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Abstract 

This note considers the response of electric- and magnetic-field sensors 
in‘terms of spherical modal expansions to identify the electric- and magnetic- 
dipole terms which are associated with the ideal angular response to an inci- 
dent plane wave. Considering an idealized spherical resistive sheet sensor, 
the dipole surface current densities are computed and bandwidth and figure of 
merit determined to optimize the choice of R,. 

For practical sensors the response in general includes various multipole 
terms besides the desired dipole terms. Expanding the response in terms of 
spherical harmonics allows one to identify the dipole term and from this gives 
one a definition of upper frequency response. In addition a norm over the unit 
sphere of the difference between the actual response and the ideal response 
gives another way to define upper frequency response. 

An example of a magnetic-sensor design which approximates the resistive- 
sheet sphere is also considered. 
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I. Introduction 

For some time now consideration has been given to the design of optimum 

sensors for the time derivative of electromagnetic field components in free- 

space conditions. Various sensors for components of afi/at and ad/at have been 

constructed for EMP and lightning applications [7,8,9]. The response of these 

sensors is fundamentally limited by transit times of the electromagnetic wave 

across the sensor structure [6]. Besides accuracy considerations, an optimum 

sensor design can be defined as one that maximizes bandwidth (related to this 

transit-time limitation) for a given sensitivity. 

A previous note has considered some fundamental aspects of this trade-off 

between sensitivity and bandwidth and has defined appropriate dimensionless 

figures of merit for both electric and magnetic types of derivative sensors 

[6]. The reader should consult this previous paper for various results not 

repeated here. In the present paper the sensor is assumed to be in a free- 

space configuration so that the assumed incident.plane wave can arrive from 

any direction (471. steradians). These results can be related to sensors mounted 

on ground planes using the expressions in [6]. 

a. Basic expressions for figure of merit 

Based on voltage and current, respectively, the dimensionless 

figures of merit are 

(Kl) 

,,(I) = liideal(jWc) 1 

I $..,,(jQ Rc 

v/here 

w = upper frequency response (defined in some appropriate way) c - 

t, f some characteristic rise time (1.2) 

R, z an associated characteristic length 
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The ideal voltages and currents are based on the low-frequency (quasi-static) 

form of the sensor response. For electric-dipole sensors we have 

A 
(1.3) 

eeq 
z equivalent area (quasi-static, independent of s) 

din,(t) E incident electric flux density evaluated at "center" 
of sensor (typically coordinate origin) 

and for magnetic-dipole sensors we have 

ideal(s) = ‘c’ideal (s) = sib 
eq 

’ ginc(S) 

x, 
(1.4) 

5 equivalent area (quasi-static, independent of s) 
eq 

Einc(t) E incident magnetic flux density evaluated at "center" 
of sensor (typically coordinate origin) 

with 

t- 

s E 

zc 3 

time 

complex frequency or Laplace-transform variable (= jw for 
frequency-domain analysis) 

(1.5) 
designator of Laplace-transformed (two-sided) quantity 

impedance (assumed a constant resistance) driven by sensor 

Some other physical parameters are 

1 C= - = speed of light - 

G 

Z,E 
J 

po - r = wave impedance 
0 

p, E permeability of free space 

&O - permittivity of free space 

Y= 5 3 propagation constant of free space 

(1.6) 
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To complete the definitions of the terms in (2.1) we have for 

electric-dipole sensors 

E,,,(t) 5 incident electric field parallel to 4 

= fi,,(t) ' $ 
eq 

eq 

Ie 5 unit vector in Xe direction 
eq eq 

Ae eq 
=rxe I 

eq 

H,,,(t) 3 + Eref(t) 
0 

and for magnetic-dipole sensors 

H,,,(t) 5 incident magnetic. field parallel to Ah 

= Ffinc(t) l - Th 
eq 

eq 

Th - unit vector in Jh direction 
eq eq 

+= 
Ah 
-9 

= Ah 
eq 

Ah 
eq 

= &, '1 
eq 

(1.7) 

(1.8) 

Eref(t) - ZoHref(t) 



b. Figure of merit in terms of power 

As discussed in [6] there are limitations in A w and A(') because 
ideal transformers can arbitrarily increase voltage or current if the 'load 

impedance Zc is changed correspondingly. This difficulty is avoided by 

defining 

/i E [/p)*(‘)]% 

For electric-dipole sensors we then have 

(1.9) 

,cv) = $ A ~-2 
0 eeq ' 

&') = A 
e "i2 

eq 
(1.10) 

A= 
zc kA 

( ) 
c2 

T eeq ' 

and for magnetic-dipole sensors we have 

,b) = A g-2 

eeq ' 
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/\(I) _ z. - z Ah 
C eq 

Xi2 

Ah 
eq 

"i2 

One can also interpret A in terms of power. Define 

P ideal(w) E Iiideal(jw) y.jdeal(jw) 1 

for the case of 

v idea 

for which the vo ltage and current are in phase. In this case (1.12) corresponds 

to peak CW power in the quasi-static regime. Correspondingly define 

(1.11) 

(1.12) 

(1.13) 

‘ref-(“1 = I$.,,(jw) Gref(jw) I (1.14) 

for the case of a plane wave with 

q,,(s) = zo”refw (1.15) 

for which the electric and magnetic fields are in phase. In this case (1.14) 

is re'lated to a component of the Poynting vector. With these definitions we 

have 

(1.16) 

Thus the figure of merit can be interpreted in terms of the ratio of the out- 

put power (into the load) to the input power per unit area in the incident 

electromagnetic wave, evaluated at the upper frequency response. 

