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A differential geometry scalin, 8 method, stemming from Baum's pioneer- 

ing work, is thoroughly explored and developed for electromagnetic fields. 

This method creates a class of eciuivalent electromagnetic problems P 

each described by a complicated geometry and having a complicated medium 

' from an electromagnetic problem P' described by a simple Cartesian 

geometry,and having a simple medium. Application of this method to co- 

axial waveguide structures is examined with special emphasis, Various 

conditions and limitation of the method as imposed by special choices of 

geometry, medium, and field modes are obtained. Also two specific prob- 

lems are solved in detail by applying this scaling method. In one a 

perfect matching section between a cylindrical and a conical coaxial waveguide is 

obtained by appropriately loading the section with inhomogeneous )1 and 

&J and all relevant electromagnetic quantities and geometrical boundaries 

are tabulated, In the other a perfect matching section between two 

cylindrical coaxial waveguides is found with the appropriately shaped 

matching section loaded by inhomogeneous E, anisotropic conductivity 

5 and constant .u. All results are tabulated and plotted. I Also,we find the 

parallel-plate Cartesian scaled version of the fixed p matching which 

may give matchings of other geometrical shapes by some variances in its 

?I- P scaling procedure. This aspect, and the non-orthogonal scaling 

which can make use of the Brewster angle transmission in a natural way 

are discussed for work of future interest. 

Keywords: Electromagnetic pulses, differential geometry, waveguides 
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1, INTRODUCTION 

4. Background and Motivation 

It is well-known that in mechanics and fluid dynamics one can 

transform or scale one problem and its solution to create 

of equivalent problems and their solutions 111, Different 

their solution behaviors of one equivaient class may look 

but aorag them there are properties they share. The 

a scaling is to get appropriate dimensionless parameters 

a whole class 

problems and 

very different, 

essence of such 

that are common 

eo them all. 

However s in electromagnetic (EX) theory the nature and appli- 

cation of such a similar scaling method [21 , except for conformal 

mappings of static fields e31 9 has not been given extensive attention. 

Only a few &-have recently been devoted to it [41. The purpose of 

the present work is to investigate and develop for EM theory the nature, 

the limitation, the usefulness, and the application of such a scaling or 

similarity trardorm by using a differential geometry approach. 

B. Description and Outline 

In this work we try to present the EM scaling method, from the 

most general theoretical formalism to the detailed solutions of some 

specific problems, in the simpbest possible vay that makes the reading extremely 

easy, We do not try to achieve the trivial task of being concise. 

On the contrary, we spell out most of the detail for such easy reading. 

We also tabulate the results for immediate engineering use. 

In Chapter 2, we explore and develop the general differential 

geometry scaling method, which carries an EM problem P of compli- 

cated geometry into an equivalent problem P' of simple Cartesian or other sbgle 
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geometry with its accompanying transformations for medium, geometry, 

source and field. The advantage of such a procedure is, hopefully, 

to make the complexities of the geometry and of the medium "cancel" each 

other in such a way that the resulting problem is simple and solvable. 

In Chapter 3, we study the time independent scaling for special cases. 

These include orthogonal coordinates and diagonal media, with coaxial 

systems especially emphasized. 

Chapter & presents the inhomogeneors u,~ loaded perfect 

matching between a cylindrical and a conical coaxial waveguide for 

TEM waves. Chapter 5 presents the inhomogeneous E, constant 'p, and 

anisotropic _ g loaded matching section between two cylindrical 

coaxial waveguides for TEM waves. Chapterz-E contains conclusion, 

remarks, and discussion of works of possible further interest. 

Furthermore, the reader interested in a fast grasp of applications 

may skip the general theory in Chapter 2 and part of Chapter 3 and start 

\ 

0 

at Chapter 4 ifhes~desires. In doing so several "whys" referring to the 

previous general theory will arise, but despite these we have taken the 

effort to make such reading still easy and effortless. 

Concerning notation, standard three dimensional vector analysis 

one is used. Also all results in the two aforementioned examples are in MKC units. 

In the general formalism, we have set the vacuum p. and so equal to 

one so the u and E written are actually normalized with respect to P, and Ed. 

This practice is just to keep the notation consistent with differential 
- 

geometry and generalized EH theory, and an appendix is attached for the 

full recovery to HKS units. [71 Also part of this report includes the information 

which is contained.in a paper to be published elsewhere. Cs! 
. . 
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‘3 2 . GENERAL DIFFERENTIAL-GEOMETRICAL EM SCALiNG KSTHOD (DGFf) 

A. Generalized 4laxwelS's Eqs. 

The usual Maxwell's eqs. that describe the classical Ezl fields 

in an inertial frameC61 have been well tested and are fully accepted. 

In this case the observers who observe, measure, or "see" the 

fields are inertial observers. That is, they are attached to or fixed to an 

inertial coordinate frame {X") z {X0 z T, X1, X2, X31 such tha,t each 

of them has his spatial location (X1, X2, X3) =, constants. The inertial 

frame {Xn) can be described by a Cartesian geometry that has the differen- 

tial length square t71 

(AS2 = (AT>2 - (AXl)' - (AX2)2 - (AX3)2 

(2-l) 

Let us consider a system of observers 101 attached, in the 

above sense, to a coordinate frame {x'} 2 {x0 = t, xl, ~2, x3) which 

is not an inertial frame and cannot be described by a simple Cartesian 

geometry (2-l). Then to investigate the EM fields as "seen" by these 

observers {O) we should use the postulated generalized relativistically 

covariant Maxwell's eqs. These eqs. have been so postulated because 

of their "naturalness" in a certain formalism - namely tensor calculus - 

and have been tested in special cases to a certain extent 681 . This 

relativistic classical EM theory is certainly correct for all known 

cases in special relativistic phenomena, and is probably correct to a high 

precision for general relativistic cases - within classical field theory. 

It is Certainly the most popular and currently accepted one. We shall base 

our investigation on this generalized relativistic EM theory to get the most 
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general EM scaling method which can be applied to moving media, time 

changing media,~EM fields in gravity (general relativistic EM fields), 

accelerating media, and of course inhomogeneous and anisotropic media. 

Now suppose we have a system of observers (0) attached to a 

general coordinate Ix') z {x0 = t, x1, x2, x3] where x0 ' is the 

time coordinate and x1, x2, x3 are the spatial coordinates. The 

geometry of this coordinate frame (~~1) can be described by expressing 

its invariant length interval ds in terms of the metric coefficient 

functions gPV(xa, x1, x2, x3> as t91 

ds2 = 1 1 gPvdxi, dxv z gcrvdx" dxv 
p=o v=o 

Here and in this work we have used the summation convention that repeated 

indices are summed over their whole ranges, except explicitly stated 

(2-2) 

0 

otherwise. Also, Greek letters p,v, etc. stand for 0, 1, 2, 3 and 

Eoman letters i, j, etc. stand for the spatial 1, 2, 3. To these IO), 

as the result of the relativistic EM theory, the Maxwell's eqs. become [lOI 

(2-3) 
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The notations used here have the following meanings. [Ill The field vectors 

E, B, D, and H have their usual meanings of macroscopic electromagnetic w s w 
fields as electric intensity, magnetic induction, electric displacement, 

, 
and magnetic intensity respectively, with respect to CO]. 

The q and J are the usual charge and current density relative to 

CO). The vectors are decomposed or expressed on the observer's local spatial 

unit vectors F(i) which point in the pure spatial direction and are projected 
- . 

from the coordinate xl-directions to be perpendicular to the proper 

time direction. The dyadicLfZ1 z is defined by its components 

(e)ij f eci)j 
1: 

(Z-7) 

where e(i> j is the projection of the jth covariant coordinate basis - 

vector eJ on the is local spatial unit vector Z(i) * The zT is 

the transpose of the dyadic e, i.e., (eTJ ij z (y . The vector c 
1 z 

is defined by (c>~ e, e(i)o which is the ith component of the covariant - 

tire-coordinate basis vector on the e ,(i> ' Also the vector operators 

have thefr usual meaning and the quantity g = det(gVV). 
matrix 

Notfce that if car') is Cartesian with a diagonal/ g,, E (1,-1,-1,-l) 

as (2-I.), then (2-3) to (2-6) immediately reduce to the familiar Maxwell 

eqs. Since in this case we have f z U (unit dyadic)., c 3 0, g = -1, and 
z 



g 00 = 1, and thus for example the term on the left side of (2-4) becomes 

v * (u *Exu) = V’(ExU)tVxE-.U-E-VxU=VxE 
= - = : - - =-, - - - - 

(2-B) . 

aB 
and (Z-4) reduces to V x E = - 2 . Other eqs., for this special case, - - 
reduce similarly to the usual familiar Maxwell eqs. 

In this work, we are considering scaling for linear media only. 

Thus, we can assume the ccnstitutive relations for these observers 

EO) fixed in that ix") as 

D=E: *Et-a-B 
I - = - (2-9) 

(2-10) 

J=a- E (2-W _ _ 
.c - 

. 

Here the dyadics E, ~1, 8, K, u again have their usual meaning 
7, = z 2 z 

for a general linear media, and are local quantitative of the medium 

at positions of (01 . 

Also, if there are perfectly conducting boundaries, they are given by 

F(x) = 0 on which E has no tangential components. The above descriptions, 

i.e. the Msxwell's eqs. (2-3) to (2-6), constitutive relations (2-9) 

to (2-U), and conducting boundaries F(x) = 0, together with appropriate 
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boundary conditions at far away define an EM problem which we call p [Cl . 

B. The General Scaling P + P' 

Xow a scaling method can transform the problem P into an EM 

problem P' which is in a frame of simple Cartesian geometry and has 

correspondingly scaled medium properties, source strengths, and boundary 

conditions to be described in the following. To do so, we first define 

the scaled "mathematical" or "fictitious" EM fields (e,b), (d,'d by - - - 5 

ea- -2' 6 eT 2 (E x e) = z 
(2-12) 

B 
bs d-geT* [ -+cxE] 

z I/go0 - - 

Q=$ icg eT j, (H x e) 
= . z 

(2-13) 

(2-14) 

(2-15) 

in the coordinate frame {xu} which is now taken to be Cartesian with m- 

the simple metric geometry described by 

dS2 = dt" - (dx')* - (dx2)2 - (dx3)2 (2-16) 
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Bere and in some of the follo$ng, we define double operator C > for 

* x x. -, z4 and 2 between two dyadics as M ( ) N by the convention 
= z 

tnat the upper operator operates first on the inner indices and the 

lower operator operates next on the outer indices. For example, 

in component form we have 

(2-17) 

(Mk+j z q i!Lm njkn MkR No (2-18) 

etc., where n ‘& +1,-l, or 0 if ijk are even,odd permutations of 
123, or otherwise. 

