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In considering the far field of an impulse-radiating antenna there is a problem in that infinite fre- 

quencies are included significantly in the impulse, making it difficult to properly define the far field in 

such an ideal case. This paper adopts a different approach by taking an asymptotic expansion parallel to 

the aperture normal (z axis) with the aperture step illuminated simultaneously over the entire aperture. 

By this means we obtain a detailed description of the early-time field which we call the intermediate field. 

This has a convenient scaling relationship involving narrowing it in time as z increases. 
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1. Introduction 

Much has been done to characterize an impulse radiating antenna (IRA), such as summarized in 

[14,17,X& 201. These include TEM-fed paraboloidal reflectors and TEM-fed lenses. Both kinds are char- 

acterized as aperture antennas with fields being calculated by integration over the assumed TEM fields 

on an aperture plane, at least for the impulsive part of the radiated far field (with assumed step excita- 

tion). (The prepulse associated with the TEM feed of a reflector IRA is not discussed here.) As discussed 

in [3] which began this odyssey, the impulsive part of the waveform (on boresight) is not a true impulse. 

It has a peak which is just the aperture field, but its width decreases like r-l, so that its time integral 

decreases like r-l , appropriate to a far field. 

Extending the model based on an aperture integral one can look in more detail at the behavior for 

large distances from the aperture, so as to obtain a higher-order approximation and obtain the shape of 

the approximate delta function, called 6,(t) in [5] where 

00 

I G,(f)df = 1 (1.1) 

This, of course, is a normalized form of the actual waveform and the various vector components need to 

be considered for positions off symmetry planes. As we shall see, we can define a vector waveform func- 

tion which has the time variable (width for each amplitude) scale like z-l where the z axis is normal to 

the aperture. 

Some development in this regard has already been made [16, 19,211. For a given retarded time 

there is a circle on the aperture plane, the radius of which expands as time increases. The field is repre- 

sented as an integral of the aperture field on this circle. For a uniform, single-polarization aperture field 

closed-form expressions for the field are developed. Other approaches to this problem are contained in 

[12,131. 

For the special case of a uniform aperture field on a circular aperture, the fields can be evaluated 

exactly on the z axis perpendicular to the aperture plane and centered in the circular aperture [6, 9-11, 

151. While in most cases, the aperture integration is performed in the frequency domain, with the result- 

ing field transformed to the time domain, in [61 the integration is performed directly in the time domain, 

simplifying the derivation. Furthermore, it is also shown in [6] that this result applies to any TEM wave 

(uniform phase) on the aperture provided that one use the field at the aperture center (7 = ??‘, in the 

expressions. This result will be of significant help in the present paper. 
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Our starting point is the general expressions for the fields from a specified tangential electric field 

on the aperture S, [2,3,61 as 

E,(t,t) = & I-$[:-$ + l]E;(x’,y:f-t)dS’ 
Y 

E,(?,f) = @-$[:$ + l~E;(i..y’;f -;)dS 

+ $-$[f& + l]E;(z’,,‘;f-:)dS 

P 

ZOH,(-;f,f) = -$,(x-x9(qy-y’)[;-$ + 3 + $ I,]E;(x’,y’;f-;)dS’ 

42 

2+Cl 
R t 

_ (y-y’12+z2 
R2 

zo = EQ E [ 1 EO 
wave impedance of free space 

1 
c = [M EO]-? = speed of light 

R = IT-t1 = [x-x’12+ [y-y’12+ z2 + 1 
1~ E time integral operator (1.2) 

t 
It E.(t) = 

I 
3(f’)df’ 

-00 

- 



&(X’, yl; f) = E;(x’,y’;f) i, + E;,(x’,y’;f) iy 

= tangential electric field on aperture S, 

Referring to fig. 1.1, note that a prime designates a parameter on the aperture S, which lies on the z = 0 

plane. Parameters at the observation point 7 are unprimed. 

Our coordinates are as usual 

-s 
7 = (x,Y,z) = x i, = y iy = z iz 

-+ 
=Y lr 

r=lTl 

Cylindrical coordinates (Y: 9) are formed via 

x = Y cod@) , y = Y sin(#) 

(1.3) 

(1.4) 

with primes to place these on the aperture plane. 