Interpreting these results we have for electric-dipole sensors 

I? 
A= 

ideal (w,)]~ Z~ 
(1.17) 



and for magnetic-dipole sensors 

L-P 
A= ideal(wc)1' 1 

(1.18) 

In this form each type of sensor has its figure of merit cast in terms of its 

frequency-response parameter (ac), appropriate reference field component, and 

power delivered to a resistive load. Later in this note this form will be 

important because our ideal sensor does not have specified terminals, but 

absorbed power can still be considered for an idealized distributed sensor. 
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II. Idealized Spherical Sensors 

Figure 2.1 shows an idealized spherical sensor centered on q = 6. This 

sensor is an impedance sheet of sheet-impedance value zs(s) located on 

r = /:I = a. 

Since it is desirable to have the upper frequency response independent 

of the direction of incidence, f,, then one might desire the transit time of 

the incident wave across the sensor to be independent of I1 which can vary 

over 47r steradians. This leads to a spherical geometry. 

Since spherical coordinates (r,e,@) as in fig. 2.1 are one of the few 

coordinate systems in which solutions of Maxwell's equations are separable, 

one has another reason for a spherical sensor. In particular let us assume a 

sheet impedance fs(s) (a scalar) which is located on a spherical surface given 

by r = a and which is independent of (0,$) on which to base our idealized sen- 

sor. This sheet impedance relates tangential electric field and surface 

current density as 

7 = T- ?$T, E transverse dyad 

7~ identity dyad . 

T,, E unit vector for u coordinate 

(2.1) 

The surface current density is in turn related to the magnetic field via 

Tr x [ti(a+,e,@,s) - ?i(a-,e,+,s)l = SS(e,tbs) (2 .a 

A more general approach would be to use a volume-distributed load- 

ing instead of restricting it to a surface. Spherical symmetry can still be 

maintained by a conductivity and/or permittivity of the form Z(r,s) + sE(r,s), 

i.e., not a function of (e,a). Perhaps this can be explored in the future. 

Of course a practical sensor will at best only approximate such a 

spherical impedance sheet. The assembly of conductors and loads at ports 

(such as transmission lines) can at best approximate the ideal sensor in some 
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I I /,” 

\ 
sheet impedance z,(s) 

Figure 2.1. Idealized Spherical Sensor 



average sense. As will be seen later, it is only certain of the spherical 

surface current modes that one wishes to couple to the sensor output. This 

will influence the design of practical sensors in a manner that makes the 

orientation of conductors "orthogonal" to unwanted modes. Symmetry will be 

quite important. 
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III. Electromagnetic Fields in Spherical Coordinates 

This subject has been developed in terms of the complex-frequency or 

Laplace-transform variable in [5,12,13]. In terms of w this has been developed 

in various texts. 

Summarizing we have spherical harmonics 

Y 
w-b 

,(e,$) = p(m)(cOs(e)) cos(m') 
n 

0 I i sin(m+) 

d n m ,(W) = yn m ,(w) ir 

d,',',@dN = vsin', ,(e,d = i , , , 9 r xfin,m,p(e,44 
(3.1) 

dP~'tcos(e)) cos(m@) 
3 ,(w) = 78 de 

n,bo I i 
+f 

Pim)(cOs(e)) { -sin(mo) 

sin(m@) 4 sin( 8) m (cos(m@) i 

Tt n m p(e34) = Vs xpn m ,Wd = -ipan m ,(e,$) 3 , 3 3 , 3 

Phrn.) (c0s( ej) 
m 

dP,!,"')(cos(e)) 

8 sin(e) -$ de 

with the Legendre functions given by 

P (F) Z P(O)(C) E IL dn [($ -- 
n -) n 2"n! d<" 

- 1)“l 

These are used in constructing the spherical wave functions 

I 
codm9) 
sin(m@) 

(3.2) 
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f('?)(vr) 
= fh')'(yr) Fn,,,,(e,+) + n yr ~n,m,p(“@) 

(3.3) 

fCR)(yr) d 
= n(n+l) n 

b-f(“) hr) I’ 
-v n,m,pte2+) + n yr 'n,m,pceY+) 

The spherical Bessel functions are denoted by 

fh')(ur) = i,(yr) 

f,!,%r) = k,(v) 
(3.4) 

with 

k,.,(C) = < e-T Jo .p-g& kP 

ink) = $1) “+‘k,(S) +- k&-d1 
(3.5) 

A prime is used to indicate a derivative with respect to the argument of a 

Bessel function. The propagation constant is 
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y = [sp(a + SE)]+ 

1-1 3 permeability 

o E conductivity 

E E permittivity 

(3.6) 

For later use we have for particular Bessel-function representations 

lI< -1 ilk) = 2 I’ k - cr21 + e-‘[C -1 + p3 \ 
I 

= 5-l cash(<) - <-* sinh(r;) 

= 5 [l f O(C2)] as<+0 

kl(5) = e-'[r;-l + re2] 

