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ABSTRACT

A differential geometry scaling method;Stemmins from Baum's pioneer-
ing work, is thoroughly explored and developed for electromagnetic fields.
This method creates a class of equivalent electromagnetic problems P
each described by a complicated geometry and having a complicated medium
from an electromagnetic problem P' described by a simple Cartesian
geometry and having a siﬁple medium. Application of this method to co=-
axial waveguide structures 1s examined with specilal emphasis. Various
conditions and limitation of the method as imposed by special choices of
geometry, medium, and field modes are obtained. Alsco two specific prob-
lems are solved in detail by applying this scaling method. In one a
perfect matching section between a cylindrical and a conical coaxial waveguide is
obtained by appropriately loading the section with inhomogeneocus o and
g, and all relevant electromagnetic quantities and geometrical boundaries
are tabulated. In the other a perfect matching section between two
eylindrical coaxial waveguldes is found with the appropriately shaped
matching section loaded by inhomogeneous ¢, anisotropic conductivity
g} and constanﬁ . All results are tabulated and plotted. Also,we find the
parallel-plate Cartesian scaled version of the fixed p matching which
mey give matchings of other geometricél shapes by some variances in its
P'= P scaling procedure. This aspect, and the non-orthogenal scaling
which can make use of the Brewster angle transmission in a natural way

are discussed for work of future interest.

Keywords: Electromagnetic pulses, differential geometry, waveguides




1. INTRODUCTION
A. Background and Motivation
It is well-known that in mechanics and fluid dynamics one can
transform or scale one problem and its solution to create a whole class
of equivalent problems and their solutions[l]. Different problems and
their solution behaviors of one eguivalent class may look very different,
but among them there are properties they share. The essence of such

a sgcaling is to get appropriate dimensionless parameters that are common

to them all.

However, in electromagnetic (EM) theory the nature and appli-

(2]

cation of such a similar scaling method , except for conformal

(3]

s has not been given extensive attention.

[4]

mappings of static fields
Only a few aticlss have recently been devoted to it The purpose of
the present work is to investigate and develop for EM theory the nature,

the limitation, the usefulness, and the application of such a scaling or

similarity transform by using a differential geometry approach.

B. Description and Qutline

In this work we try to preéent the EM scaling method, from the
most general theoretical formalism to the detailed solutions of some
specific problems, in the simplest possible way that makes the reading extremely
easy. We do not try to achieve the ﬁrivial task of being concise.
On the contrary, we spell out most of the detail for such easy reading.
We also tabulate the results for immediate engineering use.

In Chapter 2, we explore and develop the general differential
geometry scaling method, which carries an EM problem P of compli-

cated gecmetry into an equivalent problem P' of simple Cartesian or other simple




geometry with its accompanying transformations for medium, gecmetry,
source and field. The advantage of such a procedure is, hopefully,
to make the complexities of the geometry and of the medium "'cancel each
other in such a way that the resulting problem is simple and solvable.
In Chapter 3, we study the time independent‘scaling for special cases.
These include orthogonal coordinates and diagonal media, with coaxial
systems especially emphasized.

Chapter 4 presents the inhomogeneors wu,e loaded perfect
matching between a cylindrical and a conical coaxial waveguide for
TEM waves. Chapter 5 presents the inhomogeneous &, constant p, and
anisotropic . ¢ loaded matching section between two cylindrical
coaxial waveguides for TEM waves. Chapter 5-E contains conclusion, .
remarks, and discussion of works of possible further interest.

Furthermore, the reader interested in a fast grasp of applicatioms
may skip the general theory in Chapter 2 and part of Chapter 3 and start
at Chapter 4 if he sodesires. 1In doing so several "whys" referring to the
previous general theory will arise, but despite these we have taken the
effort to make such reading still easy and effortless.

Concerning notation, standard three dimensional wvecter analysis
cne is used. Also all results in the two aforementioned examples are in MKS units.
In the general formaslism, we have set the wvacuum My and €, equal to
one so the u and e written are actually normalized with respect to un_  and e .
This practice is just to keep the notation consistent‘with differential
geometry and generalized EM theory, and an appendix is attached for the
full recovery to MKS units.[7} Alsc part of this report includes the information

(5]

which is contained-in a paper to be published elsewhere.




2. GENERAL DIFFERENTIAL-GEOMETRICAL EM SCALING METHOD (DGM)
A. Generalized Maxwell's Egs.
The usual Maxwell's eqs. that describe the classical EM fields
in an inertial frame[é] have been well tested and are fully accepted.
In this case the observers who obéerve, measure, or ''see' the
fields are inertial observers. That is, they are attached to or fixed to an

inertial coordinate frame {X"} = (x" = T, Xl, XZ, X3} such that each

of them has his spatial location (Xl. X2, X") = constants. The imertial
frame {X"} can be described by a Cartesian geometry that has the differen-
7]

tial length square [

1s)% = am? - axh? - xH? - xH?

(2-1)

Let us consider a system of observers {0} attached, in the
above sense, to a coordinate frame {xu} = {x° = t, xl, xz, x3) which
is not an inertial frame and cannot be describeé by a simple Cartesian
geometry (2-1). Then to investigate the EM fields as "seen' by these
observers {0} we should use the postulated generalized relativistically
covariant Maxwell's eqs. These egqs. have been so postulated because
of their "naturalness" in a certain formalism - namely tensor calculus -
and have been tested in special cases to a certain extent[s]. This
relativistic classical EM theory is certzinly correct for all known
cases in special relativistic phenomena, and is probably correct to g high
precision for general relativistic cases - within classical field theory.

It is certainly the most popular and currently accepted one. We shall base

our investigation on this generalized relativistic EM theory to get the most




general EM scaling method which can be applied to moving media, time
changing media,yEM fields in gravity (gengral relativistic EM fields),
accelerating media, and of course inhomogeneous and anisotropic media.
Now suppose we have & system of observers {0} attached to a
general coordinate {x"} = (x° = ty, X, xz, x3} where x is the
time coordinate and xl, xz, x3 are the spatial coordinates. The
geometry of this coordinate frame {x"} can be described by expressing
its invariant length interval ds in terms of the metric coefficient

° 9
functions guv(x s xl, x2, x3) as[ ]

d52 = E

o,V BV _
T g, dx dx = g dx dx (2-2)
u=0 v=

0

Here and in this work we have used the summation convention that repeated
indices are summed over their whole ranges, except explicitly stated
otherwise. Also, Greek letters up,v, ete. stand for 0, 1, 2, 3 and
Roman letters i, j, etc. stand for the spatial 1, 2, 3. To these {0},

(10]

as the result of the relativistic EM theory, the Maxwell's eqs. become

ta

I = 3. e - /’:g E-cxe]l=20 (2-3)
[ BT TR e

¢ <]

g tExel =L /e FEErexa @0
z == ° oo ~ I

’




f-2_ , . .
Vel D et oy ek =L L+ ] (2-5)
[o]s] -~ ~ b~ /gOO ~ -

(2-6)

(11]

The notations used here have the following meanings. The field vectors
F, B, D, and § have their usual meanings of macroscopic electromagnetic
fields as electric intensity, magnetic induction, electric displacement,
and magnetic intec;ity respectively, with respect to {0}.

The q and J are the usual charge and current density relative to

{0}. The vectors are decomposed or expressed on the observer's local spatial

unit vectors ® 1) which point in the pure spatial direction and are projected

from the coordinate x -directions to be perpendicular to the proper
time direction. The dyadicllz] e 1s defined by its components

i3 .

(eytd = € (1) (2=7)

where e(i)j is the projection of the jth covariant coordinate basis
T

vector el on the ith local spatial unit vector &1y ° The e is
the transpose of the dyadic e, i.e., (eT)lJ = (e)Jl . The vector ¢

. o
is defined by () = ® (1) which is the ith component of the covariant

time-coordinate basis vector omn the e(i) . Also the vector operators
have their usual meaning and the quantity g = det(g v)'
I matrix
Notice that if {x } is Cartesian with a diagonal/ g,

(1,-1,~1,~1)
as (2-1), then (2-3) to (2-6) immediately reduce to the familiar Maxwell

eqs. Since in thils case we have e =1U (unit dyadiév c=0, g= -1, and




g =1, and thus for example the term on the left side of (2-4) becomes

o0

and (2~4) reduces to

= V*(ExU)=sYxE- -U-E VxU=Y9YxE
(2-8)
3
VxE=-- . Other egs., for this special case,

reduce similarly to the usual familiar Maxwell egs.

In this work, we are considering scaling for linear media only.

Thus, we can assume the constitutive relations for these observers

{0} fixed in that {x"} as

1y

Here the dyadics ¢,

for a genmeral linear

at positions of {0}

=g *E+a B (2-9)
=8 + E4+K -+ B (2-10)

u, B8, K, © again have their usual meaning

media, and are local guantitative of the medium

Also, if there are perfectly conducting boundaries, they are given by

F(x) = 0 on which E has no tangential components. The above descriptions,

i.e. the Maxwell's egs. (2-3) to (2-6), constitutive relations (2-9)

to (2-11), and conducting boundaries ¥(x) = 0, together with appropriate




boundary conditions at far away define an EM problem which we call P.Elg]

B. The Gemerazal Scaling P + P'

Now a scaling method can transform the problem P into an EM
problem P' which is in a frame of simple Cartesian geometry and has
correspondingly scaled medium properties, source strengths, and boundary
conditions to be described in the following. To do so, we first define

the scaled "mathematical' or "ficticious" EM fields (e,b), (d,h) by

gE%/:g'ng(lj.x?) (2-12)
B
? =z /-g ?T o [ —+ ¢ x E] (2-13)
) gOO
— T D
? = v~ e [ — - cx g] : (2-14)
~ gr
) Q0
h = _—é V=g gT x (H x e) (2-15)

in the coordinate frame {xu} which is now taken to be Cartesian with

the simple metric geometry described by

as? = at? - (axH? - @xd)? - @xH? (2-16)




