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abstract-A mode equation is derived for propagation between 

a pair of rectangular wire meshes, and numerical results for the 

propagation constant of the quasi-TEM mode are presented. An 

approximate method based on averaged boundary conditions is found 

to agree if the mesh dimensions are small and the mesh separation 

is large. The field distribution of the quasi-TEM mode is also 

examined. 

INTRODUCTION 

The electromagnetic properties of wire mesh screens are of interest 

in numerous shielding and reflecting applications. The relevant plane 

wave scattering properties have been analyzed both for meshes in free 

space [l]-[4] and over a lossy earth [5]-[6]. The closely related problem 

of surface wave propagation on a wire mesh has also been analyzed [71-[81. % -I '_ 
In this paper, we consider propagation of electromagnetic waves 

between two parallel wire mesh screens. Such a configuration is used in 

electromagnetic pulse (EMP) parallel plate simulators [9]-[lo] which are 

too large to employ solid metal sheets for the two conducting plates. 

Similar structures are also useful in cases where a slow-wave behavior 

.is desirable [ll]-[13]. 
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ELECTROMAGNETIC WAVE PROPAGATION ALONG A 
PAIR OF RECTANGULAR BONDED WIRE MESHES 

ABSTRACT 

A mode equation is derived for propagation between a pair of rectangular 
wire meshes, and numerical results for the propagation constant of the quasi- 
TEM mode are presented. An approximate method based on averaged boundary 
conditions is found to agree if the mesh dimensions are small and the mesh 
separation is large. The field distributed of the quasi-TEX mode is also 
examined. 

electromagnetic wave propagation, TEM mode, wire meshes 
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INTRODUCTION 

The electromagnetic properties of wire mesh screens are of interest 

in numerous shielding and reflecting applications. The relevant plane 

wave scattering properties have been analyzed both for meshes in free 

space [lj-[4] and over a lossy earth [5]-[6]. The closely related problem 

of surface wave propagation on a wire mesh has also been analyzed .[7]-181. 

In this paper, we consider propagation of electromagnetic waves . . 
between two parallel wire mesh screens. Such a configuration is used in 

electromagnetic pulse (EM?) parallel plate simulators 19]-IlO] which are 

too large to employ solid metal sheets for the two conducting plates. 

Similar structures are also useful in cases where a slow-wave behavior 

is desirable [11]-f13]- 
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The geometry of a single rectangular bonded mesh in free space 

(permittivity E. and permeability p,) is illustrated in Fig. IL. Arrays 

of wires para1le.l to the x axis with spacing b and parallel to the y axis 

with spacing a are centered in the plane z = 0, and perfect contacts are 

made at the junctions. A second identical mesh is centered in the plane 

z = -2d as illustrated in Fig. 2a. The wire radius c is small compared 

to the spacings a and b, the mesh separation 2d, and the free space wave- 

length A. Consequently, only the axial wire currents are important and 

the usual thin wire approximations are valid. 

Since the parallel. plate mesh structure in Fig. 2a has a plane of 

symmetry at z = -d, the electromagnetic field can be decomposed into 

symmetric and antisymmetric parts‘which are uncoupled f143. The rectan- 

0 gular components of the smetric part of the electric field satisfy the 

following: 

and 

Ex(x,y,z) = Ex(x,y,-a-2d) 

Y Y (1) 

Es(x,y,z) = -Ea(x,y,-z-2d) 

For the symmetric part, it can be shown by image theory that the parallel 

mesh geometry of Fig. 2a is equivalent to the geometry in Fig. 2b where 

a perfect magnetic conductor is inserted at z = -d. Of course the 

equivalence is valid only for z > -d. 

The rectangular components of the antisymmetric part of the electric 

field satisfy a similar relationship: 
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Figure 1. Geometry for a single rectangular wire mesh with bonded 
junctions. Wire radius equals c. 
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Figure 2a. A pair of identical meshes with separation 2d. 

d 
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Perfect Magnetic 
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Figure 2b. Equivalent geometry for the symmetric part of the 
electromagnetic field. 
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Figure 2c. Equivalent geometry for the antisymmetric part of the 
electromagnetic field. 

