,NK
MFS=MFS+1
MF=0
DO 100 I3=1,NZ1
DO 100 I4=1,NR1
MF=MF+1
E2S(MF,MS)=0,
ERS(MF,MS)=0,
ARG1=ATANF((B=RS(I2))/ZS(I1))
ARG2=P1/2*Y-THETA
IF(ARG1,LT,ARG2).INDCX=1
CALL FIELDS(ZM(13),ZS(I1),RM(14),RS(I2),EZ1,ER1,INDEX)
INDEX=0
C FIELDS ARE IN VOLS/METER3
ER1=ER1+CONST
EZ1=EZ1+CONST*2,
E2S(MF,MS)=EZ1
ERS(MF,MS)=ER1
100 CONTINUE
101 CONTINUE
C PRINT ARRAY OF FIELDS
DO 20 K=1,NF
PRINT 1011,K
1011 FORMAT(6H ERS(I,K))
PRINT 1010, (ERS(K,J),J=1,NS)
PRINT 1012,K
1012 FORMAT(6H EZS(I,K))
20 PRINT 1010, (EZS(K,J),J=1,NS)
C INITIALIZE STORAGE FOR TESTING ANODE CURRENT
DO 21 J=1,NP
21 ZK(N)=0(N)
C INITIALIZE STORAGE FOR CALCULATING ANODE CURRENT
DO 22 J=1,NSTEP
PR(J)=01
22 BB(J)=01
C NCOUNT WILL BE THE NUMBER OF PARTICLES LOST VIA ANODE OR CATHODE
NCOUNT=0
C KK WILL BE THE TOTAL NUMBER OF PARTICLES IN THE DIODE AT ANY TIME
KK=0
DO 1550 J=1,5Q
1550 PRINT 5000,KK,NQ
C INJECT IS AN ENTRY POINT IN ROUTINE INITIAL
C IT PUTS ON THE AVERAGE, NCAHT RINGS AT THE CATHODE PLANE
CALL INJECT(DZ,NP,NCATH,KK)
PRINT 5000,KK,NK,KK
SUBROUTINE FORMATEZIS
C GET OUT IF PARTICLE SUPPLY IS EXCEEDED
IF (KKK, GE, NP) GO TO 4003
C ACCEL COUNTS THE PARTICLES IN EACH CELL AND USES THE TABLE
C OF FIELDS, IT RETURNS WITH THE TOTAL NET FIELD AT EACH MESH POINT
CALL ACCEL(ZG, N, N, K, NCOUNT, NP, Z, NA)
C NCOUNT IS THE NUMBER OF RINGS LOST TO CATHODE AND ANODE
DO 140 N=1, KK
I=1, +N(N)/DR
J=1, +N(N)/DZ
C INTERPOLATION OF FIELDS WITH RESPECT TO POSITION OF PARTICLE
C IN EACH CELL
A1=(R(N)-RM(I))/DR
B1=1, +A1
C1=(Z(N)-ZM(J))/DZ
D1=1, +C1
L=1, +N(N)/NRI1
K=L+NRI1
C K AND Z ACCELERATIONS
RPP=RPP*(G/WEIGHT)
ZPP=D1*(A1*EZ(L+1)+B1*EZ(L)) + C1*(A1*EZ(M+1)+B1*EZ(M))
ZPP=ZPP*(G/WEIGHT)
C EUCLER INTEGRATION TO GIVE NEW POSITIONS AND VELOCITIES
R(N)=R(N)+DZETA*(RP(N)+0,5*ZETA*RPP)
Z(N)=Z(N)+DZETA*(ZP(N)+0,5*ZETA*ZPP)
RP(N)=RP(N)+DZETA*RPP*0,5
ZP(N)=ZP(N)+DZETA*ZPP*0,5
140 CONTINUE
C SECOND CALL TO ACCEL UPDATES THE VELOCITIES ONLY
CALL ACCEL(ZG, N, K, NCOUNT, NP, 1, NA)
KK=KK+NCOUNT
DO 150 N=1, KK
I=1, +N(N)/DR
J=1, +N(N)/DZ
A1=(R(N)-RM(I))/DR
B1=1, +A1
C1=(Z(N)-ZM(J))/DZ
D1=1, +C1
L=1, +N(N)/NRI1
M=L+NRI1
RPP=RPP*(G/WEIGHT)
ZPP=D1*(A1*EZ(L+1)+B1*EZ(L)) + C1*(A1*EZ(M+1)+B1*EZ(M))
ZPP=ZPP*(G/WEIGHT)
RP(N)=RP(N)+DZETA*RPP*0,5
ZP(N)=ZP(N)+DZETA*ZPP*0,5
C VELOCITIES NOW CORRECT
150 CONTINUE
C SKIP OVER NPLLOT ITERATIONS BETWEEN PLOTS
M=KRM/NPLLOT
MM=KRM*NPLLOT
IF (KRM, NE, HH) GO TO 999
C INITIALIZE VOLTAGES
DO 4 J=1, MM
V(J)=0,
CONTINUE
C POP IS AN ENTRY POINT IN ACCEL - IT PRINTS THE CELL DENSITIES
CALL POP
C INTEGRATE THE FIELD ON THE AXIS TO GET THE VOLTAGE
V(1)=0
DO 5 J=1,NZ1
K=J*NK+1
V(J+1)=V(J)+EZ(K)*DZ
5 CONTINUE
D V=V(NZ1)-VZERO
DO 304 J=2,NZ1
304 V(J)=V(J)-Dv
DO 305 J=1,NZ1
X(J)=DZ*FLOAT(J-1)
C VOLTAGE PLOT
303 CALL PLOT(3,4,V(J),X(J))
PRINT 201,T
501 FORMAT(2H1VOLTAGE ON THE AXISS Z AT T=E12,5)
CALL PLOT(4,0)
C PLOT OF R VS Z FOR EACH PARTICLE IN DIODE REGION
DO 4010 J=1,KN
4010 CALL PLOT(3,4,R(J),Z(J))
C PUT THIS POINT IN ARRAY TO BE PLOTTED TO INSURE THAT WHOLE DIODE
C APPEARS IN THE PLOT
X=0
Y=2*Z
CALL PLOT(3,4,Y,X)
PRINT 202,T
502 FORMAT(2H1PARTICLE POSITIONS AT TIME T=E12,5)
CALL PLOT(4,0)
999 CONTINUE
PR(KK+1)=KK
BB(KK)=AA
PRINT 305,BB(KK)
305 FORMAT(2H1BB=E10,3)
C FORM DENSITY VS R
IF(KK,LTV10) GO TO 1000
PK=0/10,
DO 1500 J=1,KK
IF(Z(J),LTV5) GO TO 1500
K=1,*(1/J)/KK
PU(K)=PJ(K)+10,*(Q/(2,PI*Y*R(J))
1500 CONTINUE
C UPDATE TIME AND RETURN FOR NEXT ITERATION
1000 T=T+TSTEP
DO 24 J=1,NSTEP
C MAKE A CURRENT DENSITY IN AMPS/CM**2 USING AVERAGE RADIUS
BB(J)=BB(J)*U/(TSTEP*PI*D*B*10000)
TI(J)=TSTEP*FLOAT(J)
C PLOT ANODE CURRENT DENSITY VS TIME
24 CALL PLOT(3,4,BB(J),TI(J))
PRINT 500
500 FORMAT(2H1ANODE CURRENT DENSITY VS TIME)
CALL PLOT(4,0)
GO TO 4005
4005 PRINT 4064
DO 1501 J=1,NS1P
CALL PLOT(3,4,PR(J),TT(J))
PRINT 1502