Here and in some of the following, we define double operator () for
*, ¥, :, and ¥ between two dyadics a8 M () N by the convention
that the upper operator operates first on the inner indices and the

lower cperator 6perates next on the ocuter indices. For example,

" in component form we have

o % = ol3k I Rk (2-17)
o E i g it gike K gm (2-18)

ik

ete,, where n +1,-1, or 0 if ijk are even,odd permutations of

123, or otherwise.
To proceed with the scaling, we then define the scaled
charge and current density source p and 3§ in this so-considered

Cartesian frame {x"} by

p = /:-E(—g-—-i-c-.:r) (2-19)
Vg -
00

i= /SgI. e (2-20)

Then the Maxwell's eqs. (2-3) to (2-6) for these just defined "ficticious"

fields assume respectively their familiar forms




v-b=20 (2-21)
| ab

Y x ? = -7 (2-22)

v..ds=op (2-23)

Txh=i+i-d ‘ (2-24)

TEIFITEE S

in the usual simplest Cartesian sense. That is, these "ficticious"

fields and sources are taken to be in an ordinary Cartesian coordinate

frame {x"} with metric geometry (2-16), and their vector components

are expressed on the orthogomal Cartesian spatial unit vectors in

that {xu} which is now considered to be Cartesian after the scaling.
To complete the scaling, the accompanying scaling of the

medium's constitutive relations becomes

(2-25)

d=%-e+A-b
h=3B"*e+X-b (2-26)
i=3 e (2-27)

where the new ficticious constitutive parameters are expressed in terms

of the original ones of (2-9) to (2-11) by




10

g2 T J-cxp) - @ Ea 4/ Lt (F=-cxB)
= 2'/3__ % < ~ z = = g ~ ®
o0 00
- 8] x (¢ - &) (2-28)
| . .
Asvg e -] -exXl- ¢ {2-29)
- gOO
BE%(e§eT) [%B-(ér§é)-(K-é)x(c-é)] (2-30)
goo X T
AE > (exXe’) K- 2 {2-31)
Jz 25 0. @ E0 (2-32)

Here eT is the transpose of e, i.e.,(eT)iJ = (e)ji . Also, & is the

inverse of e and always exists since det[(e)iJ]+0 .
Finally, the scaled boundary conditions are given through
(2-12) to (2-15) and (2-27) to regulate the ficticious fields behaviors on the

scaled shape of boundaries in the Cartesian frame {x"} . The

mathematical description of such scaled boundaries in the scaled and

taken-to-be Cartesian frame {x"} 4is the same as its previous
mathematical description in the original arbitrary coordinate frame {xM}.

For example conducting surfaces, if any, are still described by




11

F(x) = Q in the scaled Cartesian frame {xl}, on which the scaled e

I

satisfies

N - (8 x e) - éT = 0 T (2=33)

where N is the normal of the conducting boundary surface F(x) = 0.
The above considerations, from eq. (2-12) and onward, describe how to obtain
the new "fictitious" Cartesian problem ©P' from the original problem
P 2and give the relations between these two. Apparently, the reduction
from P to P' with greatly simplified geometry and differential
eqs. is achieved at the expense of the much complicated medium
properties. However, we must first realize that the scaled "fictitious”
fields aud "fictitioﬁs" problem P' are the equivalent of and are just
as real as the original fields and problem P. Thus they can play a
reverse role with respect to each other at our disposal. We can require
the apparently complicated medium properties (2-25) to (2-32) to be
simple enough so that we can solve or know the solution of the scaled
Cartesian problem P'. Then through the inverse scaling P' -+ P we
can obtain a whole class of problems P each with a known solution.
Diffefent problems P belonging to the same class just correspond to
differeht choices of the metric of the scaling geometry %nﬂ The advantage or the
purpose of the scaling method in addition to being able to investigate
the whole claés of P's by investigating one of them, lies in the fact
that one may choose the geometry and medium in such a way as to make

their complications cancel each other sc that the resulting problem is

simple, solvable and possesses certain desirable features, This is




12

precisely what the following work will demonstrate.

c. The General Irvirss Scaling P' = P
Since in the application of the scaling method, we need the
inverse scaling P' -+ P just as much as we need the scaling P + P', we

thus list the inverse scaling for P' -+~ P "below. The fields are inversely

scaled by

=125 (e x2) (2-34)
/g = ~ oz
B =+ Lo 2 - [b+ex s ¢l (2-35)
- e

vE
D=—222.[d-hzx8&l . ] (2-36)
-.v/:é‘:.....:-.

-1 . T
H=——=2x (hx &) (2-37)
Y

and the sources are inversely scaled by

Y
800 (2-38)

[¥a)
)

(p-C'f'j)

-8

(2-39)

TS
.
(®

;
T Y-g
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Also the inversely scaled medium's properties, i.e. the parameters e,

a, B8, K, and o of the problem P in egs. (2-9) to (2-11), expressed

in terms of the §&§, A, B, % and Z of P' in egs. (2-23) to (2-27) are
- N 1l ~ x T N
€= Vgoo e EE (E+c + &x B) (eXxe’) +(A+c:ex ) e” x ¢]
(2<40)

a =8 (A + ¢ § x é) (2-41)

g = %— @ldey . elxe % 3. (e §eD) (2-42)
ge—2— T 82 a7 (2-43)
= ZT/g = = = =

oTe)
; S%E'Z'(ﬁxg) (2.44)

D. Remarks
From the above, we see that the scaling P + P' or the inverse
scaling P' + P are actually equivalent. The problem P in any frame
can be scaled into a problem in a Cartesian frame and vice versa. 1In
manipulating the scaling processes, we should make sure the EM problems
obtained have correct dimensions andvrepresent true physical EM fields.

For this reason the guv ‘metric coefficients should be made dimensionless.
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Also, we cén clearly see from (2-28) to (2~32) or from (2-40)
to {2~44) that the nature of the medium after scaling depends on the
scaling geometry as much as on the ﬁature of the medium before scaling.
This, plus realizability of the medium, poses wvarious restrictions to

the application of the differential geometry scaling method.
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3 . SCALING IN SPECIAL CASES
For the P - P' scaling, the part of mixed constitutive parameters

A and B in (2-25) and (2-26) that relate b to d and e to
x ® = =

=

o

are caused by two facts. As can be seen from (2-29) and (2-30), these
mixings are caused pértly by the medium's own constitutive mixings

a and B in (2=-9) and (2-10), and partly by the non-time-orthogonality

as
= ~

of the frame {xu} with 851 +.O which gives rise to et = e(i)° . If

[l

we restrict ourselves to time orthogonal frames, i.e. only dealing with
frames with 8yy = 0 which exclude some particular non-stationary
non~inertial frames such as accelerated frames, rotating frames, and
frames of generally time changing gravitation, then c = 0 and the scaling
is simplified. Furthermore, we restrict ourselves for the present

interest to media which have no electromagnetic mixture in their con-

stitutive relations, i.e., a = g = 0. Within these two restrictions,
i.e.
e=s0 , (3-1-3)
a=8=0 ‘ (3-1-b)

we shall consider the following further restricted speéial cases.

A, Diagonal Geometry

If the original arbitrary coordinate frame {x'} has a

diagonal metric, i.e.

gy = 0 for p 3 v (3-2-3)

such that :
2 2 2 2 )

as®= gg(a8)"lg;axh (g,0%) %+ (gga) P1=slaelea0®  (3-2-0)

where dcz is the three-dimensicnal invariant length square and
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Iguu [< = g, {no summation here)

(3~2-0)

then («a):"j = 513/gi (no summation). For this case, the P + P' scaling

for the fields (2-12) to {(2-15) reduces to

SESES.
-b = g,g,85 ¢ * B
d =888 "D
h=g, 28

where the dyadic or matrix & = (e)—l » and
1
Coy —= 0
@13 = BiJ/gi =f81 1
0 1
g3
i i ! 0
@™ = g8 = g,
0 g
3

(3-3)

(3-4)

(3-5)

(3-6)

(3-7~-a)

(3=7~b)

Also, the sources are scaled, from {2-19) and (2-20), even more simply
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for the P = P°F

P T 88y85° (3-8)

17 818832 ] (3-9)
But with this special restriction, on geometry the condition (3-2)

and on media the condition (3-1-b), the most simplified scaling relations
are the comstitutive relatioms. These relations (2-28) to (2-32) for

P -+ P' reduce to

218,8

g A28 . e (3-10)
= go = = =

A=3= 0 (3-11)

- g18,8

n = (A) g e s p.e (3-12)
z = &, = z =

Z = 88,8580 - e (3-13)

such that for problem P' we have d =% + e , b=n « h and
- b

~
=

j=7 e, In the above u = (K)‘l so that B=yu « H for P in the present

case. Also, the inverse scaling P' - P for this case is obtained

simply by the inverse of the above magrix relations (3-3) to (3-13).

We will not write them out.
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Notice that for this special case, by using & coordinate frame
of diagonal‘metric, a problem with a2 "non-mixed" constitutive medium
still scales into‘a problem of the same nature. But the inhomogeneity
and the time-dependence of the géometry can be transformed or scaled
into such properties of the medium while the geometry is left simple and

constant.

B. Diagonal Metric with =3 =1
This case corresponds to orthogonal curvilinear 3-dimensional
coordinate frames in Euclidean space and leaves the time coordinate
unchanged in the scaling. Since this is of particular interest to us,
we now investigate it in further detail in the following.
Bl. Diagonal Metric, £, = 1, and Diagonal Media
If the £, E and S for P are also dlagonal, i.e.
they have only diagonal elements in their matrices, then from (3-10)
to (3-13) we immediately see that the scaled medium fof P' 4is also
diagonal. Thus requiring both media before and after the diagonal scaling
to be diagonal imposes no further restriction on the geometry itself.
B2. Diagonal Metric, B = 1, and Uniaxial Media

If we require both P and P' to have uniaxial media, i.e.