Referring to fig. 1.1, the aperture boundary C, encloses the aperture S, consisting of a set of 

points (x’,y’) E S,. If one extends the points (x’,y’) l C, as the points (x, y) with x = x’ and y = y’ for 

all positive z, there is formed a cylinder with generators parallel to the z axis. The same extension of 

(x’,y’) E S, to equal (x, y) gives the interior of this cylinder which we call 

V, = aperture extension (1.5) 



sa 
aperture 

tangential electric 
field on aperture 

Fig. 1.1 Aperture Antenna with Specified Targential Electric Field 
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2. Formulation of the Intermediate Field . 

For the intermediate-field formulation of the impulsive part of the waveform (becoming an im- 

pulse in the limit of large T on the beam axis) let us first consider only the R-l terms in (1.2). This defines 

what is sometimes called the “radiating near field” [23]. Furthermore, let us consider the asymptotic form 

for z + DO with fixed x and y. First we have 

(2.1) 

=z+oz -1 
( ) as z+= 

Note that x’ and y’ are bounded by the assumed finite dimensions of the aperture. Now in (1.2) retain 

only the leading z -1 terms in the coefficients of the aperture fields giving 

++ 
E(r,f) = & & 

42 

ZO G(r’,f) = i, xT(r’,t) + O(Z-~) as z-00 
0 

(2.2) 

-)+ 
E(r,f) = -z& x&,t) + o(z-‘) as z+m 

Here the dependence on R is retained in the retarded time in the temporal argument for the aperture 

field. This is equivalent to retaining the exact phase of each elementary radiator on the aperture. Note 

that in this approximation the fields are TEM with respect to the z axis with errors in the fields of order 

zS2. This is like the usual far field (taken in the z direction) except for the dependence on R in the aper- 

ture field. 

Defining retarded time 

f, E t-4. 
C (2.3) 

and keeping only up to quadratic terms in (2.1) for the expansion of R we have 



++ 
E(r,f) = 

-++ la> Ej(r,f) = - - 
2mZz df J( E x’,y’;t, -& [[x*-x12+ [yy2])dS’ 

SO 

(2.4) 

It is this that we call the intermediate field, a far field with quadratic time (or phase) correction on the 

aperture. The approximation here will give a small error as to when an event is seen at the observer (as 

compared to an error in amplitude). 

Now let 

&x’,y’;t) = Eo &(x’,y’) f(f) 

f(f) = waveform function 

+ eo = normalized electric-field distribution (tangential) on aperture (2.5) 

Eg = normalizing electric-field magnitude (V/m) 

so that there is a uniform waveform (or phase) for the entire aperture, giving focusing in the z direction 

(at -1. One can focus in a different direction, say 7’0, but then one should do the expansion in that 

direction instead of iz [3].) Our canonical aperture excitation function is a step function [3,5]. Let us 

then write 

&(?,f) = E. - df(f) [ 1 fit 
0 T’i(T,f, 

0 = convolution with respect to time 
(2.6) 

i?fi(T,f,) = L iL 
2nrz df J $0 (x’, yl) IJ f (r -&[[x’-x]~ + [yt-y]2])dS’ 

= 1 J;:w,~Y +-&[[x’-xl2 + [y’-y12])dS’ 
2ncz 

s, 

Define 

5 = 2czfr (units m2) 

= time parameter or normalized retarded time 

C( = ((x~,y~)I[x’-xJ2+ [yt-y12= 4 , {>O} 
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SC E circular disk in aperture plane S’ of radius 5 1’2(> 0) centered on (x, y) with boundary Ct . 

S, = aperture (disk) in S’ with specified tangential electric field ?r and normalized l 
form 20, excluding any feed-arm projections (zero field here) 

C, E aperture ( S, 1 boundary including any deviation around 
feed-arm projections (even if of zero thickness) 

Sb G Sg n S, = portion of S, contributing to surface integrals 

Cb z boundary of Sb (noting deviation around feed-arm projections) 

C, z Ct f-l S, (a proper subset of Cb when Ct lies partly or entirely outside of S,) 

dS’ = dx’ dy’ = unoriented or scalar surface element 

dl’ = unoriented or scalar line element 

d 3 = oriented or vector line element 

We then have the representations 

(2.7) 

(2.8) 

where, in converting to a contour integral over C,, one needs to be careful so that the integral of the delta 

function (one dimensional) is over a path normal to the circle of radius $ with this radial coordinate as 

the integration variable. Furthermore, one needs to be careful near singularities of the field (e.g., near 

edges of feed arm projections), but such singularities are quite integrable. Our normalized intermediate 

field is then a function of x, y, and 5. Space z and time t, are combined as a product. So for a given (x, 

y) this normalized field need be computed only as a function of 5 and this temporal waveform applies for 
a 
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all z (within the limits of our approximations). This scaling also applies to the frequency spectrum of the 

intermediate field as discussed in Appendix A. 