= C2[l + O(G2)] as<+0 

[ri,(T;)]' = $ e'[l.- c-l + r;-'1 - e-<[l t S1 t cm23 
i 

= [l + <-*I sinh(5) - r-l cash(r) 

= $ Cfl + Ok2)l as<+0 

[rk,(r)]' = -e-'L-1 f r-l + rV2] 

= -C"[l + O(C2)] as<+0 

Associated particular Legendre-function representations are 

P[")(<) = 5 9 P\“)(cOs(e)) = c0s(e) 

(3.7) 

(3.8) 

Pjl)(<) = -(l - E2)% ) Pll)(cos(e)) = -sin(e) 

0 
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Particular spherical harmonics are 

1 fi 
Lo,; 

= -i, sin(O) I i 0 

1 3 
Lo,: 

= t, sin(e) (i 0 

(3.9) 

z = -1, -sin(@) 

I i 
+ IQ c0s(e) 

cosw 

l,l,~ cod@) 1 i sin(@) 
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IV. Plane Waves in Spherical Coordinates 

Define a set of orthogonal (right-handed) unit vectors by 

II = sin(+os(@I)Tx + sin(0I)sin($,)S + cos(eI)1z 

T2 = -c0s(0~)cos(~~)~~ - cos(0I)sin(@I)$ + sin(OI)lz 

(4.1) 

I3 = sin(lbl)~x - COS(~~)~~ 

Here TI is the direction of propagation and 12 and 1, are mutually orthogonal 

unit vectors, each orthogonal to 7 1 to indicate the polarization of the electro- 

magnetic fields in the incident plane wave. As indicated in fig. 4.1, 6I is 

the angle of TI with respect to the z axis and @I is the angle of its projection 

on the x,y plane with respect to the x axis. 

a plane parallel to 7 

For convenience 12 is chosen in 

4 

and the z axis (E or TM polarization if the electric 

field is parallel to *) while T3 is then parallel to the x,y plane (H or TE 

polarization if the electric field is parallel to IS). In (4.1) we can use 

the relations between Cartesian and spherical coordinates 

x = r sin(0)cos'($) 

Y- r sin(e) 
. 

z = r cos(8) 

I,'= sin(O)cos(@)1, + cos(e)cos(+)7, - sin(@ 

i; = sin(8)sin(@)fr + cos(8)sin(@)10 + COSTS 

lz = cos(e)T, - sin(O)'i, 

(4.2) 

to express the incident-wave unit vectors in terms of (a,,$,) and (6,@). 

Next we have the result for a dyadic plane wave [4,12,15] 
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Z 
t 

Figure 4.1. Unit Vectors for Plane Wave 
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Te 
-yT,-F ~0 n 

= 1 1 1 [2 - lo ml(-l)n(2n+l) {* 
n=O m=O p=e,O , 

where for n = 0 the summation does not extend over the identically zero 6, 1, 

fi, and fi functions. For vector plane waves we have the set of orthogonal unit 

vectors Cl,, 12, 131. In free space, electromagnetic plane waves have both 

electric and magnetic fields orthogonal to I1 (as well as to each other). Thus 

only I2 and 13 are of concern. This removes the presence of the r functions 

in the expansion (since plane waves have zero-divergence fields). Taking dot 

products of 1, and 73 with (4.3) gives 

T2 e 
-“‘*’ = T 2 1 [a;,m,pi?~t~,p(y~) + bl;,m,p$~~,p(-&] 

n=l m=O p=e,O 

r3 e 

-yTl-q 03 n 

= Jl mlo' ,=I o [bn,m,p'AtA,p(y') - al;,m p%$i,p(")] = , 3 (4.4) 

a' 
n,bE 

=[2- 1 ,,,lW n+l 2n+l (n-m)! 
-$iq(n+m)m 

P:)(c~s(~~)) -sin(mQl) 

sin(el) { cosh$) \ 

b' e = 12 - 10,m](-l)n 2n+1 (n-m)! n dP(m)(cos(81)) 

who n(n+l>(n+m)! 
de 

1 

Particular coefficients of interest are 
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a' =o 
Lo,; 
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V. Solution of Scattering Problem 

Let us define our incident plane wave as an E wave (TM wave) 

finc(F,s) = Eo12 e 
-9, l t’ 

j$inc(;,s) = gq e-yTl*; 
0 3 

(5.1) 

I One can also define an H wave (TE wave) in a similar way. However, utilizing 

the symmetry of the spherical sensor one can move the observation position (or 

function) on the sphere by a rotation so as to obtain all possible plane waves 

with respect to an observer. 