£ 0 50
g = e £ = £ (3-14)
s O n 0
e " ] n (3-15)
0] Mg 0
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g = s o= ¥ (3-16)

then a certain restriction on our geometry is imposed, and as a result
the abdve medium parametears are further related. From (3-10) and (3-14)

we immediately have

81 = 32 (3-17)
and thus
g = gy ¢ (3-18-a)
(g))°
53 = 25 €3 (3-18-b)

The same restriction gy = 8 gsatisfies (3-15) and (3-16), and gives

similar relations

n= 83“ (3"19‘3)
(gl) 2
Ny = s Mg (3-19-b)
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and
I=sg (3-20-2)

(3-20-b)

For this case, the restriction of uniaxiality on all gs E» and

Yy with respect to the same axis for both P and P' requires the

scaling diagonal geometry be also "uniaxial® with g, =8 Notice that

9¢

in this case, if we consider TEM wave propagation with respect to the
1L

x°-axis, then the transverse "wave impedances"[ ] satisiy

/f_ = /“é_ (3-21)

and are unchanged during the scaling. This property will be used later

in the next Chapter. Also Mg and g, do not enter the TEM problem here.

3
Notice that a coordinate frame with metric satisfying (3-17)

can be obtained from any orthogonal coordinate frame (vl, v2, v3) with

[15]

metric

as? = «, avty? + (fzdvz) + (:E3dv3)2 (3-22)

fl/f2 E function of vl only

2

To do so, we simply transform (vl, v, v3) into (xl, x2, x3) by
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xl H (£./£,) dvl + const
1°72
2 _ 2
X" = v
3 -
x3 = F(v3) v o= k) l(:{3) (3-23)

and the resulting metric for (xl, xz, x3) is simply

2,..3,2
(f3) (dx™)

is? = (f2)2 [@xh)? + (@xH?] +
(7 L)) 12

(3-24)

A coordinate frame (xl, xz, x3) so obtained from an orthogonal

2 3
(vl,V.V)

of (3=-22) -is ready to be used in scaling involving transverse
isotropy or uniaxiality.
If the uniaxiality axes for ¢ L, and ¢ are not the

same, still further restrictions are imposed. For example, 1if u is

uniaxial relative to the xz-direction such that

ur

]

=
~N

then, with ¢ and g still required to satisfy (3-14) and (3-16), n

can be uniaxial with condizions in addition to (3-17)
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DT gl ooty (3-26)
and
| 0 ‘ T
5=gl/‘;: u fogTe s/ Hy
2 0 Hy
(3-27)

B3. Diagonal Metric,‘ g, £ 1, and Isotropic Media
If we restrict the media of both P and P' to be isotropic,

then the scallng is severely limited. Now such restrictions

rel o ptHy s goey (29

feey L opeay . [Ly 2
immediately gives

8, = 8; T 83 (3-30)

§=§ = §= g (3-31)

from {3-10) to (3-13).
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There are only two coordinate frames in the Euclidean

space that can satisfy (3—30)£16] They are namely the Cartesian frame itself

with dS2 = (dT)Z-(dX)z—(dY)z-(dZ)z, and the inverse Cartesian or inverse sphere
2
frame with dS2 = de? - S[d)2 + @)% + @)W (> + y° + 2%) which is

obtained by inverting the Cartesian coordinate with respect to the sphere

5
%2 + v2 + 2% = 2% ien v[x2~+y2+z2 /x2+Y2+z‘=a2
C. Generalized Coaxial Geometry
For the geometry with g, = 1, a generalized coaxial coordinate
2
frame {vl, X = 9, v3} has metric coefficients as given in the invariant

length by the non-orthogonal

as? = (£, avh? + p%ae? + (1,097 + 22 javley’ (3-32)
Here ¢ i1s the usual azimuthal angle for cylindrical coordinate and p
is the usual cylindrical polar distance. Notice that the constant-¢
half-planes are perpendicular to both the constant—-vl and constan;—v3
surfaces which are not perpendicular to each other. Also, the fl,
f3, fl3’ and p can all be functions of vl and v3, but not functions
of ¢.' Such a generalized coaxial ccordinate frame can be obtained by
rotating any two dimensional coordinate frame possessing an axis of
symmetry about the axis. Furthermore, if £,, %0 and fl/f3 is
l, v2, v3) can readily be used to

function of vl, then this (v

obtain the (xl, ng x3) frame of (3-23) and (3-24) .

D. Remarks and Trivial Examples

Viewing from the foregoing analyses, it might look as though
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the simpler the involved medium is, the more restrictive the scaling
geometry must be and therefore the less useful the scaling method becomes - .
in application. However, we should notice that if in a problem considered
there are EM fields iﬁ certain directions only, then only constitutive
relations in those directions enter in the analysis. So in such a situation
2 simple isotropic medium can be used as a substitute.for the complicated
pedia required by the £full scaling ﬁeth&d. Furthermore, a choice of
anisotropic or directional conductors can help to select desired field com-
ponents and suppress others such that the just-mentioned situatiop can

be achieved. It is’in the light of these that the scaling method becomes
very powerful in both theoretical investigations and in applications.

Before we go on to solve special problems, let us illustrate

the procedure and nature of the scaling method by some simple examples.
Consider P' as a parallel plate waveguide with plates at X = a and

X = b. Let the region between the plates be filled with a uniform

fl

medium having constant dielectric constant §, magnetic permeability
n, and conductivity X = 0. Congider a TEM wave propagating in the.

Z-direction with field components

n . JE Z
£ (%) =‘/; g0 _ Jw/en (3-33)

This describes the Cartesian Problem P'.
Now a scaling or rather an inverse scaling can carry P' into

a curvilinear problem P. If we choose the scaling geometry as

X, ¥, 2) (xl, xz, x3) “—> (cle, c2¢, ) (3-34)
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where (r,9,¢) is the ordinary spherical coordinate and ¢1r Gy

are constant lengths, then this choice corresponds to scale the parallel
plate problem with TEM propagation in Z-direction into a comical
problem with TEM propagation in the r-direction. Using (3~7) and the
inverse of (3-10) to (3-13), we immediately obtain that the scaled

medium must be inhomogeneous and diagonally anisotropic and must have

constitutive parameters in the scaled (cle9 czc‘p, r) coordinate as

c 0 (3=34~-3)
2 0
z £ c,siné c,sind
:é, = ﬁs 1 1 (3=34~Db)
c
o 2 ¢1Cy
2
t siné
in the conical coaxial waveguide between conical boundaries 6 = %—
1
and 8 = i— . The TEM wave that propagates in the conical coaxial
i

waveguide, obtained easily from (3-~3) and (3-6), is

RO ¢, siné /T . SLo /i r (3-35)
r.:2 g r

Notice that in this trivial example, we have some freedom to regulate

the conical coaxial waveguide. Namely c. is at our disposal to control

1
the angular span of the conical waveguide. The constant <, has to be
chogen that
= &% -
Cy = oo (3-36)
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where AY is the periodicity of the original problem in the Y-directionm,
but for this TEM case ¢, can be arbiltrary and does not influence the
scaling. Also the phase velocity during the scaling is unchanged here.

Just as another example, we can scale the above mentioned
parallel-plate problem into a concentically bent parallel-plate waveguide
by

1.2 3 '
(X, ¥, Z) — (x, x7, x7) + (p, -z, C3¢) (3-37)

where (p, ¢, z) 1is the usual cylindrical coordinate system. In this
case, the concentrically bent parallel-plate waveguide has boundary
plates at p = a and p = b, and the TEM wave is propagating along

p-direction with fields

N _/75'3(23 - lw/Enc s (3-38)

where the phase velocity along ¢-direction 1s p/(c3¢53) which is
not constant on the ¢ = constant crogss-gsection of the wave guide and
differs from the phase velocity 1/VEn along the Z-direction
before the scaling. Also the medium théﬁ £111s the séaled waveguide
between p =a and p =b has the following scaled constitutive

parameters in the (p, =2, c,¢) coordinate system

={T0 o (3 39)

o jrm
3 |jue
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Notice that the arbitrary length constant <y provides a degree of
freedom to regulate the angular A4¢ bend of the concentric parallel
plates from a given section length Az of the original problem.
We conclude this Chapter by several remarks. First we see
that there i1s a certain degree of freedom in the scaling which can be
used to match boundary connections between different scalings. Second, there are
conditions for the scaled fields to satisfy sﬁch as periodicity and
boundary condition matches. Third, only the part of the scaled medium's
properties which are relevant to the fields considered are needed; e.g.,
only the e(e)(e), u(¢)(¢), and 0(8)(8) in (3-34) are needed for the TEM

propagation in that example. All these details on freedoms and restric-

tions have to be properly taken care of in applicationms.




4. MATCHING SECTION WITH VARIABLE u and e BETWEEN CYLINDRICAL AND

CONICAL COAXIAL WAVEGUIDES
A. The Problem

Consider a cylindrical coaxial waveguide described in the

usual cylindrical coordinate system (p,¢,z) with inner conductor

surface at p = B. and outer conductor surface at £ = B. Also a homo~
geneous simple medium with constant u,e, and o = 0 £fills the coaxial
region in this waveguide and a TEM wave 1s propagating along the z-direc-

tion in it (see fig. 1)

(e) T . (¢) 1 iwlje z-iwt
E =/;H =S H (4-1)

Now this cylindrical coaxial waveguide is to be connected
to a conical waveguide filled with the same simple medium in such a way
that a TEM wave in the cylindrical guide propagates into
the conical guide without any reflection and distortion.
The problem is whether such a transition section exists and how

one will go about finding it.

B. The Application of Scaling in the Cylindrical Part
Denote the cylindrical part as region I, the tramsitional part
to be found as region II, and the conical part region III. To find the
matching section region II, we first realize that it will likely be a
coaxial structure since both I and III are coaxial. Further, since only
TEM waves propagate in I and III,so probably the simplest matching structure
in II carries also TEM wave only. Since for such a TEM

wave the longitudinal medium properties along the axial direction play



™
0

no role, only transverse medium parameters are of importance. Moreover,
whether the TEM wave is reflected or not depends on the matching of the
transverse wave impedances. Therefore we are naturally led to consider
a transverse isotropic scaling of III-B2 which preserves the transverse
wave impedance. With all these in mind, we can try to investigate in
this way the probable simplest scaling for the desired matching section.
Even if one such section is obtained, it may only be a convenient ome
and is not at all necessarily the unique one.