As we go to larger and larger z the waveform becomes shorter and shorter in retarded time. If 

we take the complete time integral the circle of radius tl” on the aperture plane expands to include all 

of S, giving 

-+ 

I ei(x,y;5)dt, = & T?i(x,y;@d< = & j-i?o(x’,y’)dS’ 
-0 - S4 

(2.91 

This is a rather simple result and it falls off as z-* as a far field should. Of course, here we are only con- 

cerned with the impulsive part of the waveform, not prepulse (for reflector IRA) or postpulse. 

Furthermore, this integral (the area of the intermediate-field waveform) is independent of x and y, and 

hence of whether or not 7 is contained in the aperture extension V, (of course limited to Y << z>. Note 

also that the vector orientation of this integral is the same as the average of 20 over S,. For typical cases 
-+ 

of one or more symmetry planes this direction is found by inspection (e.g., 1 y for 20 spmeftic with 

respect to x’ = 0 [S, 8,241). 

As a simple example one can consider the observer on a symmetry plane which we take as the (x, 

z) plane. With syrrrmefric fields on the aperture the x component of the field is zero giving 

~i(O,y;Q = ti,(O,y;Oir 
m 

I eiy(0,y;5)dt = & leo,,(x’,y’)dS’ 

S4 

This scalarization allows us to find the approximate delta function 

a 

&(t,)df = 1 

1 

-1 

I eo, (x’, y’) dS’ eiy (0, y; 5) 
S 4 

(2.101 

(2.111 

as discussed in [3]. The present development extends this to include its vector properties and scaling 

4B 
withz and f,. 



3. Initial Step in Intermediate Field Within Aperture Extension 

If the observer is within the aperture extension V,, the first contribution to the intermediate field 

comes from (x’,y’) = (x,y). As it turns out, this ti(x, y;O+) is easy to evaluate. Our first approach 

follows the development in [6]. In that case the TEM property on the aperture, which can be given by 

20(x’, y’) = V’ dx’, y’) , vt2 u (x’, y’) = 0 (3.1) 

allows one to expand 7?‘o around the origin (Y’= 0) in terms of non-negative integer powers of Y’ (say 

Y rm-1, m 2 1) times cos( m 4’) and sir4 m (1. Then integrating over a circular aperture only the m = 1 

term contributes for an observer on the z axis, and the field at the observer is initially the same as the 

field on S, at Y’= 0. 

Extending this result, consider some small 5 > 0. The contour C, is a circle of radius tl” lying 

completely within S, for 5 sufficiently small, i.e., 4 = O+. The integration is only over the circular disk 

contained inside Cr. The aperture field is TEM there, and the observer initially sees (fr = 0,) that aper- 

ture field. This result applies not only on the z axis, but inside the aperture extension V, (at least a small 

distance away from the cylindrical boundary), since the field is TEM at all (x’,y’l within S, . 

(Equivalently the z axis can be shifted to any position within V, .) So we therefore conclude 

~i(X,y;O+) = F?O(X,y) (3.2) 

a remarkably simple result. Note then that the early-time 2’; need not have the same orientation as its 

complete time integral as can be seen from the symmetric aperture in (2.10) and (2.11). There the com- 

plete time integral is parallel to i y, but for x # 0, a symmetric Ti with respect to the symmetry plane 

can have an orientation other than ir. Furthermore, note that this result does not depend on the 

intermediate-field approximation; it applies right up to the aperture. 

Referring to fig. 3.1, we can see that as 5 increases the radius (1’2 of Ce increases until a non- 

TEM domain is reached. This could be the aperture boundary C, or some discontinuity at conductors 

forming boundaries for the assumed planar TEM mode on S, . Defining 

$“(x y) = I [ ra d’ ms of largest circular disk wholly within the TEM regionI 

= 2czfp (3.3) 
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Fig. 3.1 Example Aperture: Circular with Projection of Two Coplanar Feed Arms 
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we have the result 

tikY;t) = 2O(X,y) 24 (5) for 4 < @‘)(x,Y) (3.4) 

So we have a step function valid out to some readily calculable 5 (or equivalent retarded time). Note in 

fig. 3.1 we have shown two contours: CF) centered on (x, y) and Cf) centered on the origin. In the first 

case t(l) is determined by the circular Ca; in the second case it is determined by the distance to the con- 

ductors introducing a singularity in the TEM mode. If one wishes $‘) can be more accurately calculated 

based on R as in (2.2), thereby avoiding the intermediate-field approximations for this early-time 

window. 