Expand the fields for r < a as 

and expand the scattered fields for r > a as 

~$d = E. jl .io ,-E o 
- - - 

b;", p?;211, ,(Y?) + b,!,". pfi;2; p(~;)] 
,, ,, , , , 3 3 

(5.3) 

f$b) = > y f 1 [bl;':m,p$~!,p(y") - aI;:m,pfi~'~,p(y~)] 
0 n=l m=O p=e,O 

Matching boundary conditions on r = a, continuity of tangent 

field combines with (2.1) and (2.2) to give 

Tt  l [finc(lf.B,$9S) + ~sc(a+,e,~.s)] =Tt l tin(a-,6,@,S) 

ial e lectric 

= 's(s)Tr x [ fiinc(a+,e,4.s) + fisc(a+,e,Q,s) - Ciin(a-,e,+,s)] 
(5.4) 
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Substituting the series representations for the fields and noting the orthogo- 

nalities of the functions (tangential components) on the surface of the sphere 

gives equations for the coefficients as 

a' n,m ,i,ha) + a 9 ,!,"m pknha) = a; m pinh) 3 3 , , 

qs) 

= T ar!i,m,p 

Cvai,(va)l' 
-I- a"' 

Cvaknh)l 
ya 

_ a" 
hai, 1’ 

n ,m,p ya n,m,p w 

(5.5) 

b' 
hai, 1’ Cvak&vdl’ hai,Wl 

n,w 
+ b'" 

ya n,m,p ya = ,, b;l m p ya 

qs) f 

= T bn,m,p n 
I 

i (ya) + b"' n,m pkn(ya) - b;l m ,i,(ya) , , 3 

Eliminating the a"' and b"' coefficients gives 

Z,(s) ()=a’ ~ 
n,m,p Z. 

i 
i,(w) 

Cv$,hdl’ _ k (ya> ha$,hdl 1 
ya n ya 

! 

+ a” I -qs) 
ww Z. 

I 

Cvak,ha)l hai, 1’ 
ya - k&-d ya 1 

+k,ha)i,,h) 

0 = b' 
qs) 
- k,(w) 

i 
Cuai,hdl ~va$.,ha)l ’ 

bw Z ya - inha) 
0 ya 

k,ha) 
C-wi,hdl' Cva$,hd I’ 

ya - i,(w) w I 

-I- Cvak,(ua)l’[uai,(va)l’ 
hd2 

Applying the Wronskian relation [5] 

Win(5),5knk)l = c.i,(q)Csk,(s)]' - [<in(C)]'<kn(C) = -1 (5.7) 
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gives solutions for the a" and b" coefficients as 

a" = a' I zO 1 -1 

n,m,P ww 1 
1+- 

Z,(s) 
haj2 in(-w)kn(-ra) \ 

b" 
J-l 

n,m,P = 
b’ n ,m,P 

I,- z. 
1 

- [vai,(ra)l'[vak,(ua)l I 
$b) 
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VI. Surface Current Density 

Now the surface current density is 

?Qe,+,s) = --J----r, l *(a,e,$,s) 
zsw 

= $$ ,5! mFo p=g o [a~,m,pin(ya)lin,m,p(e'@) 2 
S , 

+ b” 
Cvai,ha) I ’ 

n,m,P ya (6.1) 

At low frequencies the electric- and magnetic-dipole terms (n=l) are of course 

the dominant terms, as can be seen from the behavior of the spherical Bessel 

functions for small argument. Including only such terms we have 

mio p-g o [f,(s)ai,m,p'i,m,p(ey@) 
_ ) f %(s)b I; m p81 m p(ey4)] 3, ,, 

(6.2) 

where the superscript 1 on the surface current density indicates the dipole 

part. In this form we have the important dipole coefficients (electric and 

magnetic, respectively) relating the surface current density to the incident 

fields as 

Z. Cuai,W I’ 
T,(s) = - 

q(s) ya i 
zO -1 

l-- 
Z,(s) 

Cvail(va)l’Cuakl(ra)l’ 1 
I 

(6.3) 

(va)2il(va)kl(ua) 
-1 
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Then split this dipole part of the surface current density into electric and 

magnetic parts as 

1 bi m ,(el,O,) fil,m,p(ey$) 
m=O p=e,O ' ' 

Sth)(e 0,s) = p T (s) ; s ’ 
0 h 

1 ai m p(el~~l)~l ,m,pbdb) 
m=O p=e,O ' ' 

In order to better visualize these surface currents let us specialize 

the incident wave to a particular set of parameters as 

el=: , @j = 0 

(6.4) 

-il = lx , I2 = lz , I3 = -1 
Y 

giving 
I- 

-l S(e+e,$,s) = 2 T,(s)[- : sin(e)?,j S 0 
(6.5) 

~~h)(63$,s) = t h 3: w[; COS(@)T, - $ cos(e)sin(+)T,l 

Figure 6.1 illustrates the surface-current-density pattern for these electric- 

and magnetic-dipole terms on the spherical sensor. The electric term has the 

current density oriented in the 6 direction proportional to sin(e); note the 

symmetry with respect to the z axis including surface-current-density direction 

in a plane through the z axis and independent of the rotation of this plane 

(independent of I$). The magnetic term has the current density oriented parallel 

to the xz plane (or orthogonal to the y axis) proportional to the sine of the 

angle from the y axis; note the symmetry with respect to the y axis including 
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A. 

B. Magnetic-dipole pattern 

Figure 6. . Surface-Current-Density Distributions for Dipole Terms 

Electric-dipole pattern 
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surface-current-density direction orthogonal to a plane through the y axis 

and independent of the rotation of this plane (independent of the angle of 

the plane with respect to x or z axes). 