Now the problem of finding the desired matching section of
region II is really tantamount to finding the common Cartesian
problem P' that is common to z2ll regionsI, II, and III. For such
a P', different scalings in different regions should then scale the P'
into the different configurations of our problem P as required ,
namely, a cylindrical coaxial waveguide filled with uniform simple medium
in I, an appropriately loaded perfect matching section in II, and the
final conical coaxial waveguide filled with the same uniform simpie medium as in
region I. A TEM wave propagates in all regions and should be connected
smoothly without reflection, for both P and P'.

Now the P in the region I is given. Hence fixed in region I
is the scaled P' which can be obtained easily. First use the
(p,9,2) as the (vl,vz,v3) to get the (xl,xz,XB), as was done in

(3-32) to (3-24); we get for region I

xl 2 ¢, 2n £
1 0
o
x2 = c1¢ (4-2)
3
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and the metric geometry for the coctdinate system {xl,xz,xa)
1

X
p_eby
0l = (“EE_")Z [axD) 2 + (ax®)?] + (dx)@ (6=3)
L

Then in region I, the given cylindrical problem P in this coordinate

frame (xl,xz,xB) = (cl En(p/po), cl¢,z) hag, from (4~1), fields

eim/EEx3

(1) _ grirHEX _
E = i (4=43a)

. X
ooexp(cl?

— 3
/e iwuex
- 8
gl /o  (4=ib)
o]
Q

X
exp ()

and has conducting boundaries at xl = clﬂn(A/pO) and :’:vl = cizn(B/po).
Also, it of course has the same constant u,z simple medium. Up to here

we have only rewritten P in the region I. Now we scale

the P described above into a parallel~plate P' by
1.2 ‘
(X s X ,X3) hasst (XsY ,Z) (4°5)

i.e., we take these (xl,xz,x3) to be a Cartesian coordinate frame
after the scaling. Then the P' 4is a parallel-plate waveguide with the
plates located at X = clln(A/po)

_ ‘ (4~8)
X=c Rn(B/Do)

and with a TEM wave in this parallel-plate waveguide given by
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iw/;; X
e(l) = e(x) = —_ (4=-7a)
c
1
e iw/ue _~
- e
@ B
1

This is obtained by using the inverse of (3-3) and (3-6). The medium
scaled to £ill this parallel-plate wavegulde is neither homogeneocus
nor isotropic, but has constitutive parameters in this Cartesian-taken

frame (xl,xz,XB) ~— (X,Y,2)

i =0 o (4-82)
: . 1 2%t
§ 1 . A (4-8b)
£ u °_ .
0O < 2
1

This P' should be the problem common to all the regioms I, II, and
I1I if the original perfect matching problem has a solution. The
constant Pgr © should be determined later by matching conditions. :

Now, for P' the TEM wave (4~7) propagating in the parallel-
plate waveguide with plates (4-6) and medium (4-8) certainly satisfies Max-
well's equations and the relevant btoundary conditions, and propagates in
the x3 direction of the (xl,x2,x3) Cartesian—-taken frame without
reflection and without distortion. The task next is to inversely
scale this P' by different ways for region II and III into our

original problem.

C. The Scaling and'Design of the Matching Section

In region II, from the original problem we see that we need a
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. . 3
rotational frame that carries its constant x -surfaces from plane

surface to spherical surfaces. Looking at the table, we see that a

toroidal coordinate system (n,¢,6) does that very simply?l7] So in

region II we choose this toroidal coordinate frame (n,$,8) as the
(vl,vz,v3) and obtain, by using (3-23) and (3-24), for region II

(see Fig. 1)

x1 = a Rn(th-;) + c,y
x* =2 (4-9)
x> = a F(8)

with metric coefficients

2
inh 3.2
a? = == s [axh? + @xhH?1 + (8x") X
(coshn+ cosé) [F' (8) (coshn+eoss) ]
(4=10)

As a footnote, we remind ourselves that the toroidal coordinate frame

(n,$,8) has the metric length

2
d£2= a

2
= [an® + sian’n ap’+ a0%) . (4-11)
(cosh N+ cos8)




1f we identify the z~axis of our cylindrical coordinate frame in region I
as the n = 0 straight line, then the toroidal (n,¢,8) has a rotational

symmetry about the z-axis and has constant coordinate surfaces given by

n = constant: z2 + (p-a coth n)z = azcschzn (4-123)

which is a toroidal surface obtained by rotating the circle of radius
a csch n and centered at a distance a coth n from the z-axis and on

the azimuth 6

7 plane. Also we have

¢ = const: half plane intersecting z-axis (4=12b)
and
2 2 a2
8 = const: p~ 4+ (2 + a cot 8)° = > (4=12¢)
sin™®

which are spheres centered at z = a cot 8 on the z-axis and of radius

a/:sine . Notice that the constant a regulates the (n,¢,8) coordinate
frame by changing the radius of the circle to which the toroidal surface
converge as n -+ <.

Thus in region II, the inverse scaling

(X,,2) + (x%,x2,%°) <= (a 22 (th L) + ¢, a9, aF(e)) (4-13)

will give the shape of the matching section and the whole description

of desired problem P in that region. Before we write out the fields
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and medium properties in regicen II for P, we first have to make sure the
(xl,xz,XB) of region I and II as given by (4-2) and (4-9) resl?ectively
join smoothly. This smooth joint will then ensure matching of the
boundary conditions for the scaled fields. Thus at the boundary

surface z =0 or 6 = ( between regions I and II, we require

xl(I)Exl(II)*—*clzni:EaZn th%+ cy B c2=a2.n§—

(4-14a)
xz(I) = xZ(II) & c1¢ = ap & c; =2 {4=-14b)
3 . .3 . -
x(I) 2 x(II) & F(8=10) =0 (4-1bc)

where the final %in (4-14a) is obtained by the help of (4-14b). Also
the scaled medium in region IX for ocur matching section has the transverse

dielectric constant

E(II, transverse) = £{cosh n+cos 8}F '(8) (4-15)

which, if for realizability purpose is required to be greater tham or

equal to ¢, implies

1

b —
® 2 (coshn+ cos8)

(4-16)




This condition (4-16) can be satisfied by choosing

1 N 1
1 + cosf © coshn + cost

Fr(g) = (4=17)

|

2 F(8) = tan

From the above, we obtain the inversely scazled matching
section in regiom II. It is a toroidal coaxizl waveguide with boundaries
at n =2 tanh-lA/a , n =2 tanh-lB/a (4-18)
obtained by using (4-6), (4-9) and (4~13). The purely TEM fields in the

matching section, by means of the inverse of (3-3) and (3-6), are

iw/ue a tan 2

(n) - (1) _ (coshrrrcos8)e 2
E = E =  sinh (4-19)
q(®) o 4 _ /e (coshn + cose)eimv’ﬂs a tan % (4=20)
u a sinh n

in the matching regiom II. And the medium in the matching section has

constitutive parameters

g=20 (4=21a)
cosh n + cos® o)

c " 1l + cos$

= _ cosh n + cosé

g€ M o 1 + cosH (coshnt cosd) (L + cosd)

{coshn + 1)<

(4=21b)°

where the dyadic compoments are expressed in the (n,9,8) coordinate
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frame or the (xl,xz,XB) of (4-9). These are obtained by using the

2 %3 of (4-9)

inverse of (3-10) to (3-13) for the preseat (#l,x
and scaling relation (4-13).

The purely TEM propagation from the cylindrical region I to the
toroidal region II loaded as {4-21) undergoes no distortion and no
reflection. They are just the differently scaléd versions of the basic
parallel-plate problem P' and are smoothly joined such that the
tangential TEM fields E and H match. Next to be found is how does

this toroidal transition section connect to the conical region III by

another imnverse scaling.

D. From the Matching Section to the Conical Part

Here we want to inversely scale our 'basic common' parallel-

plate problem P' 4into the conical coaxial waveguide in a2 smooth way.
First since the spherical coordinate frame (©,¢,r) satisfies the
2 3

requirement (3-22), we can take it as the (vl,v ,2V ) to obtain the

"transverse isotropic” (xl,xz,xs) by (3-23) and get for regionm III

1 X
X = cq 4n tan 5 + c,
x2 = c.b (4-22)
3
x3 = a G(r)
with metric o

2.2 3
a2 = Esin®® a2 4 (gx2y2) 4 U y2
2 2 2 -
(63) a“{G'(r)]
(4-23)




- 1.2 .3 L ;
Again the smeoth match of (x7,x ,x°) at the spherical boundary

8 = 81 or r = TEE?EIT between regions II and III requires
1 = .1 n - el .
®x (II) = x(III) &ain(th E) + c, = ¢4 in(tan 2) + <, (4=24a)
(D) = LED G egp = ey = a (4-24b)
3 3 8,
x (II) = x (III)&= aG(a/ﬁsinelb= a tan — (4=24¢2)

from which the first two conditions and (4~14a) imply

a
C4 = a (n (————8 ) (4=25)
o tan 1
° 2

Thus for region III, we use the scaling

tan?