DO 1503 J=1,10
Q(J)=J
TT(J)=Q(J)/10;
CALL PLOT(3,4,PJ(J),TT(J))
PRINT 1504

FORMAT(31H1DENSITY VS R , ARBITRARY UNITS)
CALL PLOT(4,0)
RETURN
END
SUBROUTINE INITIAL(DZ,NP,NCA\NTH,KK)

A CALL TO INITIAL PROVIDES AN INITIAL MAXWELLIAN DISTRIBUTION
OF VELOCITIES ZP,RP AND A RANDOM DISTRIBUTION IN R OUT TO R=B.
IT ALSO CALCULATES A TABLE G, WHICH GIVES THE CUMULATIVE
DISTRIBUTION FUNCTION FOR AN ASSUMED POISSON DISTRIBUTION OF RINGS
EMITTED IN THE INTERVAL TSTEP AT AN AVERAGE OF NCA\NTH PER TSTEP.
FOR DETAILS OF THE CALCULATION SEE 1.
TIEH AND MOSHMAN, JAP, 27, 1066, 1956

COMMON /ZZ/Z(2500),ZP(2500),R(2500),KP(2500)
COMMON A,B,G,VZERO,VTERM,DZETA,NSTEP,TSTEP,0,WEIGHT,T,THETA
DIMENSION F(150),G(150)
G=ABS(F(0))
DO 1 J=1,NP
R=VTERM(NP,1)
F(J)=B*SORTF(X)
X=RANF(J,1)