. 
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EX(x,y,z > = -Ex(x,y,-z-2d) 

Y Y 

1 250-7 

(2) 

E=(x,y,z ) = EZ(x,Y,-s-2d) 

In this case, the parallel mesh geometry of Fig. 2a is equivalent {for 

z > -d) to the geometry in Fig. 2c where a perfect electric conductor is 

inserted at z = -d. This geometry will support a quasi-TEM mode which 

has no low frequency cutoff. Since this is the mode of primary interest 

in parallel plate simulators [9]-[lo] and slow-wave structures [ll]-[13], 

from here on we consider only the geometry in Fig. 2c. 

The analysis closely follows that for a single rectangular bonded 

mesh in free space [8]. We seek modes which are propagating in x and y 

but which decay in z outside the guide (00). We invoke Floquet's theorem 

[15] in order to express the relevant electromagnetic quantity as an ex- 

ponential function multiplied by a function which is periodic in x and 

Y- Thus for a single mode propagating at an angle 4 to ,the negative x 

axis, the current on the qth x-directed wire I 
w 

and the current on the 

mth y-directed wire I 
P 

can be written: 

I 
XP 

= exp[y(x cosd, + qb sin@] 1 Am exp(i2mxja) (3) 
m 

and 

I 
ym 

= exp[y.(ma co& + y sin+)] 1 Bq exp(i2rqy/b) (4) 

Am and B 
q 

are the unknown Fourier coefficients, and y is the propa- 

gation constant of the particular mode which we seek. The m and q summa- 

tions are over all integers including zero from -m to ~0. The calcu- 

lation of the fields produced by these currents in the presence of a 

perfectly conducting half-space is straightforward [6] and will not be 
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repeated here. The thin wire boundary condition for perfectly conducting 

wires is the following: 

EX(x,o,c) = Ey(o,y,c) = 0 (5) 

Although (5) is only applied to the m = 0 and q = 0 wires, the per- 

iodic Floquet form of (3) and (4) assures that the boundary condition 

will be satisfied at all wires. 

The expressions for the current in (3) and (4) are identical to 

those in the plane wave scattering case [6] except that y has replaced 

ikS where k was the free space wave number (=2~/1) and S was the 

sine of the incidence angle. Thus the previous equations for A and m 

B q 161 can be used with the following modifications: 1) set the inci- 

dent fields equal to zero (source-free problem), 2) set the grid separa- 

tion h equal to zero (bonded grids in the same plane), 3) set the wire 

impedances equal to zero (perfectly conducting wires), and 4) set the 

half-space conductivity equal to infinity. As a result, equations (24) 

and (26) in [6] reduce to the following: 

A 
(k2-kG)Pm ikx 

m 2ikb +2ka Bk 
4Y 

4 

B 
(k2-k;)Q ' 

q 2ika 'C& Ak 
c mx 
m 

where 

exp(-rc) - exp(-2rd) = o 
r 1 3 (6) 

i 
exp(-rc) - exp(-2rd) = o 

r 1 , (7) 

Pm = 
CL 

exp w-w - exp(-2rd) 
r 1 , 4 

9, = 
ci 

exp(-PC) - exp(-2Pd) 
r 1 , 

m 

(8) 

(9) 

Tmq(=I') = (k;+k;-kz)1'2 , (10) 
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kx = (2Tm/a) + kS cos@ , (11) 

250-9 

and 

k =I (2nq/b) + kS sin@ . (12) 
Y 

S is now defined as y/(ik). We note in passing that the case of symmet- 

ric modes (Pig. 2b) can be obtained from (6)-(g) by simply replacing the 

image term, -exp(-2rd), by +exp(-2rd) everywhere that it appears.' 