(1,7,2) > (x5,5°,57) = (atn (—3) + a fa 2, a, 2G(x))

tan_1 o
2 (4-26)

. Notice that the G(r) is not restricted by our scaling itself. But the
scaled medium in the ccnical région III has the following transverse

dielectric constant, obtained by using (3-18a) from the common P',

A\
€(III, transverse) - © 3G () (4-27)
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Now since also in our original problem we require the conical section
to be filled with the seme uniform simple medium as the cylindrical

part in region I, then we need
g aG'(r) = ¢ (4-28)

Thus the G{r), implied by (4-28) and (4-24a), is

G(r) = % - cot8, (4-29)

With the scaling geometry completed, the scaling (4-26)

itself then gives the propagating fields in region III

£ o @ L1 eim/u-s(r-a cot8,) (4-30)
= rsinb
iw/zz(r—a coté )
(2) _ ;). fe e 1 -
H =BV #/; rsin® (4=31)

by using again the inverse of (3-3) and (3-6) for the present scaling
(4-26). The resulting conical wave guide then has bbundaries, described

in the spherical coordinates, at

8
8 =2 tan T A tan N (4-32a)
a 2
' -1 ,B 61
@ = 2 tan ( tan 730 (4=32b)
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The sczled medium to be filled in this conical coaxial regiom III

expressed in the spherical (3,¢,r) or the (xl,xz,x3)

of (4-28) is
simply

g =20 (4~33a)

1 o

@ | wm

az(l + cosel)

r2 (1 + cos@)z(l - ccsﬁl)

(4=-33b)

E. Conclusion of the u,¢ Loaded Matching Section
We have achieved an appropriately loaded perfect matching

section between the cylindrical and the conical coaxial guides by using
the scaling method. Before summarizing the whole result of this chapter
IV in a convenient table, we here make several remarks again. First,
the underlying basic problem P' common to all regions I, II, and III
is simply a parallel platé wave guide with TEM propagation. Second,’
the scaling geometry in different regions are connected smoothly and
ensure the continuity of the tangential £ields which are the only fields.
Third, the no~reflection at junction surfaces is very clear because of
the no-reflection for P' 'along its propagation and the smoothness of
different scaling geometry at their junctions. Another way of looking
into this property is that the scaling chosen possesses the transverse
igotropy and presgerves the transverse wave impedances. Such constancy
of transverse impedances, in addition to the smoothness of the joining scaling

geometries clearly guarantees no reflection and no distortion for the TEM
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mode considered. Fourth, to realize the problem we need only an
isotropic medium in II with its isotropy given by e™  and uae as

in (4-21b), since only a coaxial TEM wave exists. Fifth, the solution so
found is by no means unique. It perhaps is the simplest one. Because
any orthogonal rotational coordinate frame (vl,vz,vs) that can carry
its'constant coordinate surfaces from a plate to spherical surfaces
curved away relative to that plane can be used in 11 to join the cylin-
drical I at the left side and the conical III at the right side for the
P' - P scaling. Of course, each such choice needs its different
accompanying inhomogeneous loading medium in II. ixth, the free para-
meters in the solution'we cbtained are the cylindrical radii A and

B, the toroidal pole distance 2a, and the constant 81 on the spherical

boundary surface dividing region II and III. These parameters are

bounded to the extent

0<A<B<a (4-34)
0<e, <7 (4~35)

Seventh, we emphagize that the toroidal (n,¢,8) is only one of the many
admissible (vl,vz,vs).[ls]

Here is the table 1 summarizing all the results. We remind ocurselves
again that for the toroidal coordinate {n,8,¢) the n = const. toroidal

surfaces are described by (4-12a) and the & = const. spherical surfaces are

described by (4~12c). {See Fig. 1).




&1

L 4

0 <A<B< a

TABLE 1
Regions I z=0-6=0 Iz G=81'><-r= si: 81 III
Quantitie 0< %. <
can 2
1 n a an 3 a
x a &a(p/p ) |[a in(tanh ‘2')+a EnCp—) a in == | +3 n(=)
9 o 1 Do
A tan —
2
xz agd ad a¢
(% aG(z))=1 -2 cot 8
3 8 1
x z (Z aF(8)) =2 tan > 8
and F(0) = 0 and G(a/sin 8,) = tan —2}-
in O
8~ 8, (%) sinhn T san
{coshn +cos8)
- 1 S 1
g3 1 (= (coshn +cose)F'(9)) (= aG'(r))
1 +cos8 1
coshn + cos8
Boundaries
e
1 A -1 A -1,A 1
z:--a,?.n.‘:‘o o= A N = 2 tanh Z =2 tan (-; tan-i—)
to - to to to 5
1 -B -1 B -1,B 1
xaaln;o- p=3 n =2 tanh ~ @=2 tan (;tan7
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Quantities/Regions I II S III -__—}
Media 1 C) !
(L (1) 1 2
E7 i} LS a” (l+cosf,)
ii) H r2(1-cosel)(l+cose)2
G
- (GD) 13 (coshn + cos 8) 10
g S / (1 + cos §) % 1) O
: {coshntecos B8)(1+ cos 8)
LD @ \y coshl 2
L 2 (1 + coshn)
- -g—- i
83 !
3 -
and & (3) (now c(i) 1) =0 for all regions, since o = 0) !
83 :
&5 '2—)
&1
]
Fields ]
E iwt e eim Hez e {coshn + cos &) 1 '
¢ =(p) ) : (M) a sinh n T sin © ;
1w/liE 2 tan -g— 1w/lE (r-2 cot 8,)
L) . g ]
|
o . |
g elWt . F : e £ (coshn + cos 8) /_E_ ;
- 2N 2w "2 simnn ‘3<¢3,_u !
9 iw/pe(r-a cot 9,)
. Jluviez ’ .eim/ﬁatan-z- e 1
o] .

r sin @

Notice azgzin that in the above table F(8)}, G(r) in generzl are dimensionless

arbitrary smooth functions that satisfy F(0) =0, G(a/sin 8;) =tan _ﬁ];

the choices as shown are the results of requiring the ¢

11 and the

E(transverse)

= e in III.

the table denote boundary surfaces that divide the regiomns.

(transverse)

, and

2 € in

Also arrows indicated at the top of
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5. g ,¢ Loaded Matching Section Between Two Cylindrical Coaxial

Waveguides

The matching section found in the previous Chapter requires a
loading material with tapered 1 and e. Such a tapering of inhomogeneous
W is difficult to realize. 1In this chapter we shall consider a matching
section loaded with fixed u, but with inhomogeneocus ¢ and anisotropic

g .

A. The Problem
Consider, in a cylindrical coordinate frame (p,9,2z), two cylin-

drical coaxial waveguides with different sizes. The first one has inner

A_ A, and the

and outer cylindrical conducting radii p = A and p =B N

A_'A'. Here

second one has its respective radii p = A' and o= B’ .

the transverse outer-to-inmer ratios At>l and $t'>l. Also we assume
A<A' so the second cne has larger size. Let both waveguides be filled
with the same simple uniform medium of constant ¢, constant u, and

g = 0. (See Fig. 3).

Now the problem is to find a perfect matching section of the
conical coaxial shape between these two cylindrical coaxial_waQeguides
such that a TEM wave incident from the left side in‘the first smaller one
can propagate into a TEM wave in the second larger one without reflection
ané without distortion. We allow ocurselves to have variable 5(5) and
anisotropic conductivity ¢ in the matching section, but we require the
matching section to have the same fixed u as in the cylindrical regions.

The task is to see if such a matching is possible, to find it

if it exists, and to look intc ways of generalizing it to matchings of
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other kinds by the differential geometry method (DGM). As before, we
dencte as region 1 the left side smaller cylindrical part, as region II
the matching part to be found, and as region IIT the right side larger

cylindrical part. Also the TEM wave in the cylindrical I is

: -,

gl o gD 2TTHEE (5-1)

p
im/ﬁéz
g = H(Z) . /e e = (5-2)
v P ’
B. Approach With Impedande Concept
Before launching into full detail of EM field consideration, we ‘ .
examine the problem by a rough impedance concept by locking at Fig. 2.

For a perfect matching, we need the impedance to be matched all the way

for regions I, II, and I;I. This can be achieved by inserting many

coaxial conducting layers in all the regions with appropriately shaped -
boundary inferfaces, with their spacings d and the thickness & of.each

such sheath satisfying
<< d <<} {5-3)

where X 1is the wave length of the TEM wave, and with the conductivity

¢ of each sheath satisfying

Lo« and /;’—E L << d (5-4) ..
YWUo

\
where L, is the longitudinal dimension of the matching section. .
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The condition (5-3) "ensures'" no reflection and (5-4) "ensures” only the
TEM field exists. Moreover, for a TEM wave to propagate from I, through
II, and into III without distortion, a plane wave fromt in I should go
into a plane wave front in III and‘the traveling time should be the same
for waves following paths of different radii. These two requirements
are intuitively necessary for our matching to exist. We shall see

1f they will indeed give such a matching in the- following.

Bl. Conditions for Shape and Medium of the Matching Section
Now, referring to Fig. 2, we see that if we require equal
raveling time along MM'Y" and its infinitesimally changed version

00'0", we obtain

Ve (8) [z, (8) - rl(e)] + /ZZAl = [r,(5+d8) - r,(6+d8)]/ic(6+d8) + /E&AZ

(5-5)
where
4, = rl(e)cose - r1(6+de)cos(e+de) = [rl(e)sins - rl'(e)cose]de ‘
(5-6a)
A2 = rz(e)cose - r2(9+d6)cos(6+de) = [rz(e)sine - ré (6)cosB]ds
(5-6b)

Here »= rl(e) and r = r2(8) describe the boundary intersurfaces Pl

connecting I to II and PZ connecting II to III respectively. These eqs. (5-5) anc

(5—6), as a result of equal traveling time requirement, relate the boundary

intersurfaces Pl : rl(e) and FZ : rz(e) and the inhomogeneous loading
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£(8) in the conical II by
(8 (e(8)/e)
[r.'(8) = r.' (8)1(cosd - /5224y = [r. (8) - r_(8)][sing + —22E1 7 o g
2 1 ¢ 2 L 2Ve(8) /e
(5-7)

Now consider the matching of impedances for each of the thin
coaxial layers.

First notice that the impedance for the TEM wave of a cyliin-
drical coaxial waveguide is

(see Fig. 2)
X (4 P
_v /e tn(” outer/" inner) (5-8)
eyl. ~ I 2
and of a conical coaxial wavegulde is
8
tan( outer)
o
yA t==+/¢ gn| ——— (5-9)
con. I = .
2w inner
tan(z o)
This infinitesimal impedance matching on Tl then becomes
/u L p+dp tan(%ﬁ—-)
- n = yA -
3 o = 5) 2 ( o (5-10)
an E)

which gives the differential eq.
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., '(8)
rl ot iine (cos8 - —2—) =0 (5-11)
1 Ye(8) /e

by expanding and using o = rl(e)sine in (5-10). Then {5=11) can be

readily integrated to relate rl(e) and €(8) on Fl by

rl(e) = const, exp[ja

de
( 1

- cos6)] (5-12)
sin®é Ye(6)/e

Here we immediately see that the rz(e) of F2 must behave similarly
and can differ from rl(e) only by & multiplicative amplification

constant A

a

rz(e) = Aarl(e) s A > 1 . (5~13)
where Aa is greater than one because IIY is larger than I.