C CONVERGES A UNIFORM RANDOM DISTRIBUTION TO A MAXWELLIAN DISTRIBUTION FOR THE R- AND Z-VELOCITIES.
K=J/2
K=2*K
IF(K.EQ.1) GO TO 50
SIGN=1,
GO TO 60
50 SIGN=-1
60 CONTINUE
X=2*R
R=VTERM(X,1)
G=ABS(F(X))
IF(K.EQ.1) GO TO 55

C POISSON DISTRIBUTION WITH AVERAGE=NCA\NTH
F(K)=EXPF(-NCA\NTH)*(NCA\NTH**K)/K!
G=1

C CUMULATIVE DISTRIBUTION FUNCTION
DO 5 K=1,150
G(K)=G(K)+F(K)
5 CONTINUE
PRINT 7,G(K)
FORMAT(12,5)
}
5 CONTINUE
G(150)=1,
Q=0
GO TO 15
ENTRY INJECT
C
C**C
C A CALL TO INJECT CALCULATES THE NUMBER OF PARTICLES TO INJECT BY
C COMPARING A RANDOM NUMBER WITH THE CUMULATIVE DISTRIBUTION FUNCTION G. IT THEN GIVES THIS NUMBER OF PARTICLES RANDOM POSITIONS
C OVER THE DISTANCE TSTEP*ZP FOR EACH PARTICLE. THIS SIMULATES
C RANDOM INJECTION IN TIME.1
C**C
C
X=RANF(*1)
DO 10 J=2,150
IF(X,LT,G(J),AND,X,GE,G(J+1)) GO TO 11
10 CONTINUE
11 KKJ=KK+J
KK1=KK+1
PRINT 20,J
20 FORMAT(1H NUMBER OF INJECTED RINGS THIS TIME STEP=15)
DO 12 M=KK1,KKJ
C SIMULATE RANDOM TIMES OF INJECTION OF THESE J PARTICLES
12 Z(M)=RANF(*1)*TSTEP*ZP(M)
14 KK=KKJ
15 RETURN
END
SUBROUTINE FIELDS(Z1,Z2,R1,R2,EZ1,EN1,INDEX)

C***
C A CALL TO THIS ROUTINE PROVIDES THE Z-FIELD, EZ1, AND THE R-FIELD ER1, AT POINT Z1,R1 DUE TO RING OF CHARGE AT Z2, RADIUS R2.
C THE METHOD OF IMAGES TOGETHER WITH THE FREE RING POTENTIAL
C IS USED TO TAKE ACCOUNT OF THE CONDUCTING PLANES AT Z=0 AND Z=D,
C 20 IMAGES ARE SUFFICIENT FOR EACH CONDUCTOR TO CONVERGE THE SUM
C OF THE IMAGE FIELDS TO THE CORRECT VALUE FOR ALL DISPOSITIONS
C OF FIELD POINT - SOURCE POINT IN THE DIODE
C***

