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Abstract

In this note we consider the situation where the half toroid.is jo;ned
to a perfectly conducting'half space upon which the hemisphere rests. The
half toroid is modeled as anlinfiﬁitely thin semi-circular current loop.

We settle some subtle questions concerning the method of images and derive
three suitable image currents to solve for the magnetic field on the surface
of the hemisphere. This field is compared to the field which wouid exist in
the limit é/b > = where a is the radius of the half toroild and b is the
radius of the hemisphere. In this limit the half toroid tends to simulate
the low frequency magnetic field corresponding to the electromagnetic pulse.

Plots are given which indicate the simulation-trade off one must accept with
a finite a/b. '




I. Introduction

In this note we consider the iInteraction of the half toroid simulator
with a perfectly conducting hemisphere situated on the ground. The geometry
of the simulator has been described in a previous notel. The center of the
henisphere coincides with the origin of our coordinate system as depicted in
figure l. In this figure the toroid is depicted as a half loop. The justi-
fication for this is that the major radius of the toroid is assumed to be
much larger than its minor radius. We are interested in the low frequency
interaction and consequently we assume that in this limit the simulator can
be represented by a constant current flowing in this half loop. We assume the
ground to be infinitely conducting in order to facilitate the analysis. The
conditions under which the finitely conducting ground can be considered
perfectly conducting are presently being studied. In summary, the problem
we will solve is that of the magnetostatic interaction of a constant current
half loop joined to a perfectly conducting half space with a perfectly conducting
hemisphere resting upon the half space. In particular we will solve for the
magnetic field on the surface of the hemisphere.

We perform this calculation in order to determine how the finite size
of the toroid limits its function as s simulator. We solve for the magnetic
field at any point on the surface of the hemisphere as a function of the
toroid's inclination angle El and the ratio of the toroid's radius to the
radius of the hemisphere, a/b. As a/b approaches infinity the toroid tends
to simulate the low frequency limit of the magnetic-field corresponding to
the electromagnetic pulse. One of our tasks is to determine the value of
a/b that allows us to come sufficlently close to the value of the limit within
a specified engineering accuracy. An important quantity which can be used to
decide the engineering value of a/b is the magnetic fileld deviation Dv' This
quantity is defined as the magnitude of the vector difference of the actual
total magnetic field and the limiting total magnetic field. The maximum, Dv’
occurs at the intersection of the plane of the loop, the surface of the
hemisphere, and the x-z plane which is the symmetry plane of the half loop.
For a fixed El and a/b the value of Dv does not appreciably deviate from the
maximum Dv along most of the intersection of the plane of the loop and the

surface of the hemisphere. For an inclination angle different from zero, the



value of DV along this intersection changes appreciably only near the point
where the loop joins the ground. This change 1s most pronounced for large
inclination angles. Thgﬁyglge;gﬁ_Dv does change significantly as we move
perpendicular away from the intersection curve.

The two other quantities which we study in this note are the spherical
components of the total magnetic field on the surface of the hemisphere. We
normalize these components with respect to the magnitude of the total surface
magnetic field which corresponds to the limit as a/b approaches infinity.
These quantities are plotted versus a/b with gl and the spherical angles ©
and ¢ as parameters. These plots show how the distribution of the field on
the hemisphere is affected by El and the ratio a/b.

Our method of solution is based on the method of images. The use of
this methed in electrostatics 1s straightforward; however, its application in
magnetostatics involves sublte points. To attack this problem we considered
a current element and studied its properties. A current element has a non-zero
divergence and does not satisfy the usual magnetostatic equation., To handle
this difficulty we modeled the current element in such a way that the fields
associated with it satisfy the time-dependent Maxwell's equation. It was
found that given the proper interpretation one can use the method of images
for a constant current element that has non-zero divergence. The details
concerning this point are presented in the appendix. Based on this result

we were able to apply the method of images to our problem.