The summations involving exp(-I?c) in (8) and (9) are rather slowly 

convergent as they stand. More rapidly convergent forms have been derived 

previously for Pm and Q 4 
in the free space case [8] and can be applied 

here to yield 

‘D Pm = 7T -Rn 
j [ 

-2rIc' 1 - exp 7 ( ,I "*ml + 
exp (-rmoc) 

r 
TllO 

(13) 
exp(-2Pd) 

r ' 
4 

Q, = t {-an [l - 

(14) 

-r exp(-2Pd) 
r 9 m 

where 
' HIT A=idb r v 

exp(-rc) 
m 

4 
_ exP(-2r~#c/b)] (15) 

and 
_ exp(-2?ri;l c/a)] . (16) 

m 

The superscripted prime over the summation sign indicates omission of 

the q=o (or m = 0) term. 
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The doubly infinite set of linear equations (6) and (7) for Am and 

B is numerically inefficient in the present form because A, and B 

dlcay slowly for large /ml 
q 

and 141. The difficulty arises because the 

current expansions in (3) and (4) are slowly convergent for the discon- 

tinuous current that occurs at the wire junctions in bonded meshes. We 

circumvent the convergence problem by modifying the current expansions 

to allow for a jump discontinuity at the origin. The procedure is nearly 

identical to that employed for the rectangular bonded mesh in free space 

[8] and a few of the details are omitted here. The Fourier coefficients 

of the current A and B m q are first rewritten [8]: 

Am = A; + 
*(l-6,,) 

2Trim 

and 

Bq = B' - 
*(I-6 o> 

4 2Triq 
where 

(17) 

(18) 

i 

1, m=O 
6 = 
mo 

O,m#O 

Ail and B' are modified current coefficients, and A is an unknown 
q 

current discontinuity in I at x = 0. x0 By substituting (17) and (18) 

into (6) and (7), we obtain the following equivalent set of equations 

for the modified coefficients: 

A' 
(k2-k;)P m 

m 2ikb 
+ 2 xBqky [exp(-rc) ; exp(-2rd)] 

4 

+A t 

(k2-k;)P, (&mo-l> k P' kS sin+ 
2kb 2Trrn -&L $+ 2T 'lm 

and 

195 



E3iP l-27 250-U 

B' 
(k2-k2)Q q 

4 2ika 
+ 2 C Abx CexpWc) ; exp(-Xd)] 

m 

(k2-k;)Q, (l-6 o) 
1 

+A kS co+ 
2ka 2T 2T Q1, Ii ' = o 

where 

'lm = c 
'I 

exp c-w - exp(-2rd) 
qr 3 

, 

PI-i = Pm - 
[ 

exp (-Tmoc) - exp(-2rmod) 
r 1 , mo 

and 

(20) 

(22) 

(22) 

(23) 

(24) 

Again the suverscript prime ' on the summation indicates omission of the 

q=o (or m = 0) term. All summations are now in a-rapidly convergent 

form. 

Since we have introduced an additional unknown A, another equation 

is required to have an equal number of equations and unknowns (A' m, $9 

and a). The following equation can be obtained from charge continuity 

[81: 

-&(l+:) -I-xAi [imi+Fcos@) 
m 

(25) 

- CBi (iq + F sin+) = 0 . 
'2 

Since the doubly infinite set of equations, (19) and (ZO), are 

rapidly convergent, they can be truncated with m ranging from -M to M and 

q ranging from -Q to Q where M and Q are small integers. Thus (19), 
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a 
(201, and (25) yield a set of T(=2M + 2Q f 3) linear, 

tions in Am, B', and A: 
q 

TxT 
coefficient 

matrix 

AL&f . . 
A' 

0 * 

4f . 

2, 
. 
B:, 
. 
2 
AQ 

= 

0 - 

.  

.  

.  

a 

5 

.  

0 

.  

D  

.  

s  

.  

.  

.  

.  

.  

.  

.  

.  

.  

.  

.  

.  

.  