C COMMON A,B,D,YZERO,YTERM,DZETA,NSTEP,TSTEP,Q,WEIGHT,T,THETA
PI=3.1415926
ER1=0.
EZ1=0.
IF(R2,GE,B) GO TO 100
RS=(R1*R2)**2.
RD=(ABS(R1-R2))**2,
NNN=20
DO 10 N=1,NNN
C POSITIVE IMAGES AT Z2+2*N*D FOR POSITIVE N
SIGN=1
JJ=1
ON=N+1
ZETA=Z1+2.*QN*D-Z2
13 ZETAB=(ABS(ZETA))**2.
ALF=R1*R2/(RS+ZETAB)
V1=ALF
U=ALF*L0GF(Y)
C COMPLETE ELLIPTIC INTEGRAL OF THE SECOND KIND
EE=Y**(-1.4630106-0.2452740*U+V*(0.1077957-0.04125321*U))
C COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND
EK=1.3629436-5*U+V*(0.1119697-0.1234865*U)
1.0+V*(0.07253230-0.02867472*U)
BB=SQRT(RS+ZETAB)
ER1=ER1+SIGN*(EK-(R2**2-Z1**2,+(ZETAB)*EE/(RD+ZETAB)))/(R1*BB)
EZ1=Z1+SIGN*ZETA+EE/(BB*(RD+ZETAB))
GO TO (15,16,17,18),JJ
15 ZETA=Z1+2.*QN*D-Z2
C NEGATIVE IMAGES AT Z2+2*N*D-Z2 FOR POSITIVE N
JJ=2
SIGN=-1
GO TO 13
16 GN=N
IF(N,LE,NNN) GO TO 10
C POSITIVE IMAGES AT Z2+2*N*D FOR NEGATIVE N
SIGN=1
ZETA=Z1+2.*QN-D-Z2
JJ=3
GO TO 13
17 SIGN=-1
C NEGATIVE IMAGES AT Z2+N*D-Z2 FOR NEGATIVE N
ZETA=Z1+2.*QN-D-Z2
JJ=4
GO TO 13
10 CONTINUE
100 CONTINUE
IF(INDEX,NE,1) GO TO 11
BR2=ABSF(B-R2)
DD=SQRT((BR2)**2,*Z2**2.1)*SIN(THEA)*ATANF((B-R2)/Z2)
Z2=2.*DD*COSF(PI/2,*THEA)+Z2
RR=2.*DD*SINF(PI/2,*THEA)+R2
SIGN=+1
JJ=1
50 RS=(RR+R1)**2,
RD=(ABSF(R1-RR))**2,
ZETA=Z1-ZZ
ZETAB=ABSF(ZETA)**2,
ALF=4.*R1*RR/(RS*ZETAB)
V=1./ALF
U=ALF*LOGF(V)
C COMPLETE ELLIPTIC INTEGRAL OF THE SECOND KIND
EE=1.5*(V*4.630106-0.2452740*U+V*(0.1077857-0.12410241*U))
C COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND
EK=1.38629436-.5*U+V*(0.1119697-0.1213486*U
1.*V*0.07253230-.02887472*U))
BB=SQRTF(RS-ZETAB)
ER1=ER1+SIGN*(EK+(RR**2.*R1**2.+ZETAB)*EE/(RD*ZETAB))/(R1*BB)
E2=2.*Z1+SIGN*ZETA*EE/(BB*(RD-ZETAB))
GO TO (20,21),JJ
20 JJ=2
Z2=2.*D-ZZ
SIGN=-1
GO TO 50
21 CONTINUE
11 CONTINUE
IF(Z1,EQ,0) ER1=0,
IF(Z1,EQ,D) ER1=0,
RETURN
END
SUBROUTINE ACCEL(NZ,NR,KK,NCOUNT,NP,NN,NA)

A CALL TO ACCEL WILL CAUSE ALL CELL POPULATIONS TO BE COUNTED.
THE FORCES AT THE MESH POINTS WILL THEN BE AUGMENTED BY THE
AMOUNT THESE POPULATIONS HAVE CHANGED SINCE THE LAST ITERATION.

COMMON/ZZ/Z(2500),ZP(2500),R(2500),RP(2500)
COMMON/FIELD/EZS(64,49),EMS(64,49),ER(64),EZ(64),EEXTZ(8,8),
1EEXTR(8,8)
COMMON AB,0,VZERO,VTHERM,DZETA,NSTEP,TSTEP,Q,WEIGHT,T,THETA
DIMENSION LCOUNT(2000)
DIMENSION AA(30)
SIGN=1,
NR1=NR+1
NZ1=NZ+1

C INITIALIZE FIELDS
DO 10 I=1,NZ1
DO 10 J=1,NR1
K=(I-1)*NR1+J
EZ(K)=EEXTZ(I,J)
ER(K)=EEXTR(I,J)
10 CONTINUE

C NMN=NUMBER OF CELLS
NMN=NR*NZ

C INITIALIZE THE POPULATIONS AA
DO 11 K=1,NMN
AA(K)=0,
11 CONTINUE

C CELL SIZES
DZ=D/FLOAT(NZ)
DR=A/FLOAT(NR)

C NK WILL BE THE NUMBER OF PARTICLES RETURNED TO THE CATHODE
NK=0

C NA WILL BE THE NUMBER PASSING THE ANODE
NA=0

C NW WILL BE THE NUMBER HITTING THE WALL
NW=0

C NPHC WILL BE NUMBER HITTING PIERCE ELECTRODE
NPHC=0

CPP=NP

LK=1
GO TO (400,500)NN

400 CONTINUE

DO 20 I=1,KK

C COUNT THE PARTICLES IN CELL J,L
L=R(I)/DR+1
J=Z(I)/DZ+1

C IF PARTICLE I HAS RETURNED TO THE CATHODE, INDEX NK BY 1
IF (Z(I),LE,0) GO TO 21

C IF PARTICLE I HAS PASSED THE ANODE, INDEX NA BY 1
IF (Z(I),GE,0) GO TO 22

C IF PARTICLE I HAS A RADIUS GREATER THAN A, INDEX NW BY 1
IF (R(I),GE,A) GO TO 23
C IF PARTICLE I HAS R LESS THAN ZFRC, MAKE R POSITIVE
 IF(R(I),LT,0,0) R(I)=-R(I)
 IF(R(I),LT,0,0) RP(1)=RP(1)
C IF PARTICLE I HAS HIT PIECE ELECTRODE, INDEX NPRC BY 1
 IF(R(I),LT,B) GO TO 401
 PHI=ATAN(’(R(I)-B)/Z(I))
 IF(PHI,GT,THETA) GO TO 24