II. Formulation

Using the method of images the magnetic field at any point is the sum of
the magnetic filelds caused by four semicircular current loops oriented as in
figure 2. The four semicircular current loops are derived as follows. First
we conslder the mirror images of the original half lcop and the hemisphere
with respect to the ground plane. The current of the image half loop is equal
to the current I of the original half loop and it flows in a way that preserves
current continuity. At this stage we have reduced our problem to that of the
interaction of a perfectly conducting sphere and a symmetrically bent loop of
radius a. Next we substitute the sphere by two image half loops that constitute
a symmetrically bent loop carrying a current &/b)I and having a radius b2/a where
b is the radius of the sphere. The flow of the current in this latter loop is
opposite to the flow of the curreht I. In figure 3 we define a Cartesian
coordinate system so that a typilcal current loop lies in the ui - u; plane and

i, ug) are also used. The

the corresponding cylindrical coordinates (Ai, 3]
superscript 1 ranges from 1 to 4 corresponding to each of the four loops. The
calculation of the magnetic field due to a particular loop in its own coordinate

system has been performed in a previous notez. The results for the normalized

magnetic field, h = (2a/I)H, are
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and E(p|q) anf F(p|q) are elliptic integrals defined so tﬁat

pts

E(p + 8|q) - E(p|q) = J (1 - ¢ sinzt)kdt (1)
P
pts

F(p + s{q) - F(plq) = [ (1 ~gq sinzt)_lidt (12)
p

The signs of 61, Yys 63 and Y3 determine the quadrant for the B8's as though
they were polar angles in §-y planes. When comparing (1), (2) and (3) to

the appropriate reaults in note 112 it is necessary to set Ai = )}/a and

Bi = u3/a where a 1s the radius of the semi-circular current loop. Before we
can add the magnetic fields due to the four current loops we must change the
normalized h's to the actual field components through the relation H =(I/2a)h,
1 is the magnitude of the DC current flowing in the semi-circular loop. The
current in the spherical image loop is a/b I and this factor must be accounted
for as well as the modified radius when adding the contribution of this loop. “'.
Taking these facts into account the procedure for adding the four loop
contributions will now be given. We define

h] = h: cos 8, - h; sin g, 1=1,2,3,4 (13)
h; - h; sin g, + hé cos B,  1=1,2,3, (14)
by = h} cos £, - Rystng,  i=1,2 (15)
h; - - n 1=1,2 (16)
b = by sin g, +hycos & 4= 1,2 (17)
hl=-hjcosg +hysing, 1=3,4 (18)
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hy = hl i= 3,4 (19
i i i ,
hz = h2 sin g, + h3 os £, i=3,4 (20)

and add these quantities in a manner which accounts for the different radii,

current strengths, and directions as follows:

. | a,2 2 3_ 2,24
hx = hX (b) hx + hx (b) hx 2n)
B 1 a2, 2 3 a2, 4
h =h_ = (D"h. +h. - (=h 22
y =Py T @Ry +hy - @y (22)
1 2,2, 2 3 a2 4
hz = hz (b) hz + hz - (b) hz (23)
We will present our results in spherical coordinates using the standard
relationships
h,=h sin 6 cos ¢ + hy sin & sin ¢ + h_cos © (24)
he = hx cos § cos ¢ + hy cos § sin ¢ - hZ sin @ (25)
h¢ = ~ hx sin ¢ + hy cos ¢ (2¢)

In this note we restrict our observation point to lie on the surface of the
hemisphere so that r = b and hr is calculated as a partial check of our
program as it must equal zero.

Before we describe our main results it is necessary to present the
limiting value of the magnetic field on the surface of the hemisphere as the
ratio a/b tends to infinity. In the limit h has only a 6 component which can
be shown to be given by

h. = =

“r
oL sin 6 cos £, 2"

o

. ' _ 2, 2%
The quantities of interest are he, h¢, and Dv = [(he - heL) + h¢] . In

graphically presenting our results we plot Ihe/heLl’ lh¢/h6Ll’ and D = Dv/|h8L|



versus a/b with parameters 6, ¢, and £1. The absolute magnitude symbol for
lhe/heLl is superfluous since the he and heL always have the same sign;
however, we will retain this symbol for the sake of uniformity. We also plot
D corresponding to Dv maximized over the sphere. This D, referred to as Dm,
is plotted versus a/b with only the inclination angle as a parameter.
Specifically we plot |h6/heL|’ |h¢/h6L|’ and D versus a/b at points on the hemisphere
for inclination angles 251/n = 0,.2,.5,.7 and .9. We also plot D versus
a/b for these inclination angles. In particular for the quantities lhe/heL‘,
|h¢/hBL" and D the spherical angles 8 and ¢ also serve as parameters. We
have selected 8 = n/20,%/4,1/2,3n/4 and 191/20 and for each 6, ¢ assumes
the values 0,7/6,%/3,71/2. We have not considered the values 6 = 0 or T
because all field components are zero irrespective of the value of 51 or
a/b. No negative values of ¢ are considered since our problem is symmetric
with respect to the xz plane. The plots of 'h¢/heLl do not appear for ¢
equal to 0 or n/2 or El = 0 because h, 1is zero for these cases.
The plots of |he/heL], |h¢/heLi
the hemisphere and for differemt simulator inclination angles the relative