To proceed with the scaling, we then define the scaled 

charge and current density source p and j in this so-considered 

Cartesian frame {x'} by 

PZ fi(++c*J) - - 

I 

00 
(2-19) 

(2-20) 

Then the Msxwell's eqs. (2-3) to (2-6) for these just defined "fictitious" 

fields assume respectively their familiar forms 

, ” 
0 



I V.d=;p -. - 

I Vxh=ji-at ad - - a, 

(2-21) 

(2-22) 

(2-23) 

(2-24) 

in the usual simplest Cartesian sense. That is, these "fictitious" 

fields and sources are taken to be in an ordinary Cartesian coordinate 

frame Cxu) with metric geometry (2-16), and their vector components 

are expressed on the orthogonal Cartesian spatial unit vectors in 

that CxU') which is now considered to be Cartesian after the scaling. 

To complete the scaling, the accompanying scaling of the 

medium"s constitutive relations becomes 

h=B l e+;\*b 
- I - -, - 

(2-25) 

(2-26) 

(2-27) 

where the new ffcticious constitutive parameters are expressed in terms 

of the original ones of (2-9) to (2-W by 



10 

1 
‘Eg27 ,” T . (f - f  x  f) l (iiT ii :I + q. leT l ( L- - c x K) z ri 

00 Jgoo - = 

(Z-28) 

G!-29) 

)/go0 Xa- 
f 

2 (e Z  eT) l K l 2 

= = = 2 

(2-31) 

Here eT is the transpose of e, i e (eT> 'j t (e)ji * ., . Also, i2 i$ the 
w. z z = : , 

inverse of e and always exists since det[(e)iJJ+O . P I 
Finally, the scaled boundary conditions are given through 

(2-12) to (2-15) and (2-27) to regulate the fictitious fields behaviors on the 

scaled shape of boundaries in the Cartesian frame IxUI . The 

mathematical description of such scaled boundaries in the scaled and 

taken-to-be Cartesian frame {x'] is the a as its previous 

mathematical description in the original arbitrary coordinate frame '1~~1. 

For example conducting surfaces, if any, are still described by 
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F (x> = 0 in the scaled Cartesian frame {xi), " on which the scaled $ 

satisfies 

N a (G x e) e B T = 0 (2:33) 
zz - z 

where N is the normal of the conducting boundary surface F(x) = 0. " 
me above considerations, from eq. (Z-12) and onward, describe how to obtain 

the new "fictitious" Cartesian problem P' from the original problem 

P and give the relations between these two. Apparently, the reduction 

from P to P' with greatly simplified geometry and differential 

eqs e is achieved at the expense of the much complicated medium 

properties. However, we must first realize that the scaled "fictitious" 

fields aaid "fictitious" problem P' are the equivalent of and are just 

as real as the original fields and problem P, Thus they can play a 

reverse role with respect to each other at our disposal. We can require 

the apparently complicated medium properties (2-25) to (2-32) to be 

simple enough so that we can solve or know the solution of the scaled 

Cartesian problem P'. Then through the inverse scaling P' + P we 

can obtain a whole class of problems P each with a known solution. 

Different problems P belonging to the same class just correspond to 

different choices of the metric OIC the scaling geometry %J* 
The advantage or the 

purpose of the scaling method in addition to being able to investigate 

the whole class of P's by iwvestigating one of them, lies in the fact 

that one may choose the geometry and medium in such a way as to make 

their complications cancel each other so that the resulting problem is 

simple, solvable and possesses certain desirable leatmes. This is 
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precise?y what the following work will demonstrate. 

C. The General IrX:rss Scaling P' - P 

Since in the application of the scaling methdd, we need the 

inverse scaling P' + P just as much as we need the scaling P + P', we 

thus list the inverse scaling for P' + P 'below. The fields are inversely 

scaled by 

4% E B=+- - [b + e x gT * c] 
/=g= - - = - 

(2-34) 

(2-35) 

D= /go0 -6.[d- h x CT . c] f - &gz - - z - 

I 

-1 'Hz- i% i {h x aT> 
2&= - = 

and the sources are inversely scaled by 

(p - c  l e *  j) 

z  - 

(2-36) 

(2137) 

(2-38) 
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Also the inversely scaled medium's properties, i.e. the parameters 2, 

49 8, = 5, and u of the problem P in eqs. (2-9) to (2-ll),expressed 
: 

in terms of the 5, A, B, X and r of Pp in eqs. (2-25) to (2-27) are 

cr 
1 a-0 e 1 l (e x  eT) 

2 2, z = = 

D. Remarks 

m 
(A t- c * $ x 3) * e1 x c] = - z 

(e E eT)] 
w 3 

(2440) 

(2-41) 

(2-42) 

(2-43) 

G-44) 

From the above, we see that the scaling P +P' or the inverse 

scaling P' + P are actually equivalent. The problem P in any frame 

can be scaled into a problem in a Cartesian frame and Vice versa. In 

manipulating the scaling processes , we should make sure the EM problems 

obtained have correct dimensions and represent true physical EM fields. 

For this reason the g w 'metric coefficients should be made dimensionless. 



c  

1 4  

A lso, w e  c a n  c lear ly  s e e  f rom ( 2 - 2 8 )  to  (Z -32 )  o r  f rom ( 2 - 4 0 )  

to  ( 2 - 4 4 )  th a t th e  n a tu r e  o f th e  m e d i u m  a fte r  sca l ing  d e p e n d s  o n  th e  

sca l ing  g e o m e try as  m u c h  as  o n  th e  n a tu r e  o f th e  m e d i u m  b e fo r e  scal ing.  

This, p lus  real izabi l i ty  o f th e  m e d i u m , poses  var ious  restxict ions to  

th e  app l ica t ion  o f th e  di f ferent ia l  g e o m e try sca l ing  m e th o d . 



15 

3 0 SCALING IN SPECLC CASES 

Forthe P+P' scaling, the part of mixed constitutive parameters 

A and B in (2-25) and (2-26) that relate b to d and e to h 
2 a a 2s z z 
are caused by two facts. As can be seen from (2-29) and (2-30), these 

mixings are caused partly by the medium's own constitutive mixings 

a and B in (2-9) and (2-lo), and partly by the non-time-orthogonality 
J 
of the flame {x") with g . 01 +. 0 which gives rise to cl I e(i)" . If 

we restrict ourselves to time orthogonal frames, i.e. only dealing with 

frames with goi = 0 which exclude some particular non-stationary 

non-inertial frames such as accelerated frames, rotating frames, and 

frames of generally time changing gravitation, then c s 0 and the scaling 

is simplified. Furthermore, we restrict ourselves for the present 

interest to media which have no electromagnetic mixture in their con- 

stitutive relations, i.e., a = B = 0. Within these two restrictions, z 25 
i,e. 

cro p M (3-l-a) 

a=B=O 
= = 

(3-l-b) 

we shall consider the following further restricted special cases. 

A. Diagonal Geometry 

Lf the original arbitrary coordinate frame {xuI has a 

diagonal metric, i.e. 

g a0 for UV d v (3-2-a) 
such that 

ds2= *~(dt)2-~glax~2-(B2~z)2~(g3clx3)2]~~dtB-d~2 (3-2-b) 

where do2 is the three-dimensional invariant length square and 
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E+ gy ho summation here) 0-2-c) 

then (e)ij I P/g, ho s-tion). For this case, ,the 3' -t P' scaling 
z 

for the fields (2-12) to (2-15) reduces to 

d = glg2g3 =” l ,D  

I- 
Ql = go s  l 3 

= - 

where #the dyadic or matrix b TS (e) -1 , =d z z 

(e)ij f &g . 

(z)ij 
= . 

E gp E *'I "I g20 

( ) 
0 

83 

(3-7-a9 

(3-7-b) 

Also, the sources are scaled, frm (2-H) and (2-20), even mre simply 

a 

. . 
‘ 0 



for the P + P* 

P = g+-&q (3-8) 

But with this special restriction, on geometry the condition (3-2) 

and on media the condition (3-1-b), the most simplified scaling relations 

are the constitutive relations. These relations (2-28) to (2-32) for 

P + P' reduce to 

glg2g3 
5 = -T-e’E’e (3-10) 
J o z z t 

A=B=O (3-11) 
= z 

(3-12) 

such that for problem P' we have d=c*e,b=q*h and 

ml- so Zhat-B x-p J - j==lae. In the above I.I E (K) * H for P in the present - s. . m = z - 
case. Also, the inverse scaling P' + P for this case is obtained 

simply by the inverse of the above matrix re%atfons (3-3) to (3-13). 

We will not write them out. 
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Notice that for this special case, by using a coordinate frame 

of diagonal metric, a problem with a "non-mixed" constitutive medium 

still scales into a problem of the same nature. 3ut the inhomogeneity 

and the time-dependence of the geometry can be transformed or scaled 

into such properkies of the medium while the geometry is left simple and 

constEnt. 

B. Diagonal Metric with go m 1 

This case corresponds to orthogonal curvilinear 3-dimensional 

coordinate frames in Euclidean space and leaves the time coordinate 

unchanged in the scaling. Since this is of particular interest to UE, 

we now investigate it in further detail in the following. 

Bl. Diagonal Metric, go I 1, and Diagonal Media 

If the E, JJ and u for P are also diagonal, i.e. = =: = 
they have only diagonal elements in their matrices, then from (3-10) 

to (3-13) we immediately see that the scaled medium for P' is also 

diagonal. Thus requiring both media before and after the diagonal scaling 
I 

to be diagonal imposes no further restriction on the geometry itself. 

B2. Diagonal Metric, go Z 1, and Uniaxial Media 

If we require both P and P' to have uniaxial media, i.e. 