Note that for observers outside the aperture extension (3.3) can be extended to 

$‘)(x, y) = [radius of largest circular disk wholly outside the TEM region (aperture)12 

= 2cztp (3.5) 

In this case we have 

2fi(X,y;() = 3 for t<<(‘)(x,y) (3.6) 

so that c+‘) now gives the first retarded time that the observer can detect any signal, the tangential electric 

field on the aperture outside S, being assumed zero. 

Going a step further we can define 

$2+x y) = [ I ra ms of smallest circular disk wholly confnining the TEM region (aperture)12 d’ 

= 2czty (3.7) 

In this case (2.8) gives 

2i(X,y;@ = d for t> $2)(~,y) (3.8) 

Between @‘) and {‘2’ the waveform is more complicated and polarization may even rotate. One con- 

straint that we can obtain concerns the time integral of this portion. Combining (2.9) with (3.2) gives 
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$2’ 5(2) 

J ti(x,y;Qdf, = & 1 Y?i(x,y;{)dt 
tp p 

=- ~o(x’,y’) dS’ - -~?‘o(x,~) f;” 

TO(X,Y) P(x,y) for (x,y) E S, 

z for (x, y) e S, 

(3.9) 

This last result can also be interpreted by recognizing that 20 = d outside S,. 

A second approach to the early-time result in (3.4) involves a gedankenexperiment. Again, refer- 

ring to fig. 3.1, consider first a boundary value problem in which the entire aperture plane S’ (z = 0 plane) 

has specified on it the TEM tangential electric field given by (2.5) with f(f) as the unit step at f = 0. 

Furthermore, let the fed-arm projections be extended as conductors (perfect) parallel to the z axis toward 

z =+m. Noting that the TEM mode Y?o(x,y) is exactly the transverse field for such a mode on a TEM 

transmission line matching the requisite boundary condition on the above transmission-line conductors, 

then 

~(Ly;~) = E. &(x,~)~ (3.10) 

satisfies the Maxwell equations and boundary conditions (tangential 2 on S’, zero tangential ?? on the 

conductors, and radiation condition (+z propagation)) and is thereby the unique solution for positive z. 

Next, change the field on S’ to be zero outside S,, but unchanged on S,. Then by causality, this 

change cannot be observed inside the aperture extension V, until some time after the wave in (3.10) first 

arrives at the observer. This retarded time is f, (I) except that the non-TEM part of the aperture (feed-arm 

projection) is not considered to limit the expansion of C,, now to the aperture boundary. 

Finally, remove the transmission-line conductors from the z > 0 half space. There being no 

currents on these to support the wave in (3.101, now an observer in the aperture extension can observe the 

fact of their absence after a retarded time f$” with the feed-arm projection included as part of the aper- 

ture boundary (boundary of non-TEMness). 
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Since this gedankenexperiment does not rely on the asymptotic expansion of R for large z as in 

(2.11, then one can use exact values of R to determine a more accurate value of f!“. Thereby one can 

extend the early-time result in (3.4) right back to the aperture plane, i.e., z need not be considered large. 
l 
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4. Complex Potentials and Fields on Aperture 

Having constrained the aperture fields to be TEM (as on a cylindrical transmission line) we can 

derive the aperture tangential electric field from a potential function as in (3.1). This allows us to use the 

complex-variable formulation in 151. Summarizing we have 

c = X’ + jy’ = complex coordinate (on aperture) 

60 = x + jy = complex observer coordinate 

w(c) = u(c) + lo(c) = complex potential 

7+0(x’, y’) = V’dx’, y’) , 20 (XI, y? = V’v(x’, y’) 

co(c) = eo, (x’,y’) - jq,, (x’, y’) , ho(C) = ho, (x’,y’) - jh”,, (x’, y’) 

eo, (x’, y’) = &-J~ (x’, y’) , coy (x’, y’) = - ho, (x’, y’) 

complex aperture field (normalized) (4.1) 

V dw(t) E([) = jZgH(~) = - -- 
Au d[ 

= E,(x’,y’) - jEy(x’,y’) 

fg = 
Au (between appropriate conductors) 

Av (around appropriate conductor(s)) 

= geometric impedance factor for TEM transmission line feeding aperture 

Here V is the voltage across the aperture (via the feed arms in the case of a reflector IRA); this can be a 

function of time to match (2.5) as desired. 