, and D show how at different points of

gize of the simulator, a/b, limits the behavior of the simulator. The Dm plot
indicates a limitation which accounts for all observation angles on the hemisphere.,
Specifically the deviations of 1he/heL| from unity and [h¢/h6L|, D, and D from
zero indicate the simulation trade off ome must accept with a finite a/b.

@
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Table of Graphs

Figure Number Quantity plotted 8 coordinate of ¢ coordinate of
versus a/b with observation point observation point
E’l as a parameter on the hemisphere on the hemisphere

6 |hg/ny, | m/20 0
7 - . /6
8 . _ /3
9 _ . m/2
10 . /4 0
11 . . /6
12 . . m/3
13 _ . m/2
14 . /2 0
15 . _ /6
16 _ _ /3
17 _ _ /2
18 _ . 3n/4 0
19 _— _ /6
20 _ — m/3
21 _ —_ w/2
22 — 197/20 0
23 - — /6
24 — —_— /3
25 —_ — m/2
26 |h¢/haL| w/20 m/6
27 _ — /3
28 . /4 m/6
29 ___ — m/3
30 . /2 /6
31 _ _ /3
32 . 197w/20 /6
33 S —_— /3
34 _— 3n/4 /6
35 —_ —_— /3



Table of Graphs (continued)

Figure Number Quantity plotted ® coordinate of ¢ coordinate of
versus a/b with observation point observation point
El as a parameter on the hemisphere on the hemisphere

36 D w/20 0
37 . . /6
38 o — /3
39 . —_ /2
40 . /4 0
41 — _ /6
42 —_ - /3
43 — —_ /2
44 - T/2 0
45 _ - /6
46 — — /3
47 _ —_ /2
48 — 3r/4 0
49 - o /6
50 - _ /3
51 _ _— /2
52 —_ 191/20 0
53 — — /6
54 — — /3
55 — — /2
56 Dm * *
57 Dm * *

*
No single observation point is associated with Dm because it results from
a maximization procedure which allows 6 and ¢ to range over the entire

surface of the hemisphere.
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III. Discussion of Numerical Results

All of the plots contained in figures 6 through 56 converge to the values
one would expect. The observation points on the hemisphere cofresponding to
these plots are depicted in figure 5. When interpreting the data one might be
concerned that the rate of convergence to the limiting values with increasing
a/b 1s comparatively slow for observation points corresponding to 8 equal to
n/20 or 19m/20. This is especially true for the plots of |he/heL! and D versus
a/b. When interpreting these plots omne shquld be aware that IheLE is relatively
small for these observation angles, thus diminishing the significance of this
comparatively slow convergence. The same discussion is also pertinent for the
plots corresponding to 8 = /4 and 37/4 as compared to the pliots for 6 = m/2,

In figures 36, 40, 41, 43 and 44 certain plots contain sharp dips where

the value of D drops to zero. These dips only occur when h, = 0 and consequently

D= [1 - he/hGLl' As noted earlier hG/heL 1s always positiie, but we retained
the notion ‘he/hGLl when plotting this quantity for uniformity. By studying
the corresponding smooth plots of this quantity in figures 6, 10, 11, 14 and 15
we see that Ihe/heLI can equal one for finite values of a/b. We can understand
how this is possible by considering figure 15, When the observation point is
near the toroid then lhe/heLl is very large for small a/b while when the
observation point is far from the toroid then Ihe/heLl is small for small a/b. For
large a/b, Ihe/heLl approaches unity, independent of the observation point on
the hemisphere. This explains the extreme curves corresponding to 2£l/ﬂ equal
to 0 and .9, the first being monotonically decreasing to unity while the second
is monotonically increasing to unity. It is reasonable that an intermediate
value, ZEl/ﬂ = ,2, whould corresbond ©0o a transition from a decreasing function
to an increasing function which has a maximum that is greater than unity. It
should be noted that the steepness of the dips is greatly exaggerated by the

use of a logarithmic scale for the D plots.
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Appendix