401 CONTINUE
 K=(J-1)*NR+L
 ADD TO POPULATION IN CELL J,L
 AA(K)=AA(K)+1
 GO TO 20

21 NA=NA+1
C LCOUNT GIVES NUMBER OF THE PARTICLE WHICH HAS BEEN REMOVED
 LCOUNT(LK)=1
 LK=LK+1
 GO TO 20

22 NA=NA+1
C LCOUNT GIVES NUMBER OF THE PARTICLE WHICH HAS BEEN REMOVED
 LCOUNT(LK)=1
 LK=LK+1
 GO TO 20

23 NA=NA+1
C LCOUNT GIVES THE NUMBER OF THE PARTICLE WHICH HAS BEEN REMOVED
 LCOUNT(LK)=1
 LK=LK+1
 GO TO 20

24 NPRC=NPRC+1
C LCOUNT GIVES NUMBER OF THE PARTICLE WHICH HAS BEEN REMOVED
 LCOUNT(LK)=1
 LK=LK+1
 GO TO 20

20 CONTINUE
 IMAX=LK
 IF(LK,EQ,1) GO TO 14
 JK=1

10 ISTART=LCOUNT(JK)
C IFINISH=NPP+1
C FILL IN THE GAPS LEFT BY THE REMOVED PARTICLES AND PUT THE
C REMOVED PARTICLES AT THE END OF THE LINE AWAITING INJECTION
 GO 12 I=ISTART,IFINISH
R(I)=R(I+1)
Z(I)=Z(I+1)
RP(I)=RP(I+1)
ZP(I)=ZP(I+1)
R(NPP)=RANF(-1)*8
X=RANF(-1)
C=Q
RP(NPP)=SQRT((2.*VTERM*Q/HEIGHT)*(-LOGF(’1,-X))*SIGN
RP(NPP)=0,
SIGN=SIGN
ZP(NPP)=SQRT((2.*VTERM*Q/HEIGHT)*(-LOGF(X)))
C=Q
JK=JK+1
 IF(JK,EQ,IMAX) GO TO 14
 GO 50 I=1,IMAX
 LCOUNT(I)=LCOUNT(I)+1

50 CONTINUE
GO TO 15
14 CONTINUE
GO TO 600
C WE JUMP TO 500 ON THE SECOND CALL TO ACCEL SINCE HERE ONLY
C VELOCITIES ARE AUGMENTED;
500 DO 30 I=1,KK
L=R(I)/DR+1
J=Z(I)/UZ+1
K=(J-1)*NR+L
AA(K)=AA(K)+1
30 CONTINUE
1 MAX=1
600 CONTINUE
C NNN=NUMBER OF CELL POINTS
NNN=NR1*NR1
C UPDATE FIELDS AT EACH CELL POINT USING NEW POPULATIONS AND
C THE ARRAY CONTAINING THE FIELDS DUE TO SINGLE SOURCES
DO 1 J=1,NNN
DO 2 K=1,NNN
EZ(J)=EZ(J)+EZS(J,K)*AA(K)
ER(J)=ER(J)+ERS(J,K)*AA(K)
2 CONTINUE
1 CONTINUE
GO TO (700,800)NN
700 CONTINUE
NCOUNT=1/NAX-1
C PRINT NUMBER OF PARTICLES RETURNED TO CATHODE, NUMBER PASSING
C ANODE, NUMBER STRIKING WALL, NUMBER STRIKING FERCE ELECTRODE,
C AND TOTAL LOST.
PRINT 100,NN,NK,NA,NW,NPHC,NCOUNT
100 FORMAT(2X,3H4K=15,2X,3H4N=15,2X,3H4K=15,2X,5H4PRC=15,2X,6H4TOTAL=15
1)
GO TO 1000
ENTRY POP
C CALL POP TO PRINT DENSITIES OF CELLS
PRINT 1012,T
1012 FORMAT(23H1CELL DENSITIES AT TIME,T)
PRINT 1001,(AA(K),K=1,NNN)
1001 FORMAT(10(1X,E11.4))
1000 CONTINUE
800 CONTINUE
RETURN
END