In complex form (2.8) becomes 

ei(c(),{) = f?iJX,y;5) - jeiJxry4 

= $ feo(C)dS 

sb 

(4.2) 

Consider first the early-time behavior. For 5 CO the integrals for Y?i give zero. For the time 

interval (the first time interval) 
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0 < 5 < c$“(x , y) (4.3) 
a 

!$, is a circular disk and its boundary Cs is a circle consistent with (3.3). One way to approach this prob- 

lem is from Cauchy’s theorem 

eo(O = g c r’-r l 4 e”(*‘) dc’ , c inside C (4.4) 

which requires that et)([) be analytic within and on C. Let us then choose C as a circle centered on [ 

and change variables as 

dc’ = jejard6?dpm on C 

dl” = line element (real) on C 

Kl = radius of circle 

giving 

co(C) = & f eo(W~” 
= average value of e&Ion circular contour C 

1 
Applying this general result to our circle of radius < -2 centered on co gives 

dt’ = 151 
1 

T?‘o(x,y) = $5-7 d T’dx’, y’ld!’ (real vector form) 

% 

Applying this result to (42) gives 

ei(cO,{) = eo(C0) for 0-c 5 <t?‘(X,Y) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

a 
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This is the same result as (3.4) stated in complex form and derived by a different technique (Cauchy’s 

theorem). For observers outside the aperture extension this gives the same result as (3.6) noting that 

eo(co) is zero for 6 outside S,. 

For the time interval (the third time interval) 

5(2)(x y) < 5 I (4.9) 

the circular contour Ct contains S, completely inside (as per (3.5)). The contour C, in (4.2) and (2.7) is 

then the null set and 

ei(CO,t) = 0 for {f2)(x,y) < 5 (4.10) 

consistent with (3.6). This leaves the second time interval 

P(x, y) < 5 < f2’(x,y) (4.11) 

0 
to consider. 

For the second time interval we need to apply the contour integral to a circular arc C, centered 

on co in S,. Consider then a circular arc of radius j: which we can parameterize as 

(4.12) 

Noting the positive sense of y, the range of y(-lr to K etc.) can be chosen at our convenience. Then (4.2) 

becomes 

ei(co,t) = & Teo(< e@ + (0) day 
Yl 

(4.13) 
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If Cc consists of more than one such arc (say due to interruption by any feed arm projection(s)), then 

other arc portions (e.g., ~3 to ~4) need to be included in (4.13). 

A special case has co on the aperture boundary. Then we have 

(4.14) 

CO- e. S, (just inside from [I-J> 

The 0+ value of {f’) indicates the limit as 4 + 0 from positive values. Note that there is assumed a zero 

field just outside the boundary, so an infinitesimally thin feed-arm projection does not apply here, but 

one could include two such terms in that case. Assuming that the boundary is smooth (locally straight) at 

4’0, then we have the simple result 

y2 - Yl = * 

ei((O,O+) = 3 eO(cO-) 
(4.15) 
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5. Symmetrical Two-Wire Transmission Line as Feed-Arm Projection with Circular Aperture 

For a concrete example for which one can compute ei (co, {) let us consider the canonical example 

151 of the aperture fields as given by those of a symmetrical two-wire transmission line as illustrated in 

fig. 5.1. The positions of the equivalent line charges are made coincident with the edge of the circle of 

radius LI (at 4’ = f ju), while the wires of radius b are centered at c = 31 jac. Using previous results 

[l, 51 we have 

2 ac = a 2 + b2 

fg = E = t arccosh (p) = i arcsinh (i) 

1 
2 )I = -!-en 

a 

For the complex potential and field we use 

(5.1) 

W ) co(C) = 7 = wo [C + b]-’ [ -[cmja]-'] = -fi 

For convenience we choose 

-+ 
eo(O,O) = iy 

eo(0) = -j 

(5.2) 

(5.3) 

wo = f 

so that Eg in (25) represents the field amplitude at the aperture center. With this we have the potential 

difference between the conductors as 

Au = II arcsinh g = z a fg 
0 

Av = II K (circling one conductor) 
(5.4) 
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Fig. 5.1 Symmetrical Two-Wire Transmission Line Feeding Circular Aperture 
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I 

We can then identify AU with the voltage V between the conductors giving 

(5.5) 

where the upper conductor has convention positive and the bottom has negative. Note, however, the 

sign reversal in the case of a reflector IRA due to the negative reflection at the paraboloidal reflector. 