A limiting case of interest for these results is for is(s) = 0, i.e., a 

perfectly conducting sphere. In this case we have 

F,(s) = -Iya[yakl(ya)]'IS1 

= ydl + Wd2H ass+0 

(6.6) 
F,(s) = I(-ra)2k,(va)}-1 

= 1 + O((ya)2) as s-t0 

The electric term is interpretable in terms of the surface charge density by 

the equation of continuity 

vs  l S~e)(e,4) = -s5,(6,4) (6.7) 

giving 

C$Q$) = - f .Ar & Csin(e)J(e+e,ddl 
‘6 

E 
= f f,(s) & c0s(e) 

0 
= ~~~~~ 

$eb) 
7 CosW 

= 3coEo cos(6) as s+O (6.8) 

This shows the enhancement of the electric field by a factor of 3 in a uniform 

incident electric field at 2 appropriate "poles" of the sphere. The magnetic 

term gives 

E 
Skh)(e,+,s) = ++f Ccos(@)-ie - c0s(e)sin(@)14] 
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This shows the enhancement of the surface current density by a factor of 3/2 

in a uniform incident magnetic field at an appropriate "equator" given by the 

intersection of the xz plane with the sphere (corresponding to C#J= 0,~ with 

0 L 6 I n). 
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VII. Figure of Merit for Idealized Spherical Sensors 

Section 1 discussed the figure of merit for such a sensor in terms of 

power delivered to a load and power in the incident field referred to the 

appropriate field component. Now let us apply (1.17) and (1.18) to our ideal- 

ized spherical sensor. 

Now it is our purpose to have the sensor output coupled to only one 
34 spherical mode for the surface current density, specifically 5, or 3:") 

depending on the type of sensor (electric or magnetic) under consideration. 

For the purposes of this note let us assume that 

zs(s) : Rs (7.1) 

i.e., that the sheet impedance is simply a frequency-independent sheet resis- 

tance. Furthermore let us assume that all the power from our desired surface- 

current-density mode delivered to R, appears as power at the sensor output. 

Note that other assumptions are possible; is(s) could be a more general complex 

function of frequency and there could be some complex transfer function relat- 

ing the surface-current-density mode to the sensor output. Perhaps these more 

general possibilities can be considered in the future. 

For present purposes then let us take 

= R ?(eyh)(e,lp,jw) l jie3h)*(e,@,jti) dS 
s s so 0 

= RSa2 ’ ff(e’h)(6,@,ju) l iffkeyh)*(6,$,jm) sin(e) ded# (7.2) 
0 

where * indicates complex conjugate, the integral is over the surface of the 

sphere, and the extra subscript "0" indicates the leading term in the expan- 

sion of the "e" or "h" surface current density for low frequencies. For the 

electric sensor we have 
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and for the magnetic sensor we have 

CsinWc0s2(+) +sin(6)cos2(6)sin2(@)]ded@ 

= Rsa2~$ih~jw))12 % ,I [sin(e) + sin(e)cos2(6)] de 

(7.3) 

(7.4) 

Note the similarity of the final results of (7.3) and (7.4) with the only dif- 

ference being the two dipole coefficients Fe and rh . 
0 0 
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VIII. Electric-Dipole Response 

Considering the electric-dipole coefficient function define 

Te (s) = ya 03.1) 
0 

so that 

f,(s) 
+l 

fe (s) 
ass30 (8.2) 

0 

giving a normalized response function. 

The departure of this function from unity at high frequencies can be used 

to define the upper frequency response. For low frequencies we have 

F (s) ,--ra e - = 
fe (d 2(Yi)2 ’ 

'[(ya)-2 - (ya)-l + l] -e-2ya[(ya)-2 + (ya)-l + 111 

0 

'I + ' [ha)-2 - (ya)-' + 11 - e-2m[(ya)-2 + (ya)-l + l]j 
\ 0 2 

C(vC2 + (ya)-' + I] 1 -1 

2 = 
3(-d2 1 

m - (uaJ2 + O((vaj3) 
1 

i 

R 
p + $a - Cd2 + O((ya)3)][(ya)-2 + (ya)-l + 11 

i 

-1 

0 

= ha> -2 
i 

$1 (ya)-2[ya +(ya)2 + 0( (ya)3)] 
0 

+ [(ya)-2 + (ya)-l + l] 
i 

-1 

= (1 +[$2+ l] ya + O((ya)2)[1 as s -f 0 (8.3) 
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In this form one can identify a time constant 

t, = [;$+ l] : = tRC = tt 

"low frequency" RC time constant t RC c s Rscoa ? 

tt f f E trans it time for one rad ius 

(8.4) 

Note the inciusion of a factor eeya with F,(s). This factor makes the time- 

domain form depart from the zero at t = 0 instead of t = -a/c. Expanding this 

normalized and delayed response function for low frequencies we can identify 

an RC time constant appropriate to a capacitive r or ad/at sensor. However, 

this simple form only strictly applies for frequencies such that the sensor 

is electrically small. As the RC time approaches the transit time across the 

sensor (by decreasing Rs) then such a simple model of the response no longer 

applies; the sensor is becoming transit-time limited. This is reflected in 

the argument of the exponentials (ya) becoming comparable to unity. 

Let us take our definition of.upper frequency response as 

-h-p 
- %(jw,) 

e ’ = Fe(j MC) 1 =- 
Te (3-Q 

0 
fe (jut) - d7 

0 

At low frequencies we have found 

w -t 
C 

,i = [I; RScoa]-' 

Ta [ 1 CtRC 
-1 

=2$ 
-z - 

C a 3 RS 

(8.5) 

(8.6) 

jtia -- 
Figure 8.1 is a graph of e ' f,(jw)/fe,(jw) as a function of the normalized 

frequency wa/c with selected values of Zo/RS as a parameter. Note for large 

values of Zo/Rs the response exceeds unity for wa/c a little less than 1. 
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Using (8.5) to define wc then fig. 8.2 has wca/c as a function of Zo/Rs. 