(3-14) 

(3-15) 
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(3-16) 

then a certain restriction on our geometry is imposed, and as a result 

the abbve medium prmeters are further related. From (3-10) and (3-14) 

we immediately have 

8% = g2 (3-17) 

and thus 

(Q 2 

53 = -g-- E3 

(3-18-a) 

(3-18-b) 

The same restriction gI = g2 satisfies (3-15) and (3-X6), and gives 

similar relations 

(3-19-a) 

(3-19-b) 
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and 
(3-20-a) 

(3-20-b) 

For this case, the festriction of uniaxiality on all g, Ps and 

11 with respect to the same axis for both P and P' requires the 

scaling diagonal geometry be also "uniaxial" with gl = g2. Notice that 

in this case, if we consider TEM wave propagation with respect to the 

3 then the transverse "wave 1141 x -axis, impedances" satisfy 

(3-21) 

and are unchanged during the scaling. This property will be used later 

in the next Chapter. Also p3 and "3 do not enter the T!IM problem here. 

Notice that a coordinate frame with metric satisfying (3-L7) 

can be obtained from any orthogonal coordinate frame (v', v2, v3) with 

. metricE15' 

I 
ds2 = (fl dv1)2 + (f2dv2) + (f3dv3)2 

1 
flif2 I function of V' only 

To do so, we simply transform 
'1 '2 <v , v , v3) into (xl 3x2,x3) by 
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x1 - 1 = (fl/f2) dv f const 

x3 : F(v3) = 3 v E f1(x3) (3-23) 

and the resulting metric for 12 (x , x 9 x3) i s simply 

ds2 
(f )2Nx3)2 

= (f2j2 [(dx')' + @x2)'] i- 3 
[F! (F-'(Y~))]~ 

(3-24) 

A coordinate frame (xl, x2, x3) so obtained from an orthogonal 

(v 
12 3 

, v, v > of (3-22) .Fs ready to be used in scaling involving transverse 

isotropy or uniaxiality. 

If the uniaxiality axes for E t, and u are not the z? I 
same, still further restrictions are imposed. For example, if u is 

z 
uniaxial. relative to the 2 x -direction such that 

(3-25) 

then, with 5 and o s = still required to satisfy (3-14) and (3-16), 2 

can be uniaxial with conditions in addition to (3-17) 
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2 - 81” + if k3 = 81 (3-26) 

and 

(3-27) 

B3. Diagonal Metric, go 5 1, and Isotropic Nedia 

If we restrict the media of both P and P' to be isotropic, 

then the scaling is severely limited. Now such restrictions 

5 =EU , = z 

immediatefy gives 

1. JJ ,E =- ‘- ilQ 
E rl u ‘1 

from (3-10) to (3-13). 

(3-28) 

(3-29 1 

(3-30) 

(3-31) 

a 
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There are only two coordinate frames in the Euclidean 

space that can satisfy 1161 (3-30). They are namely the Cartesian frame itself 

with dS2 = (dT)2-(dX)2-(dY)2-(dZ)2, and the inverse Cartesian or inverse sphere 

frame with dS2 = Cat2 - ab[(dx)2 + (dy) 2 + (da)2)y(x3 + y2 -I- z2> which is 

obtained by inverting the Cartesian coordinate with respect to the sphere 

X2 + Y2 + Z2 = a2 with 2 X' + y2 + z2 /==a2 

C. Generalized Coaxial Geometry 

For the geometry with go Z 1, a generalized coaxial coordinate 

frame iv', x2 5 4, v3) has metric coefficients as given in the invariant 

length by the non-orthogonal 
17 

ds2 = (fl. dv1)2 + p2d$a + (f3dv3)2 + 2f13dv1dv3 (3-32) 

Here o is the usual azimuthal angle for cylindrical coordinate and p 

is the usual cylindrical polar distance. Notice that the constant-$ 

half-planes are perpendicular to both the constant-v' and constant-v 3 

surfaces which are not perpendicular to each other. Also, the f,, 

f3* f13$ and P 1 3 can all be functions of v and v , but not functions 

of (p. Such a generalized coaxial coordinate frame can be obtained by 

rotating any two dimensional coordinate frame possessing an axis of 

symmetry about the axis. Furthermore, if f13 5 0 and fl/f3 is 

function of vls then this (vlp v2, v3) can readily be used to 

obtain the (x1, x29 x3) frame of (3-23) and (3-24)e 

D. Remarks and Trivial Examples 

Viewing from the foregoing analyses, it might look as though 
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the simpler the involved medium is, the more restrictive the scaling 

geometry must be and therefore the less useful the scaling method becomes 

in application. However, we should notice that if in a problem considered 

there are EM fields in certain directions only, then only constitutive 

relations in those directions enter in the analysis. So in such a situation 

a simple isotropic medium can be used as a substitute.for the complicated 

media required by the full scaling method. Furthermore, a choice of 

anisotropic or directional conductors can help to select desired field corn- 

ponents and suppress others such that the just-mentioned situation can 

be achieved. It is in the light of these that the scaling method becomes 

very powerful in both theoretical investigations and in applications. 

Before we go on to solve special problems, let us illustrate 

the,procedure and nature of the scaling method by some simple examples. 

Consider P' as a parallel plate waveguide with plates at X = a and 

x = b. Let the region between the plates be filled with a uniform 

medium having constant dielectric constant E, magnetic permeability 

nY and conductivity 1 E 0. Consider a TEM wave propagating in the. 

Z-direction with field components 

This describes the Cartesian Problem P'. 

Now a scaling or rather an inverse scaling can carry P' 

a curvilinear problem P. If we choose the scaling geometry as 

(X, Y, Z> - (x1, x2, x3) - (~~8, c2C, r> 

(3-33) 

into 

(3-34) 
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where (r,e,o) is the ordinary spherical coordinate and c 1' c2 
are constant lengths, then this choice corresponds to scale the parallel 

plate problem with TEM propagation in Z-direction into a conical 

problem with TEM propagation in the r-direction. Using (3-7) and the 

inverse of (3-10) to (3-X3), we immediately obtain that the scaled 

medium must be inhomogeneous and diagonally anisotropic and must have 

constitutive parameters in the scaled (c1e9 c,Q, r) coordinate as 

(3-34-a) 52 0 
clsinO clsin6 

c2 Q z1c2 

(3-34-b) 

in the conical coaxial waveguide between conical boundaries 9 = a 

and e=k 
5 

=1 
The TEM wave that propagates in the conical coaxial 

waveguide, obtained easily from (3-3) and (3-6), is 

p9 yin6 

a- 
f 

'1 
f ,(+) a q- e 

iw& r 
=2 

(3-35) 

Notice that in this trivial example, we have some freedom to regulate . 
the conical coaxial waveguide, Namely cl is at our disposal to control 

the angular span of the conical waveguide. The constant c2 has to be 

chosen that 

=h’I 
=2 2ir (3-36) 
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where AY is the periodicity of the original problem in the Y-direction, 

but for this TEM case =2 can be arbitrary and does not influence the 

scaling. Also the phase velocity during the scaling is unchanged here. 

Just as another example, we can scale the above mentioned 

parallel-plate problem into a concentically bent parallel-plate waveguide 

by 
12 a, y, z> - (x, x , x 3> - (P, -21 c,lp) (3-37) 

where (P, $, z) is the usual cylindrical coordinate system. In this 

case, the concentrically bent parallel-plate waveguide has boundary 

plattsat p-a and o=b, and the TEM wave is propagating along 

$-direction with fields 

E (PI ~ -fi 
T” 

Cd = eiw639 (3-38) 

where the phase velocity along $-direction is p/(c3&$ which is 

not constant on the Cp = constant cross-section of the wave guide and 

differs from the phase velocity. l/6 along the Z-direction 

before the scaling. Also the medium that fills the scaled waveguide 

between p = a and p = b has the following scaled constitutive 

parameters in the (p, -2, c,Q> coordinate system 

(3 39) 
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Notice that the arbitrary length constant c3 provides a degree of 

freedom to regulate the angular A$ bend of the concentric parallel 

plates from a given section length AZ of the original problem. 

We conclude this Chapter by several remarks. First we see 

that there is a certain degree of freedom in the scaling which can be 

used to match boundary connections between different scalings. Second, there are 

conditions for the scaled fields to satisfy such as periodicity and 

boundary condition matches. Third, only the part of the scaled medium's 

properties which are relevant to the fields considered are needed; e.g., 

only the E (8) (0) , ,b>@), =d $3 ce9 in (3-34) are needed for the TEM 

propagation in that example. All these details on freedoms and restric- 

tions have to be properly taken care of in applications. 
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4. 1MATCHING SECTION WITH VARIABLE u and E BETWEEN CYLINDRICAL AND 

CONICAL COAXIAL WAVEGUIDES 

A. The Problem 

Consider a cylindrical coaxial waveguide described in the 

usual cylindrical coordinate system (0 ,$,z) with inner conductor 

surface at p = B. and outer conductor surface at $ = B. Also a homo- 

geneous simple medium with constant u,~, and u 5 0 fills the coaxial 

region in this waveguide and a TEM wave is propagating along the z-direc- 

tion in it (see fig. 1) 

E(P) p 
I- 

1 ,(4) ie 1 .iuG z-iwt 
E 0 (4-l) 

Now this cylindrical coaxial waveguide is to be connected 

to a conical waveguide filled with the same simple medium in such a way 

that a TEM wave in the cylindrical guide propagates into 

the conical guide without any reflection and distortion. 

The problem is whether such a transition section exists and how 

one will go about finding it. 

B. The Application of Scaling in the Cylindrical Part 

Denote the cylindrical part as region I, the transitional part 

to be found as region II, and the conical part region III. To find the 

matching section region II, we first realize that itwill likely be a 

coaxial structure since both i and III are coaxial. Further, since only 

TEM waves propagate in I and III,so probably the simplest matching structure 

in II carries also TEM wave only. Since for such a TEM 

wave the longitudinal medium properties along the axial direction play 
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no role, only transverse medium parameters are of importance. Moreover, 

whether the TEM wave is reflected or not depends on the matching of the 

transverse wave impedances. Therefore we are naturally led to consider 

a transverse isotropic scaling of III-B2 which preserves the transverse 

wave impedance. With all these in mind, we can try to investigate in 

this way the probable simplest scaling for the desired matching section. 

Even if one such section is obtained, it may only be a convenient one 

and is not at all necessarily the unique one. 

Now the problem of finding the desired matching section of 

region II is really tantamount to finding the common Cartesian ' 

problem P' that is common to all regionsI, II, and III. For such 

a P', different scalings in different regions should then scale the P' 

into the different configurations of our problem P as required , 

namely, a cylindrical coaxial waveguide filled with uniform simple medium 

in I, an appropriately loaded perfect matching section in II, and the 

final conical coaxial waveguide filled with the same uniform simple medium as in 

region I. A TEM wave propagates in all regions and should be connected 

smoothly without reflection, for both P and P'. 