In fig. 5.1, the observer location (projected on the aperture plane) is 

50 = x + jy = YO ej40 (5.6) 

As previously determined the intermediate field is initially (the first time interval) the aperture field, i.e., 

for 0 c 5 < {(l’(x y) , Yo <u I 

cp(x, y) = [a - Yo12 

(5.7) 

where b has been assumed negligible compared to a for certain I#Q (e.g., 7r/2,3~/2) so that the feed pro 

jections do not significantly lessen $“. On the two symmetry planes (x = 0 and y = 0) the field is polar- 

ized in the y direction. The field is symmefric with respect to x = 0 and antisymmettic with respect to y = 

0 [8,241. The individual field components for the first time interval are 

r 

Note that for Yo > II the observer is outside the aperture extension, and the field is initially zero, i.e., 

(5.8) 

q(&-j,{) = 0 for O<e<<(“(x,y) , Yo>a (5.9) 
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consistent with the extended definition of {fl) in (35). 

In the third time interval we have 

e;(CO,t) = 0 for gf2’(x, y) < 5 

{‘2’(x,y) = [a + GoI 

As in (2.9) the complete time integral is 

(5.10) 

(5.11) 

which varies as z -I, but is independent of &J (or x and y). As in (3.9) the time integral over the second 

time interval is 

(5.12) 

For the special case of an observer on the z axis we have no second time interval. The waveform 

is explicitly 

ei(O,<) = co(O) u(t) u(a2 -t) 

co = 0 , p = p = 2 

The complete time integral is 

p a* 

I( ) eiO,lj dfr =& 
I 

a2 
q(O&G = gee(O) 

0 0 

(5.13) 

(5.14) 

This is consistent with the results of 161 for the leading part (impulsive part) of the on-axis fields from a 

circular aperture. This.applies to any ‘EM distribution on a circular aperture where there is no 
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significant penetration of the aperture by feed-arm projections. Thus the results apply to four (or any 

number) of thin feed arms driving the aperture provided one calculates the tangential electric field at the 

aperture center. 

Now we come to the second time interval for general co. As illustrated in fig. 5.1, we have the 

circular arc C, of radius {1’2 centered on 60 on which to integrate as in (4.13). The end points of the 

contour are given by 

I y. ,I+0 + 5112 , iY = a 
I 

Y; -b 5 + 2 Y() p2 cos(y - &Jo> = a2 

yl -h = k arccos 
a’-+g 

2 I 1 2Yo p2 

(5.15) 

For Yo c U(~I-J e S,) the cosine goes from +1 to -1 as 5 increases. For Yo > a(co e. S,), the cosine goes 

from -1 to some maximum value and then back to -1 as 5 increases. 

For our aperture field as in (5.2) the contour integral for the second time interval as in (4.13) 

becomes 

& + co + ia]-ldy - 7 [(li2 ejw +&I - ja 

The general form of these integrals is given by the indefinite integral [221 

I 
dv 1 =- 

al + a2ea3” alo3 
a3v - tnal + 

( a2ea3” 

(5.16) 

(5.17) 

which can be verified by differentiation. Noting that we have a logarithm of a complex argument we will 

need to observe the location of any branch cut(s) in evaluating the integrals. A good place for such a cut 

is where it does not cross C,, but goes from co outward in the +Y direction, crossing Ct in a place that 

is not part of C,. Note also that as y1 and y2 sweep around C, and go by the wires, the end points of 

C, pass the wires slightly into the aperture (where co(c) is analytic). 

Applying (5.17) to (5.16) we have 
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j a2 
= -- -[Y2-Yl] 

2x $+a2 (5.18) 

+LAiL& L 
$ + a2 + 5 ,AW+Y*l+ ~o{1/2[ejVl + ,jY*]+ j,{1/2[JW -eiV2] 

4x r,2 +f32 $ + ,2 + 4 ,AW+V*l+ ~o{1/2[ejW1 + ejV2]+ ja<1/2[eiW2 _ ,iVl] 
1 

1 a2 +--tPn 
4Yr $+a2 i 

$+i22+{e jW2 + 24-ot1/2ejY2 

&f+a2+te j2w + 2(o{1/2ejY1 
1 

In this formula yl and y2 are obtained from (5.15). Note that (for simpkity) 

y2 - y1 = 2 arccos 
LJ’-Y&{ L 1 2Y,i+2 

(5.19) 

with yl - y2 progressing from 27r to 0 for increasing 5 with I co I < 1z (inside the aperture), but from 0 to 

some maximum value and then back to zero for I co I > II (outside the aperture). 