Note that the behavior of (8.6) is followed at low frequencies, but that 

wca/c tends to about 1.27 as Zo/Rs + 00. 

Finally the figure of merit 

,,(e) = C P\$,, hc$ 
I $efbQ I 

- zg 

is plotted as a function of Zo/Rs in fig. 8.3. 

a maximum give; by 

As Zo/Rs is increased we find 

,(4 
max 

= 1.9378 

wCa 
- = .769 

C 
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Figure 8.1. Electric-Dipole Response Versus Frequency 
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IX. Magnetic-Dipole Sensor 

Considering the magnetic-dipole coefficient define 

Fh 
0 

(s) = $+ya 
S 

so that 
$,b) 

Fh (s) + 1 ass+0 

0 

(9.1) 

(9.2) 

giving a normalized response function. 

For low frequencies we have 

,--m T,(d 

fh b) 
= -2 j [-(ya)-2 

2va 1 + (ya)-l] + e-2ya[(ya)-2 + (ya)-'1' 
I 

S 

I 
1 + $ (vaJ2 

RS 2 [ C-(valm2 +(ya)-'1 + e -2ya[(ya)-2 +(ya)-' + 11 1 
lIhC2 i 

-1 
+ (va)-2l 

= & $ ya - 3 (ya)2 + O((ya)3) 
I i 

I 1 + $ haI 2 -1 

Rs 2 
- 3-w c - f (-cd2 + O((ya)3)]lhd-2 + ha)-1l 

I 

= [l + ya + O((ya)2] + $* 
I 

Z 
UvC2 + ha)-1l 

S 1 

-1 

= 1 + Jj$ + 1 ya + O((ya)2) 
I i 

-1 
ass-+0 

S 

In this form one can identify a time constant 

(9.3) 
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th = [+k+ l] : = tL,R + tt 

t 1 uoa = -- = "low frequency" 
L/R - 3 R, - L/R time constant 

(9.4) 
5 5 : 5 transit time for one radius 

Again a factor of emya is included with fh(s) so as to make the time-domain 

form zero for negative time. In this case the low-frequency response of the 

normalized and delayed response function allows us to identify an L/R time 

constant appropriate to an inductive Ff or $/at sensor. Again this simple 

result only applies for electrically small sensors. At high frequencies the 

sensor is transit-time limited as reflected in the argument of the exponentials 

becoming comparab'le to unity. 

Again taking our definition of upper frequency response as 

$a 
-- 

e C Th(jwc) 

jh (jwc) 
0 

at low frequencies we have foun 

-1 3Rs wzt =- 
C L/R voa 

‘h(jwc) 1 = - 
Fh ( jwc) - ~9 

0 

d 

(9.5) 

(g-6) 
wCa [ 1 CtL/R -' 3R 
-2 - 

C a =f 
-jwa 

Figure 9.1 is a graph of e ' Fh(jw)/fho(jw) as a function of the normalized 

frequency wa/c with selected values of RS/Zo as a parameter. 

Using (9.5) to define wc then fig. 9.2 has wca/c as a function of RS/Zo. 

The behavior of (9.6) is followed at low frequencies, but wca/c tends to about 

1.81 as RS/Zo im. 
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Finally the figure of merit 

/$h) = 
I RrefCjwc) I 

R [ 1 % 
= 67~ 2 

zO 
y IFh 

0 
(jwc)l 

2 

is plotted as a function of RS/Zo in fig. 9.3. As Rs/Zo is increased we find a 

maximum given by 

#) 
max 

= 1.9241 

RS 

z, = 1-54 

wCa - = 1.29 C 
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X. Application to Non-Ideal Sensors 

Practical electromagnetic sensors are not accurately characterized as 

sheet impedance spheres. However, spherical modes can still be used to charac- 

terize the response. 

Assume that some information (calculations or experimental data) exists 

concerning the response of a sensor (say voltage at defined terminals into a 

resistive load for an incident plane wave) of the form 

V(e’,@‘;S> = y y 1 ~n,m,p(s)Yn,m,p(e”~‘) 
n=l m=O p=e,O 

(10.1) 

This expresses the idea that for fixed s a function of (e',@') on the unit 

sphere can be expanded in terms of spherical harmonics which form a complete 

orthogonal set. Here 0' is taken as the angle of the field component of inter- 

est from the z axis. Note that the n = 0 term is omitted since the monopole 

term is absent in antenna response. 

Let re or II indicate the direction of the incident electric or magnetic 

field, respectively, so that 

‘e ’ ‘z = cos(8’) (10.2) 

h 

which is of the same form as the ideal angular behavior of the sensor response. 