Now the P in the region I is given. Hence fixed in region I 

is the scaled P' which can be obtained easily. First use the 

(p,$,z) as the (v1,v2,v3) to get the (x1,x2.x3) , as was done in 

(3-32) to (3-24); we get for region I 

(4-2) 
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and the metric geometry for the coordinate system {xl, x2 ,x3> 
I 

x 
d$ = 

PoeCl 
(- 

c1 
j2 [(dx1)2 -I- (dx2)2] + (dx3)2 (4-3) 

Then in region I, the given cylindrical problem P in this coordinate 

frame 12 3 (x ,x ,x ) E (cl Ln(plp,), c,$~z) has, from (4-11, fields 

EU) = e 
ii&X3 

1 
boexp+9 

5 * 

E 
J- 

iw&Gx3 
H(29 = F e 

1 
PO exp(% 

3 

(4-4a) 

(404b) 

and has conducting boundaries at x 1 = cl%n(A/po) and xl = cl&n(B/Po). 

Also, it of course has the same constant P,S simple med-ium. Up to here 

we have only rewritten P in the region I. Now we scale 

the P described above into a parallel-plate P' by 

12 3 (x ,x 9x 1 - (X,Y,Z9 (4-5) 

l.e., we take these (x 12 3 ,x ,x > to be a Cartesian coordinate frame 

after the scaling. Then the P' is a parallel-plate waveguide with the 

plates located at X = clRn(A/Po) 

x= c l WBbo9 

and with a TEM wave in this parallel-plate waveguide given by 

(4-6) 



c  

0  

3 1  

I - 

-  _  
‘0  

,U> =  W  =  e  i.oJs  x3  
_  e  

= 1  
E  i u&F  x3  

?J2 )  1  ,(Y >  =  u  e  /- 
5  

( 4 - 7 a )  

( 4 - 7 b )  

Th is  is o b ta i n e d  by  us ing  th e  inverse  o f (3 -3 )  a n d  (3-6) .  T h e  m e d i u m  

sca led  to  fill th is  para l le l -p Ia te  w a v e g u i d e  is ne i the r  h o m o g e n e o u s  

n o r  isotropic,  b u t h a s  const i tut ive p a r a m e ters  in  th is  C a r tes ian - taken  

f rame  (x1,x2,x3) + -  ( X ,Y ,Z) 

( 4 - 8 a )  

( 4 - 8 b )  

Th is  P ' shou ld  b e  th e  p r o b l e m  c o m m o n  to  al l  th e  reg ions  I, II, a n d  

III if th e  o r ig ina l  p e r fect m a tch i n g  p r o b l e m  h a s  a  solut ion.  T h e  

constant  p  0 ’ c shou ld  b e  d e te r m i n e d  later  by  m a tch i n g  condi t ions. .  

N o w , fo r  P ' th e  T E M  w a v e  (4 -7 )  p r o p a g a tin g  in  th e  para l le l -  

p la te  w a v e g u i d e  wi th p la tes  (4 -6 )  a n d  m e d i u m  (4 -8 )  cer ta in ly  satisf ies M a x -  

wel l 's e q u a tio n s  a n d  th e  re levant  b o u n d a r y  condi t ions,  a n d  p r o p a g a tes  in  

th e  x3  d i rec t ion o f th e  (x ',x2 ,x3 )  C a r tes ian - taken  f rame  wi thout  

r e flec t ion a n d  wi thout  distort ion. T h e  task n e x t is to  inverse ly  

sca le  th is  P ' by  di f ferent  ways  fo r  r e g i o n  II a n d  III in to o u r  

o r ig ina l  p r o b l e m . 

c. T h e  Sca l i ng  a n d  Des ign  o f th e  xa tch ing S e c tio n  

In  r e g i o n  II, f rom th e  o r ig ina l  p r o b l e m  w e  s e e  th a t w e  n e e d  a  
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rotational frame that carries its constant 3 x -surfaces from plane 

surface to spherical surfaces. Looking at the table, we see that a 
L171 toroidal coordinate system (n,$,e) does that very simply. So in 

region II we choose this toroidal coordinate frame (n,$,3> as the 
12 3 (v ,v ,v ) and obtain, by using (3-23) and (3-24), for region II 

(see Fig. 1) 

I x1 = a Rn(th 5, + c2 

I 2 X =a$ (4-9) 

x3 = a F(B) 

with metric coefficients 

sinh 2 
dR2= 2 [@x1>' + (dx2>'] + (dx3)2 

(cash i-j + co&) [F'(9)(coshrl+cose)12 

As a footnote, we remind ourselves that the toroidal coordinate frame 

(n,+,(3) has the metric length 

dR2= 
2 a 2 ldq2 + sinh2n d$2+ de2] 3 (4-11) 

(cash nf case) 
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If we identify the z-axis of our cylindrical coordinate frame in region I 

as the in = 0 straight line, then the toroidal (n,@,O) has a rotational 

symmetry about the z-axis and has constant coordinate surfaces given by 

n = constant: z2 + (p-a coth rl) 2 = a2csch2n (4-12a) 

which is a toroidal surface obtained by rotating the circle of radius 

a csch n and centered at a distance a coth n from the z-axis and on 

the azimuth 8 = in plane. Also we have 

$ = const: half plane intersecting z-axis 

and 

8 = const: 2 a2 p2 + (a 4 a cot 0) = - 
sin28 

(4-12b) 

(4-12~) 

which are spheres centered at z = a cot 8 on the z-axis and of radius 

a/lsin0/. Notice that the constant a regulates the (n,lp,O) coordinate 

frame by changing the radius of the circle to which the toroidal surface 

converge as rj -f =, 

Thus in region II, the inverse scaling 

(X,Y,Z) - (x1,x2,x3> - (a Ln (th ;) + c2, a+, aF(O>) (4-13) 

will give the shape of the matching section and the whole description 

of desired problem P in that region. Before we write out the fields 
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and medium properties in region II for P, we first have to ma&e sure the 

(Xl, x2, x3) of region I and II as given by (4-2) and (4-9) respectively 

join smoothly. This smooth joint will then ensure matching of the 

boundary conditions for the scaled fields. Thus at the boundary 

surface z-0 or 8= 0 between regions I and II, we require 

xl(I) I x1(11) += clRn > E aIlnth$+c jc 2 2 =aiha 
0 P 

(4-14a) 

(4-14b) 

x3{I) I x3(11) + F(0 = 0) 2 0 (4-14c) 

where the final $in (4-14a) is obtained by the help of (4-14b). AlSO 

the scaled medium in region II for our matching section has the transverse 

dielectric constant 

E(II, transverse) = c(cosh n+cos e>F'(B) (4-15) 

which, if for realizability 

equal to f, implies 

1 

purpose is required to be greater than or 

F’ (e) >, - (coshn+ co&) 
(4-16) 
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This condition (4-16) can be satisfied by choosing 

F' (e.) = 1 1 
1 i case 2 coshn + case *F(e) = tan 4 (4-17) 

From the above, we obtain the inversely scaled matching 

section in region II. It is a toroidal coaxial waveguide with boundaries 

at n = 2 tanh-'A/a , n = 2 tanh-1Bja (4-18) 

obtained by using (4-6), (4-9) and (4-13). The purely TXM fields in the 

matching section, by means of the inverse of (3-3) and (3-6), are 

s 
,h> ~ E(1) = (ccshi-+cos*)eiwJuE a tan 2 

a sinh n 

,w =’ #) = fi ( cash rl f COS~)~~O&E a tan p 
u a sinh n 

(4-19) 

(4-20) 

in the matching region II. And the medium in the matching section has 

constitutive parameters 

090 = (4-21a) 

cash n + case 0 
E u 
z,r = cesh n f cos0 
E u 0 1 -i- ease (coshrrt cose)(l + cos8) 

(coshn + l>L 

(4-21b)' 

where the dyadic components are expressed in the (n,$,e) coordinate 
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. 

. 

l 
frame or the 12 3 (x ,x ,x > of (4-9). These are obtained by using the 

inverse of (3-N) to (3-13) for the present 12 3 (x ,x ,x > of (4-9) 

and scaling relation (b-13). 

The purely TEM propagation from the cylindrical region I to the 

toroidai region II loaded as (4-21) undergoes no distortion and no 

reflection. They are just the differently scaled versions of the basic 

parallel-plate problem P' and are smoothly joined such that the 

tangential TEM fields E and 5 match. Next to be found is how does 

this toroidal transition section connect to the conical region III by 

another inverse scaling. 

D. From the Matching Section to the Conical Part 

Here we want to inversely scale our "basic common" parallel- 

plate problem P' into the conical coaxial waveguide in a smooth way. 

First since the 'spherical coordinate frame (S,+,r) satisfies the 

requirement (3-22), we can take it as the (v1,v2 ,v3> to obtain the 

"transverse isotropic" (x1,x2 3 ,x ) by (3-23) and get for region III 

1 X 5 

I 

c3 en tan f + c4 

x2 = c3@ 

3 X = a G(r) 

with metric 

(4-22) 

2 
dR2 = - [(dx1)2 

* 20 
+ (dx2j2] + (dx312 

k312 a2[G'(r)12 
(4-23) 

- - 
0 
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Again the smooth match of (x~~x~,x~) at the spherical boundary 

e = e1 or r = e between regions 11 and III requires 

x1(11) 2 x1(111) eaRn(th t) f c2 = c3 Rn(tan :) f c4 
I 

x3(X1) Z ~~(III)~aG(a//sin8~/)= 5 a tan 2 

from which the first two conditions and (4-14a) imply 

c4 =aRn( a 
5 

> 

po -7 

(4-24a) 

(4-24b) 

(4-24~) 

(4-25) 

Thus for region III, we use the scaling 

1 2 3 ta& 
(x,Y,a> - (x ,x ,x 1 c-f (a h (- 2)+ 

tan61 
a2n$, a@,&(r)) 

0 
2 (4-26) 

Notice that the G(r) is not restricted by our scaling itself. But the 

scaled medium in the ccnhcal region III has the following transverse 

dielectric constant, obtained by using (3-Ma) from the common P', 

'(III, transverse) = E aG'(r) (4-27) 
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Now since also in our original problem we require the conical section 

to be filled with the same uniform simple medium as the cylindrical 

part in region I, then we need 

. 
E aG'(r) = E (4-28) 

Thus the G(r), implied by (4-28) and (4-24a), is 

G(r) = a - cot91 (4-29) 

With the scaling geometry completed, the scaling (4-26) 

itself then gives the propagating fields in region III 

p f ,(Ql z  1 

rsine 
e 

iw&L(r-a cotB1) 

H(2) E ,w, E 
/- 

e 
iw&(r-a cot01) 

u rsinQ 

(4-30) 

(4-31) 

by using again the inverse of (3-3) and (3-6) for the present scaling 

(4-26). The resulting conical wave guide then has boundaries, described 

in the spherical coordinates, at 

0=2tan -' % (i tan 2) (4-32a) 

d % = 2 tan-l (t tan 2) (4-32b) 
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The scaled medium to be filled in this conical coaxiai region III 

expressed in the sphericai ($,99r) or the (xllx2,x3) of (4-26) is 

simply 

u I 0 (4-33a) 
s 

1 E 0 u 2 = -=- = 

t 

1 E Y 
0 a2(l + ~0~61) 

) 
r2 (1 + COS@)~(~ - cc&l) 

(4-33b) 

E. Conclusion of the u,a Loaded Matching Section 

We have achieved an appropriately loaded perfect matching 

section between the cylindrical and the conical coaxial guides by using 

the scaling method. Before summarizing the whole result of this chapter 

IV in a convenient table, we here make several remarks again. First, 

the underlying basic problem P' common to all regions I, II, and III 

is simply a parallel plate wave guide with TEM propagation. Second,' 

the scaling geometry in different regions are connected smoothly and 

ensure the continuity of the tangential fields which are the only fields. 