In electrostatics the method of images has gailned considerable popularity
mainly because of its simplicity. By choosing suitable image charges we can
make the tangential component of the total electric field, along the surface
of a perfectly conducting body, equal to zero. This guarantees a unique solution.
In magnetostatics the boundary condition on the surface of a perfectly conducting
body is that the normal component of the magnetic field should be zero and the
choice of the image currents is dictated by this boundary condition. There
are situations, however, in which, as we shall see below, the boundary condition
is automatically satisfied independently of whether or not we introduce image
currents. Before proceeding with this difficulty, we would like to draw an
analogy between electrostatics and magnetostatics. In electrostatics the
fundamental unit is the point charge which produces a Coulombic fileld. 1In
magnetostatics the fundamental unit is the current element. The magnetic
field, associated with it, is given by

;1L xR

dH = ZTFT (a-1)

where R = r - r', r is the observation point and r' is the position vector
of the current element. Actually steady current flows in closed loops and
the claim is usually made that dH given by (A4~1) is only a mathematical
convenlence and the true observable field is obtained by integrating (4~1)
over a closed loop. A fundamental difference between a field given by (A-1)
and the field due to a closed loop is that ¥V x dH # O whereas V x §d§_= 0,
as long as we observe at points away from the current source. Despite the
fact that dH is not curlfree we would like to comstruct a physical model for
a current element and derive (A-1) as 2 consequence of Maxwell's equations.
To preserve current continulty we have to assume that at the ends of the
current element charge accumulates. Thusg, at the ends we have

dQ,/dt ¥ 1 = 0 or Q, = * it, TIf we introduce the potentials A and ¢ and
ch;ose the Lorentz ;auge we find that the fields satisfying Maxwell's equation
are given by

12
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3A :
E=-% -3¢ (A-2)
=V xA (A-3)

where

poor J@',t - R/e)
A= J = av (A-4)
'
1 p(x',t - R/c)
¢ = 7o J = dv (A-5)

Assuming that the charges Q_ are point charges and recalling that i is a time

independent current (A~4) and (A-3) gilve

Uo id2
R T (4-6)
. Qiret) eret)
d¢ = 4neo Rl + R2

1 {1(: - Rl/c) -i(t - Rz/c)]
[o]

+
1 Ry

- (4=T)

where

We thus see that

13
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dE = - Vd¢ = - ¥ ——— (A-8)
4re R
o
| 1L xR
dE'HT (A-9)

We can easily verify, by using standard vectorial relations, that

~ 34D,
Vx dH = —

at

which shows that despite its rotational character, dH can still represent a
physical magnetostatic field. We should also observe that despite the fact
that the charges Q, grow with time they only give rise to static-like
electric fileld congigurations. We then understand that at each moment we can
treat the electric field configuration as static and apply the method of
images. Once this is done the image current element arises automatically
by satisfying current continuity. We conclude that the magnetostatic image
problem can be associated with an electrostatic image problem and that the
fields involved satisfy the time dependent Maxwell's equations. One can
easily show that for plane perfectly conducting interfaces the normal
component of the total magnetic fleld is also zero. We will show below that
this is alsc the case for a current element parallel to the surface of a
perfectly conducting sphere. To show the value of our novel way of treating
current elements consider the situation of a current element, along the z-axis,
above a perfectly conducting plane interface perpendicular to the z-axis.
Using (A-1) one can easily conclude that Hz due to the current element on
the interface is zero. The image, if any, should alsc be along the z-axis,
but there is no way to determine 1ts relative position or strength since
the total Hz on the interface will be always zero. In the electrostatic
case such a problem never arises. According to our method the current element
is always accompanied by the Q+ and Q_ charges which makes possible the exact
determination of the image current element.