; ,  

EMF 1-27 . 

homogeneous equa- 

(26) 

A nontrivial solution to (26) exists only if the determinant, which is a 

function of S(=y/ik), vanishes. Thus the mode equation to be solved 

for S is 

I TxT 
coefficient 

I matrix 

= 0 (27) 

For modes which are evanescent in the positive z direction, S is real 

and greater than one. For this case equations (19), (20), and (25) can 

be normalized so that all coefficients are real functions of the real 

variable S. This real form has been programmed, and (27) has been 

solved numerically for S by the bisection method [15]. 

NUMERICAL RESULTS FOR THE PROPAGATION CONSTANT 

Convergence of the mode equation (27) was examined by increasing 

M and Q until the value of S (=y/ik) did not change significantly. 

The most rapid convergence was obtained by making M = Q regardless of 
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the a/b ratio. For the cases considered here, convergence was obtained 

for M = Q = 2 (T-11) which is consistent with previous results f7]-[8]. 

All results shown here are for M = Q = 2, and the required determinant 

calculation is fairly rapid for the resultant 11 X ll.matrix. For com- 

parison, some results from the method of averaged boundary conditions 

[12] have been calculated from (38). 

In Fig. 3, we illustrate the Q dependence of S for various values 

of d/b. The a/b ratio of 3 was chosen because a 3 to lmesh has been 

used in some EMP simulators (private communication, C.E. Baum). In all results 

shown here, the c/b ratio is 10 -2 , but the results are only weakly depend- 

ent on this ratio. Note that S always increases as $ goes from 0" to 90". 

Because of symmetry, only the range of Q from 0' to 90" need be shown. 

As d/b is increased, the results approach a single mesh in free space 

(d/b = m). The dashed results obtained by the method of averaged boundary 

conditions are in rather poor agreement for d/b = 1. As the mesh spacing 

is increased, the agreement improves and is quite good for an isolated 

mesh (d/b = ~0). The reason for poor agreement for small d/b is prob- 

ably that the effect of the higher order evanescent terms ([ml and 141 

# 0) is not accurately included in the method of averaged boundary con- 

ditions. 

As discussed previously [7], the variation of S with frequency 

will result in dispersion when attempting to transmit a pulse. The fre- 

quency dependence of S for $I = 0' is shown in Fig. 4 for a/b = 1. 

For this square mesh case (a/b = l), the mesh has a nearly isotropic 

behavior and very little $ variation occurs. This is in agreement with an 

experimental study on a single square mesh by Ulrich and Tacke [16] and a 

quasi-static analysis by Andreasen and Tanner [17]. Note that the agreement 

with the method of averaged boundary conditions is again poor for 
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Figure 3. Normalized propagation constant S for a 3 to 1 
mesh as a function of direction 
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Frequency dependence of the propagation. constant for 
propagation along the x-directed wires of a sqare mesh. 
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d/b = 1 and good for d/b = 0;). Also, both methods yield a value of S 

greater than one for b/A approaching zero unless the mesh is completely 

isolated (d/b = m). 

Similar results for a 3 to 1 mesh are shown in Fig. 5. The trends 

are similar but the values of S are smaller. This is due to the fact 

that there are fewer cross wires to contribute to the slow wave behavior 

of the guide. The effect of the cross wires has been described qualitatively 

as a periodic loading [16,17]. 

FIELD DISTRIBUTIONS 

The field distribution inside a parallel mesh guide is of interest 

because a uniform plane wave field is desired in the working volume of 

EMP simulators. Also the field outside the meshes is important because 

of possible interference problems. 