Third, the no-reflection at junction surfaces is very clear because of 

the no-reflection for P' . along its propagation and the smoothness of 

different scaling geometry at their junctions. Another way of looking 

into this property is that the scaling chosen possesses the transverse 

isotropy and preserves the transverse wave impedances. Such constancy 

of transverse impedances, in addition to the smoothness of the joining scaling 

geometries, clearly guarantees no reflectionand no distortion for the TEM 
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mode considered. Fourth, to realize the problem we need only an 

isotropic medium in II with its isotropy given by snn and u 88 as 

in (4-Zlb), since only a coaxial TEL% wave exists. Fifth, the solution so 

found is by no means -unique. It perhaps is the simplest one. Because 

any orthogonal rotational coordinate frame (v 123 ,v ,v ) that can carry 

its constant coordinate surfaces from a plate to spherical surfaces 

curved away relative to that plane can be used in 11 to join the cyiin- 

drical I at the left side and the conical III at the right side for the 

P' -f P scaling. Of course, each such choice needs its different 

accompanying inhomogeneous loading medium in II. Sixth, the free para- 

meters in the solution we obtained are the cylindrical radii A and 

B, the toroidal pole distance 2a, and the constant S1 on the spherical 

boundary surface dividing region II and III. These parameters are 

bounded to the extent 

O<A<B<a (4-34) 

o<e <?r 1 (4135) 

Seventh, we emphasize that the toroidal (n,o,B) is only one of the many 

admissible (v~,v~,v~).'~~~ 

Eere is the table 1 summarizing all the results. We remind ourselves 

again that for the toroidal coordinate (n,e,ip) the n = const. toroidal 

surfaces are described by (4-12a) and the 0 = const. spherical surfaces are 

. 
a 

a 

described by (4-12~). (See Fig. 1). 
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(E aG(r))= r-a cot Cl1 

and F(0) = 0 



Quantities/Region! 

Media 

( 
p (2) w= E: (2) 

AL 
g3 

Andy c(3)(3) = 

5 g3 
32 

g1 > 

Fields 

E eiwt 

H eiwt 

- 

1 

I 

sij 

II 1 III 
-----j : 

i 

t 

0 

0' 
a2 (i+c0q 

> . '* r2(1- cosel) (l+cose) 2 

coshri + COS 8)(; 01) 0 
(1 + cos 9) 

(cosh27+~~~ 
) 

e)fl+ cos e) 
2 ) (1-b coshn) 

I ! 

(now di) (j> E 0 for all regions, since CT - 0) 

(coshn + cos e) I 
%l> a sinh n 

i&Zatan$ 
l e 

iwG(r-a cot el) 
l e i 

J 
1 

e_(l)) ; i E (coshq + cos 8: 
I 

) 
34) 'G a sinh rl 

. e 
IW&& iw*atan$ 

me L 
P . . 

I 

I 

I 

%a ; J- 1 
idiF(t-a COG e,) 

e 

‘1: sin 0 I 

a 

sotice again that in the above table F(0), G(r) in general are dimensionless 
. 81 arbSXr&y smooth functions that satisfy F(0) '0, G(a/sin el) =tan 2 , and 

the choices as shown are the results of requiring the E (transverse) ' ' '7~ 
II and the '(transverse) ' E In III. Also arrows indicated at the top of 

the table denote boundary surfaces that divide the regions. 
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5 . p 9  E  L o a d e d  E a tch i n g  S e c tio n  B e tween  T w o  Cyl indr ica l  Coax ia l  

W a v e g u i d e s  

T h e  m a tch i n g  sect ion fo u n d  in  th e  p rev ious  C h a p te r  requ i res  a  

l o a d i n g  m a ter ia l  wi th ta p e r e d  F! a n d  E . S u c h  a  ta p e r i n g  o f i n h o m o g e n e o u s  

P  is difficult to  real ize.  in  th is  c h a p te r  w e  shal l  cons ide r  a  m a tch i n g  

sect ion l o a d e d  wi th fixe d  u , b u t wi th i n h o m o g e n e o u s  E  a n d  an iso t rop ic  

A . T h e  P r o b l e m  

Cons ider ,  in  a  cyl indr ical  coo rd i na te  f rame  ( p ,o ,z), two cyl in- 

dr ica l  coax ia l  w a v e g u i d e s  wi th d i f ferent  sizes. T h e  first o n e  h a s  i nne r  

a n d  o u te r  cy l indr ical  c o n d u c tin g  rad i i  p  =  A  a n d  p  =  B  E  X t A , a n d  th e  

s e c o n d  o n e  h a s  

th e  t ransverse 

its respect ive rad i i  p  =  A ' a n d  p =  B ' 5  A t'A '. H e r e  

o u te r -  to - i nne r  r a tios  X t> l a n d  X  '> l. .t A lso w e  a s s u m e  

A - 4 ' so  th e  s e c o n d  o n e  h a s  l a rge r  size. L e t b o th  w a v e g u i d e s  b e  fille d  

wi th th e  s a m e  sim p le  un i fo rm m e d i u m  o f constant  E , constant  IJ, a n d  

0  9  0 . ( S e e  Fig. 3 ) . 

N o w  th e  p r o b l e m  is to  fin d  a  p e r fect m a tch i n g  sect ion o f th e  

con ica l  coax ia l  s h a p e  b e tween  th e s e  two cyl indr ical  coax ia l  w a v e g u i d e s  

such  th a t a  T E K  w a v e  inc ident  f rom th e  left s ide  in  th e  first sma l le r  o n e  

c a n  p r o p a g a te  in to a  T E M  w a v e  in  th e  s e c o n d  l a rge r  o n e  wi thout  r e flec t ion 
. 

a n d  wi thout  distort ion. W e  a l low ourse lves  to  h a v e  var iab le  E ( ~ )  a n d  

an iso t rop ic  c o n d u c tivity o  in  th e  m a tch i n g  sect ion, b u t w e  requ i r e  th e  I 
m a tch i n g  sect ion to  h a v e  th e  s a m e  fixe d  p  as  in  th e  cyl indr ical  reg ions .  

T h e  task is to  s e e  if such  a  m a tch i n g  is poss ib le ,  to  fin d  it 

if it exists, a n d  to  look  in to ways  o f genera l i z i ng  it to  m a tch ings  o f 
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. 

l 
other kindsby the differential geometry method (DGM). As before, we 

denote as region I the left side smaller cylindrical part, as region II 

the matching part to be found, and as region III the right side larger 

cylindrical part. Also the TEM wave in the cylindrical I is 

H(4) E H(z) E 

(S-1) 

(S-2) 

B. Approach With Impedance Concept 

Before launching into full detail of EM field consideration, we 

esamine the problem by a rough impedance concept by looking at Fig. 2. 

For a perfect matching, we need the impedance to be matched all the way 

for regions I, II, and III. This can be achieved by inserting many 

coaxial conducting layers in all the regions with appropriately shaped 

boundary interfaces, with their spacings d and the thickness 6 of.each 

such sheath satisfying 

6<< d <<h (5-3) 

where X is the wave length of the TEM wave, and with the conductivity 

u of each sheath satisfying 
. . 

and ‘WE 
/ ;;-L<< d 

where L, is the longitudinal dimension of the matching section. 

(5-4) \ 
l 
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The condition (S-3) "ensures" no reflection and (5-4) "ensuress' only the 

TEH field exists. Xoreover, for a TEM wave to propagate from I, through 

II, and into III without distortion, a plane wave front in I should go 

into a plane wave front in III and the traveling time should be the same 

for waves following paths of different radii. These two requirements 

are intuitively necessary for our matching to exist. We shall see 

if they will indeed give such a matching in the. following. 

Bl. Conditions for Shape and Medium of the Hatching Section 

Now, referring to Fig. 2, we see that if we require equal 

traveling time along r?ra'X" and its infinitesimally changed version 

OO'O", we obtain 

where 

rl(0)] + &Al = [r2(0+dO) - rl(O+de)]m) f &A2 

(5-5) 

*1 
5 rl(8)cos0 - rl(e+de)cOs(e+de) = [rl(0)sinO - rl' (e)cose]de 

(5:6a) 

*2 2 r2(0)cosB - r2(O+d6)cos(B+d6) = [r2(0)sine - r; (0)coselde 

(S&b) 
. 

Here r = l r (0) and 6: = r 2 (8) describe the boundary intersurfaces 5 
connecting I to II and i'2 connecting II to III respectively. These eqs. (5-5) and 

(59 as a result of equal traveling time requirement, relate the boundary 

intersurfaces r1 : rl(e> and r2 : r2(e) and the inhomogeneous loading 
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s(a) in the conical II by 

I 
[r2' (0) - rl' (8) ] (cod - ,J 

W) 
E - [r,(e) - r,Ce)l[sine + (E(e)/E.>' ] ~ o 

2&z 

(5-7) 

Now consider the matching of impedances for each of the thin 

coaxial layers. First notice that the impedance for the TEM wave of a cylin- 

drical coaxial waveguide is (see Fig. 2) 

2 V /- z--8 
: Lr~(~outer/~ inner) 

(5-B) 
cyl. I 2r 

and of a conical coaxial waveguide is 

8 outer 
1 t4 -1 2 

2 V Z-e 
con. - I fl 

E h-I 28 e 
tw2 

inner 
-1 

This infinitesimal impedance matching on rl then becomes 

. 