Therefore, with both impedance matchings and equal traveling

time requirements, we have from (5-13) and (5-7) the differential equa-

tion
: | . (e(8)/e)
r (8)(cossd - VYe(8)/e) - r(8)(sing + —————)= 0 (5-14)
2ve(8) /e ‘

and from (5-13) and (5-11) the differential equation

r'(8) .1 _1 -
(8) T eind (cos8 226372) 0 (5-15)
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Both the rl(G) of T and the rz(E) of ‘Tz, which are related by

1
an amplification constant la as in {5-13), should satisfy these
two equations. |

We here make seﬁeral remarks before we proceed to solve {(5-14)
and (5-15). "First, we chodse £(8) being a function of 8 only in
II because the TEM propagation is independent of ¢ and any r-dependence
as longitudinal inhomogeneity will give rise to unwanted reflectiom.
Second, the relation (5~13) for the intersurfaces Tl and.l“2 implies

that the transverse dimension ratics At for I and At' for II1 are

the same
V= ‘ -
At Xt (5-13)
since
. 3 . rl(eB)51ne ) Aarl(eB)sineB ] zz(BB)sin B _ B o
= s B B -~ - = =,=
t A rl(SA)sineA larl(sA)s:LneA rl(eB)31n A A t

(5~-16)

This constancy of the transverse dimension ratios indeed checks as it
should gecause the impedance of the matched cylindrical coaxial lines
should be equal no matter what happens in the transition matching section.
Third, that the relation (5-13) itself should hold is intuitively clear
if we require the voltage on each layered conductor sheath be constant
throughout regions I, IIL, and III, and if we already require the

At = A.' from a direct impedance matching concept for I and III. Because
then the layered sheaths in I and III must have a similar geometrical

outlay and differ only by a scale length. That each of such sheaths




should be linked by a sheath of constant & means the two intersurfaces

Fl and FZ

Fourth, we must point out that the cylindrical coaxial conducting sheaths in

must be similar and differ by the same scale length.

I and III are only conceptual and need not be realized. Because the TEM
wave in them does not see such sheaths. Fifth, the conical coaxial
conductor sheaths in II are needed to ensure TEM wave there. When

(5-3) and (5-4) are satisfied, such property in region II can formally

be treated as though it has an anisotropic conductivity

x®

g =(/° - O > (5-17)
\O

in the spherical coordinate frame (6,¢,r) in region II.

B2. Shape of the Matching Section
Now we will solve (5-14) and (5-15) to determine the
loading =(8) and the boundary shapes r, and T, for the conical

region II. From (5-14), we have

r'(8) +(/a(6)/©'+ sing _ 4 (5-18)
r(8). Ye(8) /e = cos®

which can be integrated to give

cl+r(6)cose
(8)

Ye(8) = /& (5-19)

where cq is a constant with dimension of length. Inserting (5-19) into
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(5-15), we get

. r(8) -
"O) sind + {cosf - ) - r(B)cosS) =0 (5-20)

which is a non-linear first order ordinary differential eq. for r{8). To

solve (5-20), we try first to rewrite it as

2 (5)
(c1 + r(8)cos?®)

—j—e— (r(8)sin®) = (5-21)

which leads us further trying to separate varlables for r(8)cos® by

using

4 =4 - d r{8)cos
de(r(e)sine) = de(r(s)cosetane) = tan&ag(r(e)cose) + cos28 (5-22)
Now substituting (5-22) into (5-21) gives
-:-L-———-.;.L a_ r(e)coée - 5

( r(B)cosé e ) de sinfcosé : (,'23)

which can immediately be integrated to give
~r(8)cosb
r{8)sind = c e €1 (5-24)

that gives the boundary intersurface function r(8) implicitly by a




transcendental algebraic eq. Here ¢ is another constant length to be

2
determined. ©Notice that on either boundaries F1 or Fz , (5=24)
can be Treyritten in terms of the cylindrical coordinates
=z
p(z) = cye (5-25)

which states that the Fl dividing I and II and the F2 dividing IT and
.I1I are nothing more complicated than two exponentially-shaped boundary
intersurfaces.

Now for Fl ,» which can be described by either r = rl(e) or

p = ol(z), we have (see Fig. 3)

-z -acots

A A
= = S0 - Cl - .
A= ol(zA) c e 2 c,e (5-26a)
-z_B -)\22
= = = Cl = Cl - h
AtA =B o(zB) c,e = c,e (5~26b)

Here z, and ZB‘ are the abscissas, along the coaxial axis from the
conical origin, of the points where the innermost and outermost conical
surfaces meet the p = A and p = AtA cylindrical waveguide surfaces
respectiﬁely. (See Fig. 3). Using the inner cylindrical radius A of
I, the transverse dimension ratio A of I, the inner conical angle ea

t

of II, and the longitudinal abscissa ratio for -rl

AZ = zB/zA (5-27)




As parameters, we have from {(5-26)

(l-Az)AcotS

¢y = 2on 2 (5-28a)
t
£nlt

¢, =Ae 1-2g (5-28b)

Thus, with the ¢. and c2 s0 determined, the intersurface Tl between

1
regions I and II can be described either by r = rl(s) with rl(e)

determined by (5-24), or described by p = Pi(2) using (5-25) and (5-28).

For the rz that ‘divides regions II and III, we have already

found its relation to Tl by (5-13), i.e. r = rz(e) = larl(s). Thus the

description of T2 in terms of the cylindrical coordinates in III can be
obtained easily

-z
Aacl

-Aarl(s)cose

Agcy

p = pz(z) = rz(s)sine = Aarl(G}sinB = lacze = Aacze

(5-29)

which differs from the pl(z) only by replacing ci and c, by

Ac and Aac respectively.

al 2

Notice that the rl(e) or pl(z) of Fl and the rz(e) or
pz(z) of F2 relate all corresponding lengths in I and‘III by the
amplification factor Aa of (5-13). HNow in terms of the independent
free parameters A = inner radius of I, At = transverse dimension ratio
of 1, SA_E inner half-conical angle of II, Az = longitudinal abscissa

ratio of Tl, and Aa = amplification factor of III relative to I, we
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refer to Fig. 3 and summarize here the results on geometrical shapes for

all regions I, IIL, and III.

I B = outer cylindrical radius of I = AtA, 1< kt (5-30a)
—rl(e)cose
. = ; = ¢l T.
Fl. T rl(S) where rl(8)51n6 c e s O<9A<G<GB<2, or
-z
p = Pl(Z) = czeCI 3 O<ZB<Z<2A
(5-30b)
= = = A
ZA A cot GA and ZB XZZA kz cot eA
-1 B -1 Xt
II: 8, = outer half-conical angle of II = tan (—) = tan ~(— tand,)
B zB XZ A
(5-30¢)
-z
) _ - A C
Fz. r = rz(e) = karl(e), or p = oz(z) kacze a’l, AazB<z<AézA
{5-30d)
I1I: A' = inner cylindrical radius of III = A A , A _>1
B' = outer cylindrical radius of III = XtXaA (5-30e)

We remark that the kl<l of (5-30b) will be explained in the following

Chapter 5-B3.
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B3. Medium of the Matching Section

From (5-19), the inhomogeneous dielectric constant €(8) in
II is

c1+r1(8)c058

2 2T
(&) 1 (5-31)

e(8) =c¢ [

where = is given by (5-28a). Notice that if we insert :2(8) and its.
Aacl instead of ¢y for Tz inte (5-19), we get the same £(8) as a
function of the conical angle 6 im region II.

To study the behavior of e(8) , of course we can plot it
numerically. But we can get some insight by examining it amalytically

without any difficulty. Now on T and from (5-30b) we have

1
ey
}\t = % = ————I(ZE) = @ €1 > 1 i (5—32)
- Pty
and thué
2,~2
&5, (5-33)

Also from (5-31) we have
& =@ [ /EE _ cosel (5-35)

Now in order to have an easy realization of the required e(8) ia II, we

require
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€(8)3 & for 0<8,50 < % in II (5-35)

because & may often be just the £, of the vacuum. Thus with the

requirement (5-33); we have from (5-34) and (5-33) the relatiomns

e, >0 (5-36)

i
2A>zB or Al =2 <1 (5=37)

i

which explains the inequality in (5-30b). This guarantees that the

T and T are both of expontially decreasing shape for ¢ as a function

1 2

of 2z on these intersurfaces.

To see more of the 6-dependence of c(8), let us rewrite

(5-31) on Fl and express ¢(9) as a function of =z
(cl + z)2
£(8(z)) = € - — , O<AngszSzA (5-38)
z- + pl(z) )
or
' v+ z
e(e(v)) = 2(1-v °E » AZS v = Z— <1
2 2 2Uzv) A
vo 4+ tan eA e T

(5-39)

by using the 0, (z) for T, explicitly. Here v 1is just the z,-normalized

coordinate of points on Tl and
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l—ll

X
in £

>0 (5-40)

T =

Taking e(8{(v)) as a function of v, the requirement e(8) e for ©

becomes

e(e(v))é e for O<\, gsvg 1 {5-41)

which is equivalent to

tan 8, g T (T + 2V)e s A gwgl (5-42)

The right hand side of (5-42) is a monotomically increasing function of

v, therefore the &, should be chosen to satisfy

A
2(12-1)
2 T
tan @, § T (t + 212)6 (5-43)
or in terms of At and Az for BB
(1= )[1-A, + 2A_ 2nx_]
z:anzeB P = 2 L (5-44)

2
(Allnlt)

So the'requirement of e(@) 2 e in II imposes restrictions on the

independent parameters A A and SA by (5=37) and (5=44).

2,, t,

For simplicity of the results, let us choose © to satisfy

the equality of (5-44), i.e.




(I-2,) [(1=X,) + 2X,2nA_]
tan2® - [ I3 L7 e (5-53)

yi
2 (Akinkt)

Then the e(8(v)) satisfies

s(@(kz)) = (5=56a)

|
®

xtz (1+ )2
(5-56b)

m
\%
m

£(@(1) =

2
5
At + (Tt + _xz)

Examining =(@(v)) for @A <9< eB or for AE <y<l, we sae

that
. Z(AE-V)
LOW) . ) (@t 20 T -
z () [212 + 4X,T + v o+ 4A2v] >0 (5-57)

Therefore e(0(v)) is a monotomically increasing function of v for

Az g v<l., In terms of 6, these results (5-56) and (5-57) are

equivalent to
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€ (@B) = ¢ (5-58a)
s(6<68)>8 (5~58b)
and,
e{®) = monctonically decreasing function of 8 for emaxseseB (5-59)
where emax is the place the maximum of e(8) cccurs and is described in Fig. 5.