To better understand this result, let us consider some special cases. At the beginning of the 

second time interval for co within the aperture we have 

y2 - yl = 27r (full circular contour) 

a2 
ei(Co,t) = -+--- 

&f +a2 
= eo(lo) 

(5.20) 

Note that the logarithmic terms are zero. As we should expect the waveform begins the second time 

interval at the same value as at the end of the first time interval. For co outside the aperture we have 
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. 

y2 - yl = 0 (contour just touching the aperture) 

ei(5b15) = 0 

At the end of the second time interval for co either inside or outside the aperture we have 

Y2-Yl = 0 
ei(CO,t) = 0 

again the logarithmic terms being zero. We can also recall from (4.15) that on the circular boundary 

y2-y1 = x I 5=0+ 
. i12 

ej(Co,O+) = -I- 
2 &f+a2 

= $o(CoJ 

(5.21) 

(5.22) 

(5.23) 

which is consistent with (5.18) 

On the y = 0 plane (H plane) the symmetry simplifies the results for the second time interval as 

(branch cut at y = 0,27rI 

$0 = 0 for x>O , OlylIK , 2n2Y22Ir 

yl = 21~ - y2 = arccos ll2 - x2 - 5 

2 I 2x p2 

eiy(Xr5) = iei(wt) 

=[l+[gl’ [l-T] 

For negative x one can change & to IC or simply recognize from the symmetry 

(5.24) 

(5.25) 
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_. _..._. - ..-. 

Onthex = 0 plane (E plane) the symmetry simplifies the results for the second time interval as 

(branchcutat ~=7r/2, 5x/2) 

+ a2 - C$ - 2y<1’2 sin( yl) + ja<“2 cos( yl)) 

arg -y2 •c a2 + te -Pw + j2yt1/2e-iYl) 

(5.26) 

For negative y one can change & to -a/2 or simply recognize from the symmetry 

f$ (-ivl 6) = eiy (iv, 5) (5.27) 

Other choices of & are also of interest. In particular n/4 plus integer multiples of 7r/2 are of 

interest for the four-wire feed-arm configuration. As discussed in [41, if two thin feed-arm pairs 

(including the case of coplanar-plate pairs) are oriented on a circular aperture with their planes at right 

angles to each other, the two pairs do not interact by symmetry. The fields of each may be added to give 

the total resulting field. With the fields given as in (5.18) we can construct those for the symmetric four- 

wire configuration from the two-wire results (superscript 2) via 

(5.28) 

jlF 

The first term rotates coordinates 45” in a positive sense, accounting for the feed-arm pair at fe 4a, and 

45” for the other pair. The factor of 1 /fi normalizes the field to be of unit amplitude in the y direction 

at the origin. One needs to allow for this in calculating the antenna response for a given voltage applied 

tothefeedarms[7l, 

26 



For both two-wire and four-wire configurations we need only calculate the fields in the first 

quadrant (0 I h I R/ 2) due to symmetry. The fields are symm&ic [8,24] with respect to the x = 0 plane 

f R, symmetry> giving an extension to the fourth quadrant via 

%CBx + jr4 = -e&(X + &A) , e$(-X + jy,{) = eiy(X + jy,{) 

ei(-x + jy,{) = -ei*(x + j-y,{) 

ei(-T*,t) = - eT(L{) 
(5.29) 

They are antisymmetric with respect to the y = 0 plane (Rr symmetry> giving an extension to the second 

quadrant via 

6$=(X - jy,{) = -eir(X + jy,S) , f$(X - &,t) = e+(x + ivtt) 

ei(X - jy,C) = -$(X + jyd) 

ei(C*,C) = -ei+(CX) 

(5.30) 

Applying both of the above ( C2n = R, @ Ry symmetry) gives an extension to the third quadrant via 

(5.31) 

This can also be considered as two-dimensional inversion symmetry. 
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6. Jumps in Waveform as Contour Sweeps by Feed-Wire Projections 

There are some peculiarities in the formulae for the intermediate field as the contour end points 

sweep past the wire projections where they touch S,. For the observer in the first quadrant of the co 

plane this happens first for ry1 when c + ja. From (5.15) and (5.18) this occurs when 

co - ja + e112 ejyl + 0 

Referring to fig. 5.1 we can see that the argument of the logarithm (denominator in first form in (5.181, 

noting the form in (6.1)) changes from 0 to or, noting that the contour passes under the line charge at 

6 = ja. This gives a jump in the intermediate field as 

&ei([o,t) = 5 & = a 4 -j [ 1 
-1 

near the origin this is = j/4 which is a decrease noting the minimum sign with eiy in the complex field. 