(5-9) 

(5-10) 

which gives the differential eq. 
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r,‘(e) 4 ‘t 
L--- + A-- (cos3 - 1. 
r1 (0) sin8 >=o 

JE(@>lE 
(5-U) 

by expanding and using p I rp(B)sine in (5-10). Then (5-11) can be 

readily integrated to relate r,(6) and ~(9) on I'l by 

rl(e> = const. exp[ 4 de - ( f 
m 

- case)] 
sine 

(5-12) 

Here we immediately see that the r2(8) of T2 must behave similarly 

and can differ from r,(e) only by a multiplicative amplification 

constant X a 

r*(e) = Xarl(e) , Aa > 1 

where X a is greater than one because III is larger than 1. 

Therefore, with both impedance matchings and equal traveling 

time requirements, we have from (5-13) and (5-7) the differential equa- 

tion 

r'(e)(cosB - JZSjEj - r(0>(sina + (E(e)/E) j= o 
2m 

(5-14) 

and from (5-13) and (5-11) the differential equation 

r)(e) 1 - + --&y (cosf3 - 1 r(0) mm 
>= 0 (5-15) 
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30th the r,(e) of II'1 and the r2(e) of r2' which are related by 

an amplification constant ha as in (5-13), should satisfy these 

two equations. 

We here make several remarks before we proceed to solve (5-14) 

and (5-15). 'First, we choose s(6) being a function of C? only in 

II because the TEX propagation is independent of C$ and any r-dependence 

as longitudinal inhomogeneity will give rise to unwanted reflection. 

Second, the relation (S-13) for the intersurfaces rl and r2 implies 

that the transverse dimension ratios Xt for I and At' for III are 

the same 

At' = h, (5-15) 

since 

r (0 )sin@ 
AEB,lB 

tA rl(BA)sin@A ' 

(5-16) 

This constancy of the transverse dimension ratios indeed checks as it 

should because the impedance of the matched cylindrical coaxial lines 

should be equal no matter what happens in the transition matching section. 

Third, that the relation (5-13) itself should hold is intuitively clear 

if we require the voltage on each layered conductor sheath be constant - 

throughout regions I, II, and III, and if we already require the 

x 
t = y from a direct impedance matching concept for I and III. Because 

then the layered sheaths in I and III must have a similar geometrical 

outlay and differ only by a scale length. Thateach of such sheaths 
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should be linked by a sheath of constant 0 means the two intersurfaces 

rl and r2 must be similar and differ by the same scale length. 

Fourth, we must point out that the cylindrical coaxial conducting sheaths in 

I and III are only conceptual and need not be realized. Because the TEH 

wave in them does not see such sheaths. Fifth, the conical coaxial 

conductor sheaths in II are needed to ensure TEM wave there. TJhen 

(5-3) and (S-4) are satisfied, such property in region II can formally 

be treated as though it has an anisotropic conductivity 

(5-17) 

in the spherical coordinate frame (0,+,r) in region II. 

B2. Shape of the Matching Section 

Now we will solve (S-14) and (5-15) to determine the 

loading s(0) and the boundary shapes rl and r2 for the conical 

region II. From (5-14), we have 

_ +(JE(9)ld'+ sin9 = o r' (0) 
r(e) - J&te)lE - case 

(5-18) 

which can be integrated to give 

de(e) = & 
cl+r(9)cos0 

r(e) (5-19 > 

where cl is a constant with dimension of length. Inserting (5-19) into 
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(5-15), we get 

r’ (6) sin8 + (cos8 - r(0) 
r(e) cl + r(8)cosB > = 

which is a non-linear first order ordinary differential eq. for r(9). To 

solve (S-20), we try first to rewrite it as 

5 (r(e)sine) = r2(i3) 
(cl + r(0)cosB) 

which leads us further trying to separate variables for r(9)cose by 

using 

0 (5-20) 

(5-2l.) 

+-$r(B)sin8) q $$r(B)cosetanB) = tan&r(B)cos@) + rf0)cos 
co& (5-22) 

Now substituting (5-22) into (5-21) gives 
I 

-1 
sinecose (5-23) . 

which can immediately be integrated to give 

-r(B)cos8 
r(e>sine = c2e =1 (5-24) 

that gives the boundary intersurface function r(6) implicitly by a 
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0 

transcendental algebraic eq. Here c2 is another constant length to be 

determined. Notice that on either boundaries iYl or r2 ) (5-24) 

can be rewritten in terms of the cylindrical coordinates 

-2 - 
p (2) = c2e ‘1 (5-25) 

which states that the r l, dividing I and II and the iY2 dividing II and 

.IIE are nothimg more complicated than two exponentially-shaped boundary 

intersurfaces. 

Now for rl ' which can be described by either r = rl(e) or 

P = p,(a), we have (see Fig. 3) 

-2 > -acot A 
A3 pl(zA) = c2e Cl 3ce Cl 

2 (5-26a) . 

-2 3 -aR= A 
X,A z B = p(z,> = c2e CL : c2e cl (5-26'0) 

Here zA and zB are the abscissas, along the coaxial axis from the 

conical origin, of the points where the innermost and outermost conical 

surfaces meet the p=A and p=AtA cl y indrical waveguide surfaces 

respectively. (See Fig. 3). Using the inner cylindrical radius A of 

I, the transverse dimension ratio Xt of I, the inner conical angle 8 a 

of II, and the longitudinal abscissa ratio for *r 1 

(5-27) 
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As parameters, we have from (s-26) 

(l-a )AcotS R A Cl = enAt (5-28a) 

=2 
=Ael-xe (5-28b) 

Thus, with the cl and c2 so determined, the intersurface rl between 

regions I and II can be described either by r = rl(e) with r,(e) 

determined by (5-24), 'or described by p = pi(s) using (5-25) and (5-28). 

For the r2 that,divides regions II and III, we have already 

found its relation to rl by (5-13), i.e. r = r,(e) E a,r,(e>. Thus the 

description of T2 in terms of the cylindrical coordinates in III can be 

obtained easily 

-Aarl(e)cos8 -2 
p = p2(z) = r2(B)sin0 = aar1(6)sinB = Xac2e aacl = a c e'acl a2 

(5-29) 

which differs from the PI(Z) only by replacing c1 and c2 by 

'a'1 and Aac2 respectively. 

Notice that the r,(e) or p,(z) of rl and the r2(8) or 

P2W of r 2 
relate all corresponding lengths in I and III by the 

amplification factor Aa of (5-13). Now in terms of the independent 

free parameters A z inner radius of I, Xt 1 transverse dimension ratio 

of I, BA E inner half-conical angle of II, AR E longitudinal abscissa 

ratio of r 1, and Aa E amplification factor of III relative to I, we 
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refer to Fig. 3 and summarize here the results on geometrical shapes for 

all regions I, II, and III. 

I: BZ outer cylindrical radius of I = XtA9 1 < xt (5-30a) 

-r, (e) case 

rp: r = rl(5) where rl(e)sine = c2e 

-2 

P = p,(a) = c2eC1 , OCZg’Z~Z* 

=1 , O<eA<e<eB+ or 

(S-30b) 

"A =Acote and A ZB = AkZA = ~~-4 cot eA 

1%: @B I oufzer half-conical angle of If = tan tan8A) 

(53Oc) 

-2 
F*’ r = f2(8) = Xarl(e>; or P = p,(z) = Aac2e'ac1 , haZB<Z<XgZ* 

(S-30d) 

III: A' 5 inner cylindrical radius of III = iaA , A,‘1 

B' : outer cylindrical radius of III = X,XaA (5-30e) 

We remark that the XL*1 of (5-30b) will be explained in the following 

Chapter S-B3. 
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B3. Medium of the Matching Section 

From (S-19), the inhomogeneous dielectric constant ~(0) in 

II is 

E(9) "E I 
cl+rl(8)cos0 

r1 (81 I2 (S-31) 

where cl is given by (S-28a). Notice that if we insert r,(e) and its. 

'acl instead of cl for r2 into (5-191, we get the same ~(8) as a 

function of the conical angle 0 in region II. 

To study the behavior of ~(0) , of course we can plot it 

numerically. But we can get some insight by examining it aualytfcally 

without any difficulty. Now on 5 and from (5-30b) we have 

and thus 

=A-=B > o 
Cl 

Also from (S-31) we have 

5 
= rl(e} i .* - f case 1 

(5-32) 

(5-33) 

G-35) 

Now in order ta have an easy r.ealizarfon of the required ~(0) in 11, we 

require 
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- 
0 

e(e)2 E for o<eAseB< t 

because E may often be just the 

in II (S-35) 

E of the vacuum. 0 Thus with the 

requirement (S-35); we have from (S-34) and (S-33) the relations 

Cl>0 (5-36) 

(5-37) 

which explains the inequality in (5-30b). This guarantees that the 

Q and F2 are both of expontially decreasing shape for p as a functi-on 

of 2 on these intersurfaces. 

To see more of the e-dependence of s(e), let us rewrite 

(5-31) on r 1 and express e(e) as a function of 2 

(5-38) 

or 

6(8(v)) = (v + ?) 
2 

v2 -i- tan2eA e 

2(l-v) .E , XLv+-yl 
T 

(5-39) 

by using the Pi for Fl explicitly. Here v is just the zA-normlized 

coordinate of points on Fl and 
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l-h, 
T z -> 0 %nX t 

(5-40) 

Taking ~(e(v)) as a function of v, the requirement o(8) 2cE for 0 

becomes 

E(~(v))> c for O<ALbv$ 1 (S-41) 

which is equivalent to 
2(v-1) 

tan2ea 
T 

ST (T+2v)e , XRSvC1 (5-42) 

The right hand side of (5-42) is a monotomically increasing function of 

v, therefore the OA should be chosen to satisfy 

20,-l) 

tan2QA S T (f + 2All)e T (5-43) 

or in terms of At and X R for eB 

tan2Q3 s 
(l-X,)[l-1, + 2hLLnXtl 

($knlt12 
(5-44) 

So the requirement of s(Q) a E in II imposes restrictions on the 

independent parameters Xv %J and 0 A by (5-37) and (5-44). 