The angle 4' is specified by the projection of le on the x,y plane as 

h 

le l $ = sin(e')cos(+l) 

h 

Te l Iy = sin(e' 

h 

(10.3) 

Taking f, as 

(10.4) 

we can relate the (e,,@,) coordinates to the (e',@') coordinates as 
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forOF0' <J!- 
-2 

for 0' = s 

for;< 8' (TF 

(10.5) 

Strictly speaking one also needs to account for polarization. However, 

a plane wave propagating in the II direction can be considered as having a 

linear combination of waves characterized by I2 and I3 polarization given by 

(4.4). A particular choice of polarization is illustrated in (5.1). Let us 

choose the incident E field or H field to be polarized in the 1, direction, 

depending on whether we are considering respectively electric or magnetic 

sensors. Let the sensor axis, i.e., direction of its equivalent area, be 

oriented parallel to the z axis so that 

1 = Ae,qle 
eeq 

, A, > 0 
eq eq. 

1 eeq =ifz . 
(10.6) 

xh = Ah lh , Ah > 0 
eq eq eq eq 

fh 
eq 

= Tz 

In this convention 0' measures the angle of the field of interest (electric 

or magnetic) with respect to the z axis which is taken as the sensor axis. 

Now the 7, polarization is always orthogonal to the z axis, i.e., 

I, l lz = 0  (10.7) . . 

Now if the sensor is properl'y symetric with respect to the x,y plane, the 

sensor will not be sensitive to the electric or magnetic field component 
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paral iel to 73; let us assume the presence of such symmetry so that we only 

need to consider the component parallel to -f2. 

Besides reflection symmetry with respect to the x,y plane [II] there 

are other symmetry considerations. The sensor can be in some sense symmetri- 

cally positioned or "centered" with respect to the z axis. In some cases (as 
with electric sensors) the sensor may be a body of revolution with respect to 

the z axis, such as the HSD (hollow spherical dipole) [4] or the ACD (asymp- 

totic conical dipole) [3]. In other cases (as with magnetic sensors) the 

sensor may have one or more symmetry planes containing the z axis, such as the 

MGL (multi-gap loop) [Z] which has 4 such symmetry planes spaced at angles of 

7f/4 in its common realization. 

Returning to (10.1) note that 

Y1 o ,(0',@') = P\O)(cos(W) 
9 , 

= cos(8') 

> 

(10.8) 

This is precisely the term in (10.1) of interest, being the same as in (10.2). 

Furthermore, this term is orthogonal on the unit sphere to all the other scalar 

spherical harmonics in (10.1). Hence we can compute 

= VI o e(s) ZIT jr cos2(e1)sin(e')de' 
, , 0 

= -q 0 ew 2njC c0s2(el)d cos(e1) 
, 9 0 

=- 
"3" Vl,O,e(s) (10.9) 
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giving 

g(s) E G = 1 V(B',@';s)cos(e')sin(e~)de~d~~ (10.10) , 0 3 e(s) 2 j'"j" 
0 0 

so that the dipole part of the response is g(s)cos(e'). This can then be 

calculated from the measured response $(e',$';s). 

From the measured sensor response one can then calculate the electric- 

or magnetic-dipole part which can be normalized from 

giving 

Je(s) s g e (s) = Zcs&o$.ef(s)Ae ass-+0 
0 eq 

g h (s) Q 9, (s) = wofiref(s)Ah ass+0 
0 eq 

(10.11) " 

Ee(s) = 
cl,(s) -= Ge(s) 

+l ass+0 
Bee(s) Zcs&o$ef (s )Ae 

eq 
(10.12) 

i$$) 
G,(s) E - = 

!$,b) 
-+l 

!7 (9 
eO 

sv,~ref(s)Ae 
eq 

ass+0 

as normalized dipole parts of the response. 

We are now in a position to consider upper frequency response. Since 

?(e',@';s) may have different frequency response functions for different 

(e',@') we need to choose which response functions to use. Our first choice 

is an appropriate average over (e',$'), in particular what we have defined 

as the dipole part. In normalized form we can define wc as the smallest wc 

for which 

1 =- 
n 

(10.13) 
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where the norm is taken over the range of (0',$') on the unit sphere. Norms 

ined in many ways [14]. A common norm is the infinity norm given can be def 

by 

II"v<e ',$';jw) - ~e(jw)cos(6')j!m - max IV(6',$';jw) - ge(jw)cos(6')l 

h 8' 4' h 

(10.15) 
Il~,(jd II 3 lg,(jw) I 

h h 

In this form c1 c 0 
4 w represents the maximum deviation from the "ideal" normal- 

ized to the matnitude of the "ideal" at its maximum, 81 = 0. If aim)(w) for 

w I wc is sufficiently small then (10.13) is adequate for defininghbandwidth 

Conversely, if CLe +)(w) b ecomes larger than, say, l/n for w 5 w with wc from 

(10.13), then wchcan be defined from (10.14) as the smallest wc For which 

a,(w) = a0 (10.16) 

h 

for electric- and magnetic-dipole sensors, respectively. Of course one should 

be concerned that ce or gh is not too dispersive so as to adversely affect the 

transient response; in such a case one may wish to construct ce(s)/s or 

G,(s)/s and inverse transform to obtain a step-function-like response from 
which an appropriate characteristic time for the rise can be defined (and 

which can be converted to an effective wc if desired). 