Here A1 is the change as value after minus value before. There is a logarithmic singularity from the log 

magnitude as well, but this is integrable without discontinuity in the integral. 

Similarly when y2 passes c = - ja we have 

Now the contour passes above [ = - ja with the argument of the logarithm (numerator in first form in 

(5.181, noting the form of (6.3)) changing from 0 to K This gives a jump in the intermediate field as 

Again near the origin this is = j/4 which is also a decrease in eiy . There is again an integrable logarith- 

mic singularity. 

Curiously enough adding the two changes gives 
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J - 
2 #+a2 

- + Q (co) for CO in aperture pmjection 
(6.5) 

which, in the aperture projection, accounts for one half of the initial fields at the Observer (first time 

interval). 
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7. Concluding Remarks . 

6 
So here we have some interesting ways to evaluate the intermediate field. The contour integrals 

for thin-wire TEM aperture distributions can be expressed in closed form. Other types of ‘EM fields are 

also of interest (e.g., for coplanar plates). So there is much that can be done to exploit the present results. 

Furthermore, the aperture need not be a circular disk (e.g., a semi-circular disk, as in a half IRA). 

Here we have assumed that the TEM fields on the aperture are propagating parallel to the 

aperture normal. As discussed in [3] this need not be the case. One can assume that the aperture fields 

take the form of a TEM plane wave propagating in some direction, say 70, into the positive half space 

(z > 0). Then by taking the asymptotic expansion in the fo direction (instead of z), one might expect to 

obtain similar results. 

Note that the results here apply to only one part of the waveform, the “impulsive” part. For a 

reflector IRA one needs to include the prepulse associated with the TEM field. Then there is also what 

follows the impulse (the postpulse). 
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Appendix A. Laplace/Fourier Transform of the Intermediate Field 

In !ktion 2, we have found that the intermediate field is expressible as 

Y?i (r, y; 6) = intermediate field 

5 = 2at, 

t = -- = retarded time (referred to the z direction) 
c 

The two-sided Laplace transform is expressed as 

s = fi + jw = Laplacetransform variable or complex frequency 

- = Laplace transform (two-sided) 

;fi(X,y;Z) = ~Y2i(X,y;()f?-tirdfr 

(A.11 

(A.21 

C = a+jv = A- E 
2cz 

normalized complex frequency (units rnm2) 

Here we have used the retarded time as the time variable to avoid a large phase shift (phase wrapping) 

for large z. 

The important thing here is that the scaling in time domain represented by the parameter { goes 

over to a similar scaling in frequency domain via the parameter C. As we can see, if we double z the 

waveform has the same amplitude but is squeezed into half the time. In frequency domain this corre- 

sponds to a doubling of the frequency, but dividing the value of the spectrum by 2 (from the z-* coeffi- 

cient). So what one better calculates is 

;(O) 
ei (X,y;E) = 2CZ2i(X,y;Z) = y-i?(X,y;X) emZ5d( (A-3) 

This then applies to any z for a given (x, y) and can be calculated once and scaled as above. 
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For observers in the aperture extension we have derived several different ways (Sections 3 and 4) 

the result 

ti(X,y;O+) = tO(x*Y) (A.41 

Noting that this is initially a step function we have 

g3 
ei (x,y;C) = + = 2u as S+-=- inRHP 

S 
=B 
ei(X,y;C) = t ass+= inFS-IP 

(AS) 

We can let s go to the jo axis (on the way to + p”> provided there are no further discontinuities (steps) 

later in time in the waveform. Lower order discontinuities are allowed since they give contributions that 

go to zero faster than l/s. 

These results can also be applied to the complex form of the intermediate field as in Section 4. 

However, the Laplace transform also gives a complex spectrum which can be confused with the field- 

component combination in the complex field. This can be sorted out by considering s and s+ together (or 

jo and - jo) and taking sum and difference to give the transforms of the two field components. 
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