For simplicity of the results, let us choose 8 to satisfy 

the equality of (S-44), i.e. 
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Then the E(O(v)) satisfies 

I it2 (1 f T)* 
E(G(1))’ E l : ,  E 

h2 

+ r(r -I- 3X%) 

(S-55) 

(S-56a) 

(S-56b) 

Examining E(@(v)) for QA < 0 < OB or for Ail <v<l, we see 

that 

2 0,-v) 
d&(@(v)) - dV (+, [ (2r + v) (r + 2X$) 0,) l-h - TV] 

3 (-i-) [2r2 + 4xg + l-v c 4Xpl > 0 (S-57) 

Therefore E(O(v))' is a monotomically increasing function of v for 

X& s v 6 1. In terms of 6, these results (5-56) and (5-57) are 

equivalent to 

. - 
0 
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E(OB) = E 

E (a+ >E 

(5-58a) 

(5-58b) 

and, 

E(B) s monotonically decreasing function of 9 for 0 max sese B (5-59 > 

where 9 max is the place the maximum of s(8) occurs and is described in Fig. 5. 

This is clearly so because on I‘l, as given by (5-30b), z is a strictly 

decreasing function of p and therefore a strictly decreasing function 

of 0 for ernaxCeb8B* Looking at Fig. 2, this should be obvious because 

the outer geometrical length 00'0" is longer than the inner geometrical 

length MH'M". Therefore for OM and 0"M" to have the same constant 

phase front'the wave in II at 0 f dB should t ravel faster than the wave at 8, and 

this precisely requires ~(0 + d@) -C s(8) for 8max~8~8B . 

B4. Fields and Their Matchings on Tl 

Up to here we have only treated the matching geometry and the 

matching medium using a rough impedance approach. Now we want to see if 

the matching so obtained indeed matches a reflectionless and distortion- 

less TEM wave from I to III. 

In the cylindrical region I, the medium has constant simple 

parameters u and E, and the TEM fields are given by (5-l) and (5-2). 

In the conical region II, the medium has a constant u, an E(e) 

implicitly given by (5-31) and (5-30b), and an anisotropic conductivity 
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(S-17), which in reality can be replaced by conical coaxial conducting 

sheaths satisfying (5-3) and (j-4), in the spherical coordinate 

system (Q,o,r). In such a II, we can easily verify that a TEM wave 

E(Q) = e iw/ZVJr 
rsinO f(G) (5-60a) 

H(O), nla> - r eiwmr 

u rsinQ f(Q) (S-60b) 

can exist and satisfy Maxwell eqs. provided an induced current density 

,!r> 1 a =-- 
r'sin0 ae 

[~KLiw*GE$r 
F! f(Q) 1 (5-61) 

exist also. But the anisotropic conductivity (5-17) in II does have a 

.(r> (r) a 6. in the radial direction and can suppress the electric 

field to be transverse by providing such a current. So the fields (5-60) 

and current density (5-61) are legitimate in region II. Here the f(O) 

is an arbitrary smooth function of 8 to be used for matching conditions 

on r1 and r2. 

To match the field on I'1 between I and II, we need these 

components of (5-E), (5-2) and (5-60) tangential to rl to be equal on 

the intersurface Fle Referring to Fig. 4, we see that the tangent to 

rl makes an angle Y with the axial z-axis and 
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-r1(6)cos6 
=2 tanY = - e c1 
=1 

(5-62) 

by using (5-30b). Thus we have on rl 

,b> (6) (PI = (0) 
I .*s(: - $1 = EII c..~~ - $ - 0) $3 EI 31 (co& + Sk& cot Y> 

(5-63a) 

(0) I ,w 
HI II (5-63b) 

where the subscripts I and I1 just emphasize the regions the fields are 

in. From (5-62)and (5-63), we see that the 

consistent if and only if 

f- 
E (Q> - = (cos6 + 

clsin6 
E 

ce 
-rF(Q)cosQ/cl 

2 

(5-63a) and (5-63b) can be 

> (5-64) 

on rl. But the s(O) we found in (5-31) satisfies this relation (5-64) 

precisely. So with our appropriately shaped rl and inhomogeneous E(e), 

the matching of the tangential components of the TM field on rl can be 

achieved by one condition (5-63a) or equivalently (5-63b). This one con- 

dition then determines the arbitrary function f(a) and gives 

-iwllii;i- c 1 
f(8) = e 

cos 0 + ~cl/rl~w 
(5-65) 
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TO summarize, the matched fields in I on II are 

I: 

II: 

ioAjZ[ 
cl+rl(B)co~ e 

r, (69 r- ~~1 
L 

e = 
5 -9~ sin e 

(‘OS e + r,(8) 

I iWJjT [ 
cl-h1 (f3) cos 8 

r,(e) r- cl1 

Hp -6 e 
r sin 8 

(5-66a) 

. 

(5-66b) 

B5. Fields and Their Matchings on I'2 

Since the r2 that divides regions I1 and III is of similar shape 

to r 1' the fields just obtained from Tl matchings have no difficulty 

to be matched on r 2 l 

First, the tangent angle $, on r2 is the same as the one on r 1' 
namely $ . This is easily seen by using the p,(z) in (5-30d): 

-rl(9> cos 8 

tan 74, 
dP2(z) =1 z--a-e 

dz 
z-e 

5 =1 
(5-67) 

Therefore, the IEM fields in III that match tangentially on r 2 the fields 

in II are 

(P9 e 
iwdjiz [ 2 + (Xa-f9 Cl] 

EIII = P 
(5-68a) 



Regions 

Coordinate 
System 

Waveguide 

Intereurface 
dividing regions 
described by 
each coordinate 
system 

Constitutive 
parameters for 
medium 

e 

cylindrical (p,+,z) spherical (O,$,r) 

p = A to p=A,A 

0, ' 1) 

h 
e = eA to e = tatl+(f tan 0*) 

(0 ce*<e 5 0 <q, f B 2.k -c 1) 

rl dividing I and II: 

p=pp 5 c2e 
+-Z/Cl 

for 

zAZA cot @ A 

Constant 1-1 and E I 
and (5 s 0 

TABLE 2 

Region II 

rl: r=rl(e) 

r2: rr,(e) -harL(0) 

where r,(0) is determined by 

r,(e) sin e = c2e 
(-r,(O) cos 0) /cl 

for o<BA(ezeB 

Same constant ~1 , but 

such that 

____I_ --_-~. .- 
Region III 

cylindrical (p,+,z) 

r2 divfditig II and III: 

P=P~(z) = Xac2e 
-4 XaCl 

for 

Constant 11 and' E , 
and 050 

E(BA) >E , Eo3,) = 2 , 
and e(0) monotonically decreas- 
ing for 8 in re,,0,J ) and 

> 

e,. . 



m.. 

gfons 
zayr 

Fields 

TABLE 2 (continued1 

Region II 

CUrKent 

OnStaR 

._.--- 

0 

c1 ---)t sin 0 (cos e+ r,(e) 

Wk$Z[(cl+rlC8)cos O)r/r,C8g -cl1 
P 

Region III 

iw4iE[z+(xa-1)c1) 
,(P)= !L 

P 

0 

LnXt 
(1-X )AcotB 

c1 f kc 
A 2-Ae 

(1-X e) 
c (See caption of pig. 5 on p. 82) 
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($1 = E: e 
iw&z [ 2 + (Xa-l) Cl] 

HIII v P 
(S-68b) 

36. Summary of the Matching Problem between Two Cylinders 

We summarize the solution of the fixed-p perfect matching problem 

in Table 2. 

We remind ourselves that in this table we use A , A, (>l) , OS (from 

(5-55), which in general should satisfy (5-54)), hR (cl as implied by 

X, >1 and s(0) 1 E), and Xa(>l) as the free parameters of our problem. 

Also the conductivity $I in II is only needed for its rr radial com- 

ponent and in reality can be replaced by conical coaxial perfectly con- 

ducting sheaths or radial conducting wires satisfying (5-3) and (5-4). 

c. Approach with Fields Concept 

In the previous Chapter 5-3, we see that the necessary requirements 

on circuit impedance and ray travelling time indeed result in the field 

matching. This may seem to be a lucky coincidence. But all these can 

be understood and expected more easily and obviously from an approach 

with fields concept for the original matching problem. 

First, let the problem P still be described as in Chapter 5-A. 

Let the anisotropic conductivity in II be described by (S-3), (5-4) and 

(5-17). Then the reflectionlessness in II obviously dictates the e(8) 

being a function of 6 only in 11. Second, requiring the field in III 

to be distortionless TEM gives 

eiw&F(z + K) 
p = - 

III P (5-69a) 



(5-69b) 

where K is a phase constant. Third, the use of the o in II for z 
surpressing mode to be purely TFJ as the simplest matching possibility 

makes the wave form in II as (5-60). 

Now, consider the intersurface I'1 between I and II. Let this 

intersurface be described either by r = p,(8) or p = pl(zl) where 

the al emphasizes the description for rl. Prom the tangential field 

matching on %' clearly we must require (5-63) which immediately gives 

E e 
/--- - = (cos Q =t sin e cot a(e)) & (5-70) 

where $(e) is the angle I'1 makes with the --z axis. Substituting 

the explicit expressions of the fields in I and II and (5-63) on rl, 

we obtain 

-iwG rl(S)sinS cot*(e) 
f(e) = e ' (5-71) 

cos 8 + sin 6 eot$(e) 

Doing the same thing on I'2 which is described by r = r2(8) or 

p = p2b2)9 we get 

ccos 8 + dn e c0tQ2(e)) (5-72) 

which, with the (5-70), implies 

(5-73) 
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where 9, (@I is the angle T2 makes with the --z axis. Similar 

to (5-71) we also get 

-i&ZIr2(e)sina c0tqca) + Kl 
f(e) = e' 

cosf3 i sin8 cot+($) 
(5-74) 

in which (5-73) has keen used. 