Now using (10.13) to define wc may be limited to cases in which 

i(e',+';s) does not deviate too much from g(s)cos(e') at least for frequencies 

up to WC. To treat the angular errors define 

IIS(e' ,V;j4 - C7e(jw)COS(O') II 

cle(d = 

h Ilaedli 

h 

(10.14) 

which is any convenient positive number which is not too large and in general 

is less than one. 
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There are various other norms such as the euclidean norm or 2 norm 

given by 

Iv(e',$';jw) - ge(jw)cos(0')12sin(el)de1d@' 
h 

WeW l* 
h (10.17) 

computed from measured (or calculated) All of these norms can be approximately 

response functions for the sensor. 
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XI. Application to Magnetic Sensor Design 

As mentioned before, the idealized spherical sensor can serve as a basis 

for approximate realization of a practical sensor. An example of a previously 

considered spherical-sensor design is the HSD (hollow spherical dipole) which 

has a perfectly conducting spherical shell loaded along an equatorial slot [4]. 

An efficient non-spherical magnetic-sensor design is the MGL (multi-gap loop) 

which is based on conducting cylindrical shell with its length approximately 

equal to its diameter and loaded at eight positions on the circular cylindri- 

cal shell [2]. It would be interesting to base a loop design on an approxi- 

mately spherical shape. 

In designing complex loop structures there are various techniques and 

constraints concerned with the use of transmission lines (impedances, transit 

times, and topologies) for the purpose of taking the signals from the load 

points or "gaps" to a common collection position [l]. For parallel combina- 

tion of signals from different loops it is desirable to have the same voltages 

from each loop (except for perhaps single-ended/differential considerations). 

This implies that the loop areas be in the ratio of small integers so that 

the use of multiple (2, 3, etc.) or.fractional (l/2, etc.) turns with these 

loops can give appropriate equivalent areas for each loop to match the outputs 

of the various loops. 

As an example consider the design illustrated in fig. 11.1 for 3 loops 

labelled A, B, and C. These have radii and areas 

radius (A) = 2 , 
n 

area (A) = s a2 

radius (B) = a , area (B) = ma* 

radius (C) = -$ , area (C) = : a2 

(11.1) 

Centering the loop conductors for loops A and C on the defining sphere of 

radius a at angles of 7~/4 from the z axis makes the areas of loops A and C 

exactly half that of loop A. Then set the loop turns as (for example) 
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Figure 11.1. Three-Loop Spherical Magnetic-Field Sensor 
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turns (A) = 1 , Aeq(A) = F a2 

turns (B) = $- , Aeq(B) = T a2 

turns (C) = 1 , Aeq(C) = s a2 

(11.2) 

This gives equal equivalent areas so that the loop outputs may be connected 

in parallel without introducing an ambiguity in the equivalent area of the 

sensor. Note that the loop is made of wide strips instead of thin wires to 

reduce the inductance. 

Our example shows loop B with 4 load points or "gaps" labelled Bl through 

B4. Each gap is made of a 200 R conical transmission line (as in the typical 

MGL) driving a 200 R transmission line leading along the loop conductors and 

shorting plates to the summing position in the center presenting two 400 R 

differential signals there to be added in parallel. Loops A and C each have 

two such gaps, each driving 200 R transmission lines to the summing position 

where each presents a 400 52 differential signal there to be added in parallel 

to each other and to the B signals.. The resulting four 400 R differential 

signals in parallel give 

Zc=lOOR (d ifferential) 

which is quite convenient 

are in the "back," hidden 

(11.3) 

. Note that in fig. 11.1 load points in parentheses 

from view by the sensor conductors. 

This sensor design attempts to approximate a sphere of sheet resistance 

Rs by these 8 symmetrically positioned signal sampling positions, each of 

200 R, on the surface of a sphere of radius a. One can roughly estimate Rs 

from say loop B by taking it to encompass an angular width of 7~44 or width 

ar/4 with a circumference 2Tra giving 

RS = 4(200 Q) y& = 100 R (11.4) 
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Other sheet resistances can also be approximated by changing the number of 

gaps and/or gap impedances. 

One can also envision other similar magnetic sensor designs involving 

say 4 loops. The 2 loop case is approximated by the typical MGL design already. 
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XII. Conclusion 

This note has explored the optimization of time-derivative electromagnetic- 

field sensors. Using the concept of figure of merit an idealized spherical 

type of sensor is used to investigate the maximization of this parameter. 

Using a definition of bandwidth that the normalized response is reduced to 

l/n of its low-frequency value gives figures of merit approaching 2 for the 

idealized spherical sensors, both electric and magnetic, in this note. For 

comparison one may look at some recently obtained measurements of the response 

of the MGL and ACD sensors [lo]. These have figures of merit scattered in the 

same general magnitude as the maximum figures of merit (almost 2) for the 

idealized sensors here. Note that the angular errors discussed in section 10, 

when applied to the MGL and ACD, did not become serious until significantly 

above the upper frequency response. 

The idealized spherical sensors discussed here do not exhaust all the 

possibilities for consideration of maximum possible figure of merit. Other 

possible types of spherical sensors include ones with other radial distribu- 

tions of impedance loading (instead of a shell or delta function with respect 

to r). Furthermore, other kinds of.impedance loading functions besides a 

purely resistive one could be considered. Some kind of RLC network 

(distributed) could be used for js(s) with one of the resistances represent- 

ing the effective impedance of the output transmission lines; the remaining 

elements might be used to optimize the sensor performance near the upper 

frequency response. Much is still needed to understand what is practically 

attainable in optimized upper frequency response. 
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