This is clearly so because on Pl, as given by (5-30b), z . is a strictly

decreasing function of p and therefore a strictly decreasing function

of & for emaxSeSeB' Looking at Fig. 2, this should be obvious because

the outer ggometrical length ©00'Q" is longer than the inner geometrical

length MM'M". Therefore for OM and O"M" +to have the samé constant .

phase front the wave in II at € + d6 should travel faster than the wave at 8, and

this precisely requires e(8 + d8) < ¢(0) for emaxseSeB .

B4, Fields and Their Matchings on Fl
Up to here we have only treated the matching geometry and the

matching medium using a rough impedance approach. WNow we want to see if

the matching so obtained indeed matches a reflectionless and distortion-

less TEM wave from I to III.
In the cylindrical region I, the medium has constant simple

parameters u and ¢, and the TEM fields are given by (5-1) and (5-2). .

In the conical region II, the medium has a constant u, an e{(0)

implicitly given by (5~31) and (5-30b), and an anisotropic conductivity .




(5-17), which in reality can be replaced by conical coaxial conducting
sheaths satisfying (5-3) and (5-4), in the spherical coordinate

system (@,9,r). In such a II, we can easily verify that a TEM wave

elw we(@)r

£(®) E— @ (5-60a)
iwvue (@) r
g(®) < EQ%Z T £(9) (5-60b)

can exist and satisfy Maxwell eqs. provided an induced current density

{r) _ 1 5 [ /£(8) eiw?ue(@)r

£(0)] (5-¢€1)
rzsin@ 39 H

exist also. But the anisotropic conductivity (5-17) in II does have a

ROION

« in the radial direction and can suppress the electric

field to be transverse by providing such a current. So the fields (5-60)
and current density (5-61) are legitimate in region II. Here the £(@)

is an arbitrary smooth function of & to be used for matching conditions
on T and T,.

1 2

To match the field om r,

" components of (5-1), (5=2) and (5-60) tangential to T

between I and II, we need thcese

1 to be equal on

the intersurface Pl. Referring to Fig. 4, we see that the tangent to

',  makes an angle ¥ with the axial z-awxis and

1
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-rl(@)cos@

) c
tany = — e 1 (5-62)

(™

by using (5-30b). Thus we have on Tl

Eép) cosf% - y) = Eég)costg -y - 9) %} Eép) = Eég) (cosB + sin® cot ¥)
{(5-632)
| | /
(¢) _ (®) () _ /e(8) .(©). _
By = Hyp _47' E; = ST By (5-63b)
where the subscripts I and II just emphasize the regions the fields are ‘
in. From (5-62)and (5-63), we see that the (5-63a) and (5-63b) can be

consistent if and only if

¢,sind

(@) _
€ = (cos® + -rl(e)cose/cl )

cze

(5-64)

on Tl.' But the £(8) we found in (5-31) satisfies this relation (5-64)
precisely. So with our appropriately shaped Tl and inhomogeneous £(8),
the matching of the tangential components of the TEM field on Pl can be
achieved by one condition (5-63a) or equivalently (5-63b). This one con-

dition then determines the arbitrary fumction £(8) and gives
—inus c

1
£(g) = —= (5-65)

cos B + (Cl/rl(e}) .




to be matched on T

61

To summarize, the matched fields in I on II are

. ) ] eimvus b4
I o
I: . (5-668)
—_ im/ﬁg z .
5 (@) =\/§_ gtvhe =
I u @
cl+rl(6)cos 6
Lw/iel 7, (8 r- ¢l
g (8) _ e
II cl
(cos 6 + ;—?Ejor sin 8
1
II: cl+rl(6)cos 8 (5=-66b)
iwte | rl(e) r- cl]
(9 _ g e
HII u r sin ©

B5. Fields and Their Matchings on Tz

Since the Fz that divides regions II and III is of similar shape
1 s the fields just obtained from Fl matchings have no difficulty
2 .

First, the tangent angle wz on T is the same as the one on Pl ,

2

namely ¢ . This is easily seen by using the pz(z) in (5-304d):

'—rl(e)cos 8

in II are

-2
’ dp,(z) c Ac c c
fan Y, = - ——— =22l 2, 1 (5-67)
2 dz c c
1 1
Therefore, the TEM fields in III that match tangentially on FZ the fields
LWE [z+ (A ~De, ]
) o a 1
E = (5-68a)

1II )




TAELE 2

Regions Region I Region TT Region LII
Dml\\
Cog;::‘r;:te cylindrical {p,¢,z) spherical (0,¢,r) cylindrical (p,d,z)

=A to p=AA B=Bt[—)~t+(x—tt 8,) = A to p=AXA
Waveguide p o0 P=X A 00T a“t; )\% an Yy P=igh to P AR,
().t>1) (0<8Ag_e_<_eB<—z-, ' Jl<1) (A&>1)

Intersurface 1‘l dividing I and II: I‘l: r=r:l(9) 1‘2 dividing II and IIL:
dividing reglons ~zfey _ .-zf)\acl
described by p=p1(z) = cye for PZ: r=r2(9) = ;\arl(ﬁ) p=p2(z) = Aacze for

each coordinate
system

lngf_ z <%, where

zAEA cot BA

where rl(e) is determined by
(mrl(e)cos B)Icl
tl(ﬂ) sin @ = c e

for 0<BA59£BB

}‘LlazA tz< )\az

a

Constitutive
parameters for
medf um

Constant Y and € ,

and 0 20

Same constant W , but

e, 2
£(8) = efcos 8¢ ;FE)—] > €
such that
e(8,) >e , e(Bg) = ¢,

and €(08) monotonically decreas-
ing for @ 1in [BA,BB] , and

0 O
e-(o= ")

o0

Constant |t and € .

111
=]

amd ©

9
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TABLE 2 {(continued)

eglons Region I Region IT Region ITI
escriptions
1WA 2 1w/ie] (ey+r, (B) cos 8)r/r) (0) -c,] 1mfﬁ[z+(xa—1)cl)
P e g0 _e g
P &y p
{cos B+ ;azéjbr sin B
Fields
w/pef (e 4r, (0)cos BYr/r, (B) -c. ) wpefz+ (O -1e, ]
]{(‘p) Feim ne = H(¢)=j5 o 171 1 1 H(¢): Ee a 1
H p u r sin 0 " p
Cuxrent |
(r) T 1 vim/z; €] 4 im/ue(ﬂ)r
0 J = /- e 35 e | 0
T sin ©
Enlt
(lnll)AcocﬁA (1—A1)
Constants ey = ———ﬂzgxz—*—— c, = Ae {S5ee caption of Fig. 5 on p. B82)
N R S e S A

£
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iw/ie [z + (~Dey]

III(¢) = % : o (5-68b)

'B6. Summary of the Matching Problem between Two Cylinders

We summarize the solution of the fixed-y perfect matching problem
in Table 2.

We remind ourselves that in this table we use A , At(>1), B; (from
(5-55), which in general should satisfy (5-54)), Az (<1 as implied by
At>»l and £(8) > €), and Aa(>l) as the free parameters of our problem,
Also the conductivity i1 in II is only needed for its rr radial com-
ponent and in reality can be replaced by conical coaxial perfectly con-

ducting sheaths or radial conducting wires satisfying (5-3) and (5-4).

.C. Approach with Fields Concept

In the previous Chapter 5-B, we see that the necessary requirements
on circuit impedance and ray travelling time indeed result in the field
matching. This may seem to be a lucky coincidence. But gll these can
be understood and expected more easily and cobviously from an approach
with fields concept for the original matching problem.

First, let the problem P still be described as in Chapter 5-A.
Let the anisotropic conductivity in II be described by (5=3), (5=4) and
(5-17). Then the reflectionlessness in II obviously dictates the e(8)
being a function of 6 only in II. Second, requiring the field in III
to be distortionless TEM gives |

ie(z + K)

) _ el
Bryz = ) (5-692a)




7~ iw/ie(z + K)
i) = ,/E;ﬁ}————- (5-69b)

where K is a phase constant. Third, the use of the g in II for

surpressing mode to be purely TEM as the simplest matching possibility

makes the wave form in II as (5-60).

Now, consider the intersurface Fl between I and II. Let this

intersurface be described either by r = rl(e) or p = pl(zl) where

the 24 emphasizes the description for Fl. From the tangential field

matching on Tl, clearly we must require (5-63) which immediately gives

{8
3

= (cos 9 + sin 9 cot ¥(8)) (5=70)

where ¢(8) is the angle Fl makes with the -z axis. Substituting

the explicit expressions of the fields in I and II and (5-63) on Tl,

we obtain

-iw/ue r1(8)sing coty(8)

£(8) = & (5-71)
cos 9 + sin 8 cot¥(8)

Doing the same thing on Tz which is described by r = rz(e) or

p = 92(22), we get

e(8)

e = (cos 8 + gin 6 cot¢2(e)) (5=-72)

which, with the (5-70), implies

b, (8) = ¥(8) (5-73)
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where wzce) is the angle Pz makes with the -~z axis. Similar
to {3=71) we also get

-im/ﬁ%[rz(e)sine cotP{®) + K]

£(8) = = (5-74)
cosB + sind coty(d)

in which (5-73) has been used.
Tc determine the y{8), rl(s), r2(6), pl(zl) and pz(zz), we compare

(5-71) with (5-74) and get

- [rz(e)—rl(e)]sine coty(8) + K =0 (5=-75)

fl

™ =
But on r, we have pl(zl) rl(e)sine and tany

we have pzizz) = r2(6) sinf and tam,b2 =—dp2(22)/d22, therefore

- dpl(zl)/dzl, and

on Fz

(5-75) becomes

92(22) del(zl)
pq(zy) 1] dzy p,(zq) (5-76)