To determine the $(0), rl(B), 2 r CO>, pl(zl) and ~~(2~1, we compare 

(5-71) with (5-74) and get 

s 
[r2(a>-rl (O)]sine cot$(B) + K = 0 (5-75) 

But on rl we have pl(zl) = r1(t3)sina and tan$ = - dpl(zl)/dzl, and 

on r2 we have p,(z,) = r,(e) sin3 and tan$, =-dp2(z2)/dz2, therefore 

(5-75) becomes 

(5-76) 

Since the right hand side of (5-76) is a function of z1 only, 
. 

so must be the left hand side. Thus Pi hl(zl) can be a function of 

=1 only. Because of (5-73), we can conclude similarly p2(z2)/pl(z1) 

can be a function of z2 only. Thus 

p2(z2) _ - = Aa 
'pl(zl) 

(5-77) 
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where X is a constant. a Combining (5-76) and (5-77), we have for 5 
-2 f 

ppkzl) = c2e 
=1 

-rl (0) case 

r1 : or rl(B)sine = c2e '1 (5-78) 

where the constant c2 EK/(Xa - 1). 

Now, from (5-78), the constants cl and c2 can be determined just 

as in (5-26) and are given by (5-28). Then (5-77) yields again (S-30d) as 

the description p2(z2) or r,(e) for the intersurface T2. Also 

from (5-78) we have 

- -2 1 d P~$) c2 - 
-rl(e)sine 

taru$(5) = - d 2 
1 

f c e Cl e Cl 
a 

(5-79) 

which with (5-70) implies 

a(e) = E(c0se + 
cEsinO 5 2 

-rl(6)sine = c(c0se + - rl(0)) . (5-80) 

ce Cl 
2 

precisely as obtained in the pretious (5-31). Finally, the complete field 

expressions im regions II and III are obtained by inserting K = (Aa-l)c2 

and f(9) from (5-74) into their respective expressions (5-60) and 

(5-69 > . If, furthermore, we require that in region II s(e) >, E and 

de,) = E, then we obtain results all identical as listed in table 2, 

In conclusion, we see that a field approach to our origina 

matching problem directly can yield all the results in a logical end 
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clear way. Besides, along the way it also makes clear why such a matching 

is possible in reducing the two tangential matchings of E and 3 to 

one condition by an appropriate choice of f(B) l Also, plots of the 

boundarv surfaces i', and P, and the ~(0) are shown in Fig. 5. 

D. Scaling into the Parallel Plate Waveguide P + P' 

Ue have already solved the special matching problem P concerning 

two cylindrical TEM waveguides with fixed - P loaded matching in two ways. 

Now we want to see whether the P can be solved by using a DGX 

scaling technique via which a general procedure to obtain matchings 

of other geometrical shapes may reveal. To be specific, we want to 

scale P into its simplest parallel plate version P'. If such a 

P' can be obtained satisfactorily, then it may be possible to attain 

various different matchings by the P' + P scaling each with a different but 

appropriate geometry of particular ohoice. 

Dl. P + P' in Region I 

Now for P the region I is described in Chapter 5-A. To get the 

scaled region I' for the scaled P', we choose (4-2) again: 

(5-81) 

because such a choice preserves the transverse wave impedance and gives 

constant transverse C=E and n = u for the present P+P'. _ 

The results for the I' of P' are similar to those of Chapter 4. 

Namely, we have a parallel plate waveguide with plates at 

0 
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- . 

(5-82) 

11 XtA 
X ‘X u 30&n- 

0 

with a medium given by 

ij 
1 

L- ,lij 

( 

0 1 
E =- = o1 iy-)2 ?J J 

(5-83) 

in the Cartesian 123 (x ,x ,x 9 coordinate frame, with a right side boundary 
I 

intersurface $ given by a linear funcrion 

I' Fl : 3 c2 F] x = cl [in ;;- - a 
0 

and with a scaled TEM wave 

(l),,% eiUG x3 
eI a 

(2) = 
hI /- Ee iw FIE x r3 

(5-84) 

(5-85a) 

(5-85b) 

r - 

I)’ 
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92. P * P' in Region 11 

Now for the P + P' in II, we choose for II the scaling 

(B,$,r) - (u(B),cr$, +j% - (x 
1 2 3 

,x ,x > 

where the $-matching results the choice c$, the orthogonality results 

u(e), and the fixed 1-1 results the choice pf x3 as linear function of 

r. The metric geometry of the scaling,is then 

+ 82(&2 

(S-86) 

(S-87) 

described by 
II' 

The rl , r = r,(e) in II, gives the 5 as the 

intersurface between I' and II' by 

II' 
5 : r,(e(xl)) = +3x3 + ic (5-88) 

in terms of the (xl 3 ¶X 1 in II.', where 0 = 9 (x1) is the inverse function 

of x .L = u(e). Since (5-84) and (5-88) should'describe the same boundary 

intersurface r; , therefore 

where u,B,k are constants of the scaling. But the r,(e) is known 

implicitly through (5-3Ob), thus the x1 = u(6) or the 6 = 9(x'> 
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is determined implicitly by 
c2 

\ -CBcf[Rn ;;;;- - $1 + k)cose 

i k) sin8 = c e 2 Cl (5-90) 

Also the Pi, scaled from P2' as intersurface between II' and III' 

becomes 

p': x3 =2 
2 = Xacl[!Ln -L - cL 

PO 
2, -i-f (A a - 1) (S-91) 

if it is viewed in II'. Notice that the two e,xponential intersurfaces 

5 and P2 for P becomes simply two straight line plane intersurfaces 

r' 1 and Pi for the scaled parallel plate problem P'. 

D3. P + P' for Region III 

Because the geometrical similarity of I and III, "naturally" we 

try for the scaling of III 

(P,$,Z) - (ah - a#, =) - (x1,x2,x3> 
AP a 0' S (5-92) 

where the cr$ and the, X,p, instead of p, are obvious choices, Now in III' 

the ,:I", scaled from the F2' p = p,(a) of the (5-30d), becomes 

III' sx3 f I 
r2 c2 : XaCl ' -I- E = Rn p, (5-93) 



72 

Since (5-53) should be identical to <5-91), as they describe different 

expressions of the same interface r; , we have 

s=l 

; P = (ha - 1) ; 
(5-94) . 

D4. Determine the Scaling Constants 

We have p,, a,k,%,s, and p as constants of scaling. Already 

(5-94) reduces s and p in terms of k and 8. To determine the 

other constants in terms of parameters in P before the scaling, we 

compare the length along 8A and eB of IT in P- to the lengths along 

and xl u of IS in P'. We get 

% 
rl (8,) 

-l>r= % - 11 ii- (Aa - c2 1)clRn ;i- 

(5 
_ l) rl(eB) - = (la 3 - 1) ; + (Aa - =2 l)clRn hi 

t 

(5-95a) 

(5-95b) 

which immediately gives 

=2 rl(eB) Itn y - rl(BA)m t o A . 
lc= Rnh t (1 - Aa) tq 

(5-96a) 

rl (e*) - rl(eB) = se& - P 2 
A 

On. 

+A 2 
t tan2B 

B= A 
Rnh, - $1 

. - 

(5-96b) 
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Asto p and 
0 

CL, they are the degrees of parameter freedom left in 

the P+-P' scaling. 

D5. Summary of the Parallel Plate Problem P' 

We have found a parallel plate Cartesian scaled version P' 

of P, the original matching problem and its solution. The regions 

I'., II', and III' become a combined and extended. parallel plate region. 

The scaled media in I' and III' are simple and are the same. The 

scaled medium in II' is complicated with inhomogeneous %I" 

ini1omogeneous +I'9 and longitudinal perfect conductivity gII,. 

The scaling geometry itself is given explicitly by (5-8) for I', 

and by (5-92) for III'. The scaling for II' is given implicitly 

by (5-86) and (5-~0); Also all but two scaling constants of P' are 

found in terms of parameters of P. The two scaling constants p 
0 

and a left undertermined represent the degree of parameter freedom 

inthe P+P'. 

E. Concluding Remarks 

In this report we have investigated and developed the differential 

geometry scaling method for EX theory and examined its applications. The 

essence is, at least two of the three constitutive parameters y,z, and 

u z have to be allowed to change according to the scaling need. With such 

accompanying change of scaled media, the scaling method is very powerful 

in creating an equivalent class of problems and their solutions from a 

given problem of known solution. Through this we can obtain solutions 

to many interesting problems from the knowledge of a simple problem. 



-74- 

,. 
0 

. 

In the applications we solved two problems. One is a p and E 

loaded matching section between a cylindrical and a conical coaxial TEM 

waveguide. The other is a fixed-u matching section between two cylindrical 

coaxial TEM waveguides of different dimensions. 

In the fixed-p matching, it seems possible that similar matching 

problems of different geometry can be obtained by some variance on the 

inverse scaling of the basic problem P' that we have found in Chapter 5D. 

This will be of interest for further investigations. 

Finally, if we relieve the restriction of being in orthogonal 

scaling, more problems can be treated by the DGM. For example, non-normal 
- 

incidence and Brewster angle transmission can be used for the reflection- 

lessness requirement. Also, E-mode or H-mode in the waveguide can be 

treated easily. These and many other aspect of application of DGM will 

also be of interest for further investigation. 
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Fig. 2; Geometry of Infinitesimal Impedance and Travelling Time 

Considerations for Chapter 5-B 
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Fig. 3; Geometry of Fixed u, Variable E, and Anisotropic 
Conductivity Matching Section for Chapter 5 
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Fig. 4; Tangential Field Matchings on rl Between I and II 
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F ig. 5  Plots of r,(e), r,(e) of rl, r2, and  a(8) as Function of 0  

The  equations for r,(0) of I'1 and  r2 (8) of r 2  as given 

in Table 2  on  p. 62, C~II be  simplified by normalizing them 

relative to their value at the outer conic& angle 0  3  - 

rl(e> r2 (0) 

rl(BB) 
= - E f(e) 

r2 (6,) 

which satisfies 
cosa, - f(9)cos8 

f(e) sin8 = sinea e  
l-coseg 

Also, correspondingly the expression for s(8) is &!a, 
(l-coseB~ 2  

E 

[COSB + f(0) 3  

Notice that there is only one  parameter EB for the curvea f(e) 

and  s(e)/,, and  each of the following plots for f(8) and  

&.(0)/c is for a  different parameter value BP. Furthermore, 

we have f(e) + 01  as 13  + o  and  f(8)sin0+ o  as 8 + o. Also, 

since f'(e) -t - ~1 as 6  * o  and  f'(Sg)>o, therefore the . 

m inimum of f(9) must occur at 8  < 8  m in B and this em in satisfies 

f(B)si&tan6 = 1  - coseB . F inally, since (-4' > o  at 

8  =oand<oate=6 B' therefore the maximum for E(e) 

must occur at 8  <8 max B and this 8  satisfies max 
f2(e)si.n0 + (l-cos8P)f'(8) = 0  . 
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