The fields of the currents given by (3) and (4) can be derived from 

an electric Hertz vector n which has only x and y components [6]: 

l7 = %-Ix 

where 

i-I = 
X GZ?CCArn 

m 4 

+ 9l-l 
Y ’ 

(28) 

-PC-r/z11 - exp(-r(z+2d)) 
r I 

(29) 

exdi(kxx f kyy)l 

'y = 2ka 
-ino C qBq [exp(-r/z/) ; exp(-I'(z+2d))] 

m 

ew[i(kxx + kyy)l , 

nO 
= (uo/"o)1'2 , 

(30) 
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Figure 5. Frequency dependence of the propagation constant for 
propagation along the x-directed wires of a square mesh. 
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and ^x and ^y are unit vectors. Note that the fields for the symmetric 

modes (Fig. 2b) could be obtained by replacing the image term, -exp(-r(z+2d)), 

by +exp(-r(zf2d)) in (29) and (30). The electric and magnetic fields 

are obtained from the following operations on n: 

and 

E = VV*n f k2w (31) 

g= +QXii (3.2) 
0 

In general, the expressions for E' and E obtained by substituting 

(28)-(30) into (31) and (32) are rather complicated. However, for suffi- 

ciently small ka and kb only the constant terms (m=q=O) are of sig- 

nificance for observation points more than a,cell dimension (a or .b) from 

the mesh. An equivalent interpretation is that we consider the fields 

averaged over one cell, and only the m = q = 0 terms contribute. The con- ' 

stant terms for the Hertz components fl and i7 are xo 
YO 

-in 
l-r = LA x0 2kb o 

and 
-in 

n =e?B 
YO 2kb o 

exp(-ro/z/) - exp(-ro(z+d)) 
r + koyy) (33) 

0 

expC-ro(zl) - exp(-ro(z+d)) 
r + koyy) (34) 

0 1 
where k ox = kS cos$, k 

OY 
= kS sin@, and To = k(S'-1)l". 

For general angle of propagation 4, all three components of the 

electric and magnetic fields can be non-zero. However, for the 'important 

special case of 4 = 0' (propagation along the x-directed wires) the 

fields simplify considerably because B. and k are zero. 
OY 

Thus i'Ixo 

and TT 
YO 

simplify to 
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-in, 
fl=- 

- exp(-I'o(z + 2d)) 

x0 2kb A. 
exP(-r&l1 

r 1 exp(ikSx) (35) 
0 

and 

i-I yo = 0. 

Thus.the constant components of the electric and magnetic fields are 

H 
x0 

=H =E =o, 
20 YO 

Exe = (5 + k2) TIxo , ~~~ = 2 , (36) 

By substituting (35) into (36), we obtain 

E 
irioAo 

= 
x0 - exp(ikSx)Exon , b 

E noAo = 
zo 7 exp(ikSx)EZon , 

H = AO 
YO -r exp(ikSx)H yon ' 

where 

E = (~2-1)~‘~ [exp (-To 1 z 1) - exp (To (z+2d) >I 12, (37) xon 

E zon = S[-sgn(z)exp(-To[z/) + exp(-ro(z+2d))]/2, 

H 
Yen 

= Fsgn(~)exp(-l"~lzj) + exp(-To(z+2d))1/2 

and 

sgn(z) = 
1 

+1 , z>o . 
-1 , z<o 
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Note that the normalized fields ExOn, EZOn, and H are all real and 
yen 

EMP 1-27 

dimensionless. This normalization implies that the mesh carries a fixed 

current density, Ao/b. 

In Figs. 6-8, we illustrate the z dependence of EXon, E zon' and 

H 
yen 

both inside (z<O) and outside (z>O) the guide for various values 

of s. Of course, in a specific example S is determined from the mode 

equation (27). Here we choose d/x = 1, but it would be easy to generate 

results for other values of d/X from (37). Note that for S = 1, we 

have essentially a perfect guide. All fields are zero outside the guide, 

and E and H zon y on 
are unity inside. Exon is zero everywhere. 

For the extremely slow wave case of S = 2, the fields are simply 

those of a slow surface wave on the mesh and decay rapidly on both sides 

of the mesh. For intermediate values of S, the values of the desired 

fields, E and H zon yon' decrease toward the center of the guide (z=-d) 

and are nonzero outside the guide. Also, Exon becomes nonzero. This 

behavior is consistent with the known fact that the departure of S from 

unity is a measure of the shielding degradation for wire meshes [7], [8]. 