Sinée the right hand side of (5~76) is a function of z; only,
so must be the left hand side. Thus pl(zz)/pl(zl) can be a function of

z; only. Because of (5-73), we can conclude similarly pz(zz)/pl(zl)

can be a function of Z, only. Thus

p,lz,)
;ﬁz—z)- = 2, (5-77)
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where }\a is a constant. Combining (5-76) and (5-77), we have for I

1
=Z
1 —rl(e)cose
[ —————
I'l : pl(zl) = CZE or rl(e)sine = CZe €1 (5-78)

where the comstant c, EK/(Aa ~ 1),

Now, from (5-78), the constants cl and ¢, can be determined just
as in (5-26) and are given by (5-28). Then (5-77) yields again (5-30d) as
the description 92(22) or rz(e) for the intersurface TI,. Also

from (5=78) we have

- -z, =-r (6)siné
1
d pl(zl) c2 c s c
tan®(8) = - 1z == e 1 1 (5-79)
1 1

which with (5-70) implies

, c,sing 2 ¢y 2
£(8) = g¢(cost + ——:;;TE5;ZE€ ) = g(cosd + ;ITET) . (5-80)
c,e €1

precigely as obﬁained in the previous (5-31). Finally, the complete field

expressions in regions II and III are obtained by inserting K = (Aa-l)c2

and £() from (5~74) into their respective expressions (5-60) and

(5-69). 1If, furthermore, we require that im region II £(8) 2 € and

s(GB) = g, then we obtain results all identical as listed in table 2.
In conclusion, we see that a field approach te our original

matching problem directly can yield all the results in a logical and
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clear way. Besides, alcng the way it also makes clear why such a matching
is possible in reducing the two tangential matchings of E and H to

one condition by an appropriate choice of £(8). Also, plots of the

-

boundary surfaces L, and Pz and the €(8) are shown in Fig. 5.

D. Scaling into the Parallel Plate Waveguide P -+ P'
We have already solved the special matching problem P concerning
two cylindrical TEM waveguides with fixed - u loaded matching in two ways.
Now we want to see whether the P can be solved by using a DGM
scaling technigque via which a general procedure to obtain matchings
of other geometrical shapes may reveal. To be specific, we want to
scale P into its simples% parallel plate version P'. If such a
P' can be obtainmed satisfactorily, then it may be possible to attain

various different matchings by the p' + P scaling each with a different but

appropriate geometry of particular choice.

D1. P =+ P' in Region I
Now for P the region I is described in Chapter 5-A. To get the

scaled region I' for the scaled P', we choose (4-2) again:

1

(p,9,2) < (& 2n g— s ad,z) <+ (x ,xz,xs) (5-81)

o
because such a choice preserves the transverse wave impedance and gives
L}
constant transverse £ =g and n = u for the preseat P> P .,
L}
The results for the I' of P are similar to those of Chapter 4.

Namely, we have a parallel plate wavegulde with plates at
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xl = xi' = Q Iin A
°o
(5-82)
1 = x:L = ¢ n E
x U
with a medium given by
ij ij L C 1
g - =< 1 x_ > (5-83)
£ K p e &2
O Lo )
a

in the Cartesian (xl,xz,x3) coordinate frame, with a right side boundary
1]

intersurface I‘I given by a linear functiion

1
] c l B
I, 32 2 _ X -
l":L : X 1 [4n 5. S (5-84)
and with a scaled TEM wave
(_ 1 iu)/h_g x3
e; =< e (5-852a)

. o= 3 ‘
(2) e _iwvue x
hI = /H e | (5-85b)
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D2. P -+ P' in Region II

Now for the P =+ P' in IT, we choose for II the scaling
r=k 1 2 3
(S,d,u,r) i (u(B),adJ, —5—) - (X X »X ) ' (5"8&)
where the ¢-matching results the choice c$, the orthogonality results

u{f), and the fixed u results the choice cf xA3 as linear function of

r, The metric geometry of the scaling-is then

i 2 : ) 2.2
dg? = (Bx3+k)2E4§£—————- ]+ (Bx+k) 2 (sinb (x*)) 59551—
u' (8(x)) a
+ 824522 (5-87)

The Tl » described by r = rl(e) in II, gives the Fi; as the
intersurface between I' and II' by
rto:or(eGd)) = s 4k . (5-88)

in terms of the (xl,x3) in II', where 8 = e(xl) is the inverse function
of xl = u(8). Since (5-84) and (5-88) should describe the same boundary

intersurface Fi , therefore

1 C2 Xl
rl(e(x ) = Bciiln 5 - a—]‘+~k" (5-89)

o

where o,B8,k are constants of the scaling. But the :l(e) is known

implicitly through (5-30b), thus the xl = u(8) or the § = S(xl)
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is determined implicitly by

c, 1
. ‘{Bcl[ln —= « &7 + k}cost
c2 1 Co a
3 < _ z{— X . - ¢ _
tBlein . T ] + k} sin® ¢ e 1 (5-90)

Also the Té, scaled from T2, as Intersurface between II' and III'

becomes

1 o4 1
r%z I A e Lo 5—2- - X +‘§= G, - D (5-91)
Q

if it is viewed in II'. Notice that the two exponential intersurfaces

Fl and F2 for P becomes simply two straight line plane intersurfaces
T! and Fé for the scaled parallel plate problem P',

D3. P -+ P' for Region III

Because the geometrical similarity of I and III, "naturally”" we
try for the scaling of III

(rsd,2) > (aln ﬁ—’wp, 2‘5:2) And (xl,xz,x3) (5-92)
a o

where the «¢ and the Aapo instead of o, are obvious choices. Now im III'

t
the FIII s scaled from the F2; p = pz(z) of the (5-30d), becomes

2
] 3 ) c
rgu : 5’;—31—3 + 3 o gn 2 (5-93)
a’l & Po




72

Since (5-%¢3) should be identical to (5~91), as they describe different

. expressions of the same interface Té sy wWe have

s =1
g . (5-94)
k
P = (la L B
D&, Determine the Scaling Constants '

We have po,u,k,B,s, and p as constants of scaling. Already
{5-94) reduces s and p d1n terms of k and 8. To determine the
other constants in terms of parameters in P before the scaling, we
compare the length along GA and 8, of II in P. to the lengths along
xi and xt of IT' in P', We get

r.(8,) c
1A _ k - =2 -
(Aa - 1) 5= (Aa - 1) 8 + (ka l)clin N (5-93a)
r, {6,) c
1B k 2
(la - 1) 5 = ().a - 1) 3 + ()\a - l)clln A—tg . (5-95b)

which immediately gives c

2 2
c (=) 2 Z,. 2
. (8 )zn-—g-- r. {8 )zn>‘tA /}‘2 * )‘t tan 8,
P o 1B A 1'%a - 4.
2nAt . {1 - Al)taneA
(5-96a)
2 2 2
r.(5.) - r (8.) secs-ﬁ\ + A tan“@
A 7 S o S N A £ A (5-96b)

£nAt (1- Ag)
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As to s and &, they are the degrees of parameter freedom left in

the P - P' scaling.

D5. Summary of the Parallel Plate Problem P'
We have found a parallel plate Cartesian scaled version P'

of P, the original matching problem and its sclution. The regions
I', II', and III' become a combined and extended parallel plate regiom.
The scaled media in I' and III' are simple and are the same. The
scaled medium in II' is complicated with inhomogeneous EII',
inhiomogeneous uII" and longitudinal perfect conductivity giI,.

The scaling geometry itself is given explicitly by (5-8) for IL',
and by (5-92) for III'. The scaling for II' is given implicitly
by (5-86) and (5-v¥0). Also all but two scaling constants of P' are
found in terms of parameters of P. The two scaling constants g

and « left undertermined represent the degree of parameter freedom

in the P =+ P'.

E. Concluding Remarks

In this report we have investigated and developed the differential
geometry scaling method for EM theory and examined its applications. The
egsence is, at least two of the three constitutive parameters HsE, and
g have to be allowed to change according to the scaling need. With such
accompanying change of scaled media, the scaling method is very powerful
in creating am equivalent class of problems and their solutions from a

given problem of known solution. Through this we can obtain solutions

to many interesting problems from the knowledge of a simple problem.




In the applications we sclved two problems. One is a w and‘ E
loaded matching section between a cyiindrical and a conical coaxial TEM
waveguide. The other is a fixed—-u metching section between two ﬁ:ylindrical
coaxial TEM waveguides of different dimensions.

In the fixédeu matching, it seems possible that similar matching
problems of different geometry can be obtained by some wvariance on the
inverse scaiing of the basic problem P' that we have found in Chapter 5D.
This will be of interest for further investigations.

Finally, if we relieve the restriction of being in orthogonal
scaling, more problems can be treated by the DGM. For example, non-normal
incidence and Brewster angle transmission can be used for the ;eflection—

lessness requirement. Alsc, E-meode or H-mode in the wavegulde can be

treated easily. These and many other aspect of application of DGM will

also be of interest for further investigation.
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tangent surface

Fig. 4; Tangential Field Matchings on Fl Between I and II
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Plots of rl(e), rz(e) of Tl, F2, and £€(8) as Function of 8

The equations for rl(e) of Fl and rz(e) of Fz as giﬁen

+in Table 2 on p. 62, can be simplified by normalizing them

relative to their wvalue at the outer conical angle eB .

rl(e) . rz(e)
rl(ﬁs) rz(GB)

= £(8)

which satisfies

cosBB -~ £(8)cost

l-coseB

£(8) sing = si‘nBB e

Also, correspondingly the expression for £(8) is Eigl =
(1—coseB) 2
1

[cosB + —fe)

Notice that there is only one parameter EB for the curves £(8)
and £(®)/e, and each of the following plots for £(8) and

e(8)/e is for a different parameter value 8 Furthermore,

B
we have f(8) -+ = as § + o and f(8)sing> 0 as 6 -+ o. Also,

since £'(8) + - as O =+ o and f'(eB)>o, therefore the -

minimum of £(8) must occur at emin< SB and this emin satisfies

£(6)sinftand = 1 - cos® Finally, since (ve{8)/¢' > o at

B
86=o0and < o at § = SB , therefore the maximum for e(8)
must occur at 9 < 8_ and this ¢ satisfies

max B max

£2(8)sind + (1—coseB)f'(B) = .
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