Consider now a current element ilg&I parallel to the surface of a

perfectly conducting sphere of radius b. We choose the x axis along the

14



| 2

direction of the current element ilé£1 situated at the point %_with a position
vector r, along the z-axis (see fig. 4). The image current element will be
directed along the negative x~axis and its position vector is I,e We will
assume according to the well-known situation in electrostatics that |£2[ = b2/a
where IE&’ = a. We will show that the total Hr at any point P' on the sphere
is zero provided that ildillizdiz = a/b (in accordance with the associlated

electrostatic problem). We have

- _ _L il_d_.&l x Bl _ 1ldQ1 (aX) X El (A_]O)
=1 b4 R3 47 R3
1 1
i, = = Ly ¥ By B B ¥ Ry (A-11)
-2 4 R3 4 R3 -
2 2

The r~component is

di_ =& - (df; + di,)

i dQ [yé —é (z=a)] i dQ [yé —; (z—bz/a)]
372 372 (A=12)

[x2+y +(z= a) ] [x2+y +(z=b / ) ]

We can easily see that

x2 + y2 + (z - a)2 = b2 + a2 - 2az

23?4 (2 - Yt = &+ a? - 2]
and (A-12) gives
dH_ = L (a -é)(ildza—idz (3)33£)
r (b2+a2-2az)3/2 r v 1 2772 a

Thus 1if i dz /izdz2 = a/b we find dHr= 0. From the geometry we understand
that de/a = d22/b2/a and consequently 11/12 = b/a. Thus the image current

12 is a/b larger than the original current il in contrast to the electrostatic

15



situation in which the image charge is b/a smaller than the originmal charge.

"d’ surrounding the

If instead of an element we have a current loop of radius
sphere, the image loop will have a radius b2/a and a current equal to Ca/b)i1
will flow in this loop. We can also demonstrate this situation in the following

way. The fileld Hr due to the outer loop is given by

i © &ﬂ
- - L oy 2 _1.3.5...n(a#l)  xyo-l
(r<a) H =-5 n=z=1 D" 7 e DD @ Ppleos ©
odd
i o
1 r n-1
= - _2-; nZ]_ Sn(;) Pn(COS 6) (A"'13)
odd

The scattered field ocutside the sphere is curlfree and can be calculated as

Esc = - V¢ where ¢ satisfies Laplace's equation. Thus

¢ = Z An r_(n+1)Pn(cos 8)
.

H ) = - %% = Z An(n+1)r~(n+2)

sc'r Pn(cos 8) (A~14)
n=1

The boundary condition (Hr)total = 0 at r =b is satisfled if

i

-(n+2) _ 71 . byn-1
A (ntl)b =57 5, ’
and consequently
@y =L T s @M@ (og gyp D) (A-15)
sc’r a L, na n )
odd
(A-15) can be rewritten as
i ® 2, n+2
(HSC)r = - ———%——— E Sn(Eqéé) Pn(cos 8) (A-16)
2(b“/a) n=1

odd
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where 12 = 11<a/b). (A-16) can be recognized as the Hr field of a loop of

radius b“/a and a current il(a/b)evaluated atr=D> > bz/a. The current
12 flows opposite to the original current il.

We would now like to emphasize that the analysis in this appendix
dealt with the determination of images for current elements and is not

restricted to the previous example where the sphere is surrounded by a

circular current loop. In particular when the inclination angle 51 is

different from zero we can obtain images in a pointwise manner to obtain
the situation depicted in figure 2.

17



—y

Figure 1. Simulator-Hemisphere geometry.

b

Figure 2. The four current half loops.
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Figure 3. The coordinate systems (ul,uz,ua) and (X,B,us)
assoclated wich a typical half loop.

-y

Figure 4. Image of a current alement with respect to a

perfectly conducting sphere. (921) =X (Qz) 5.
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Figure 5.

Numbers 1 to 20 correspond to points on the hemisphere at which plots of !he/heLl,
|h¢/heLI and D were considered. 1, 2, 3, 4 (86 = «/20, ¢ = 0, /6, n/3, ©/2);

5, 6, 7, 8 (8 = /4, ¢ = 0, n/6, n/3, w/2); 9, 10, 11, 12 (8 = «/2, ¢ = O, n/6,
/3, «/2); 13, 14, 15, 16 (8 = 3v/4, ¢ = 0, n/6, /3, «/2); 17, 18, 19, 20

(6 = 19n/20, ¢ = O, n/6, n/3, n/2).
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FIGURE 56, Dm is defined as the ratio (max Dv)/[heLl, where the
magnetic field deviation DV has been maximized over the
surface of the hemisphere and ]heLl has been evaluated

at the point where the maximum occurs.
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Figure 57. D_ is defined as the ratio (max DV)/[heL[, where the

magnetic field deviation D_ has been maximized over the
surface of the hemisphere and [heLi has been evaluated
at the point where the maximum occurs.
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