An important design consideration is that 2rod(=2k(S2-1)"d) must be kept 

small in order to produce a nearly constant field inside the guide and a 

small field outside the guide as desired in EMP simulators. 

CONCLUDING REMARKS 

A general formulation has been derived for the propagation modes of 

a pair of parallel rectangular meshes. The mode equation has been solved 

numerically for the propagation constant of the quasi-m mode. This is 

a slow-wave mode which has no low frequency cutoff, and it is the dominant 

mode in parallel mesh EMP simidlators. For comparison, results from the 

method of averaged boundary conditions are also presented. The agreement 
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Figure 6. Distribution of the longitudinal electric field Exon 
for various values of S. 
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Distribution of the transverse electric field Ezon 
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between the two methods is good only when the mesh dimensions are small 

and the two meshes are widely separated. When the meshes are rectangular 

(a#), the propagation constant is highly dependent on the propagation 

direction. 

Field distributions are also shown for the quasi-TEM mode. When the 

propagation constant is equal to that of free space (perfect meshes), the 

interior fields are uniform and transverse, and the exterior fields are 

zero. As the propagation constant increases (as for realistic meshes), 

the interior fields decrease toward the center of the guide, and the ex- 

terior fields become nonzero. 

Several extensions to this work are possible. Although the quasi- 

TEM mode is of most interest, higher order modes are possible and could 

be studied from the general mode equation (27) derived here. The intro- 

duction of a lossy half-space (rather than the perfect electric and mag- 

netic conductors considered here) would be useful in modeling ground 

screens for antennas [5], [6]. In general, these extensions would result 

in complex propagation constants and a numerical search in the complex 

plane for solution of the mode equation. A final practical problem of 

interest is the effect of finite mesh width on the propagation constant 

and field distribution of the modes. Two possible approaches are to 

model the meshes as sheet impedances [S] or as a finite number of wires 

[=I. 
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APPENDIX - AVERAGED BOUNDARY CONDITIONS 

The geometry of Fig. 2c has been treated by the method of averaged 

boundary conditions [12] which is based on small a/X and b/h. The 

resultant mode equation [12] can be written in the .following form: 

sin2${(ro/k)[1 - exp(-2rod)] - X2[1 - S'(R2 sin2$ i- Rl COS'$)~} 

l I I I1 - exp(-2rod)l + (i?,/k)Xl[l - S2(Rl-R2)cos'$l] 

+ Cos2@{(ro/k)[l - exp(-2rod)] - Xlcl - S2(Rl cos2$ f R2 sin2$)l] 

l cc1 - exp(-2rod)l + (ro/k)X2 1 - S2(R2-Rl)sin2$1) = 0 (38) 

where 

Rl = a/b 
_. 

b/a 
1 + a/b ' R2 = 1 + b/a ' 

x1 = FRn($), 
and 

X2= $+Rn(&) . 

This mode equation has been programmed and solved numerically for S by 

the bisection method [15]. 

For the important special case of $ = O', (38) simplifies to 

(I’,/k)b - exp (-2rod) I - X,(1-RlS2) = 0 . (39) 

In the limit of large d, the exponential term vanishes in (39) for 

ReOYo) > 0, and we4have: 

(S2-l)1'2 - X1(1-R1S2) = 0. (40) 
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This is precisely the mode equation for the rectangular mesh in free space 

which has an explicit solution for S [81. 

The other limiting case of (39) is for small rod. In this case, 

we can replace exp(-2rod) by 1 - 2rod. With this approximation (39) 

can be solved explicitly for S: 

1 + 2kd/x1 1 
l/2 

s = rcl + 2kd/Xl (41) 

Although the simplicity of (41) is attractive, we find that the method of 

averaged boundary conditions does not agree well with the rigorous Floquet 

analysis for closely spaced meshes (small d). This poor agreement is 

illustrated in Figs. 6-8. Consequently, the validity of (41) is question- 

able. 
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