Sensor and Simulation Notes
Note 429

September 1998

~ Design and Optimization of a Conical Transmission-Line

Feed for a Coaxial Beam-Rotating Antenna

Clifton C. Courtney and David Slemp
Voss Scientific
Albuquerque, NM

Carl E. Baum and Robert Torres
Air Force Research Laboratory / Directed Energy Directorate
Albuquerque, NM

ABSTRACT

In this note several considerations for the design of the COBRA III antenna are presented.
The COBRA III prototype antenna uses a Cassegrain-type configuration with a
paraboloidal main reflector and a hyperboloidal subreflector. The feed structure will be a
conical coaxial transmission line that has its vertex at the vertex of the paraboloidal
reflector, and whose center conductor which will attach directly to the subreflector. This
note presents two methods (related) to find the optimum subreflector size as a function of
the transmission feed line electric field mode and main reflector size. The method is
general, meaning the optimum subreflector size can be found for any feed aperture
distribution. Here we approximate the aperture feed distribution to be that of a truncated
coaxial transmission line. The dimensions of the optimum subreflector for the COBRA
III prototype are then computed which result in a subreflector size (for a fixed main
reflector diameter) that results in the peak gain achievable. Additionally, the main and
subreflector dimensions specify the dimensions of the conical transmission feed line. The
dimensions of the conical transmission feed line are computed, and the match to a

5092 feed system is discussed. Also, since an important application of the COBRA
design will be as an antenna for high power microwave sources, a calculation of the
optimum coaxial transmission line impedance is presented. This optimum value will
minimize the peak electric field for a given power level. It will be shown that the system
impedance associated with a peak gain configuration is different from the system
impedance associated with the configuration to minimize the electric field in the feed
line. Thus, the system impedance can be bounded by the impedances of the peak gain
and minimum field conditions. Finally, a summary of the complete COBRA III
prototype design is given.
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1. INTRODUCTION

In this note several considerations for the design of the Coaxial Beam-Rotating
Antenna (COBRA) III are presented. The COBRA III prototype antenna is the third in a
line of prototype antennas that use structural modifications of reflecting surfaces to
modify the aperture distribution of an azimuthally symmetric distribution to realize a
~ boresight peak with circular polarization. Whereas the previous prototype antennas used
circular aperture feed horns to illuminate the main reflector, the COBRA III prototype
antenna will use the center conductor of a conical transmission line to drive a
hyperboloidal subreflector. The field that is propagated along the transmission line feed
will strike the subreflector, be reflected, and in turn will illuminate the main reflector. As
was the case with the previous prototypes, the main reflector has been divided into 4
equal segments, and these segments are adjusted in the usual way [1, 2] to produce a
boresight peak with circular polarization. A schematic diagram of the COBRA III is
shown in Figure 1.

As indicated in the figure the antenna feed will be a conical transmission line with
its vertex at the vertex of the paraboloidal reflector. The conical transmission line will

have a nominal characteristic impedance of Z, based on the half angles of the inner and

outer conductors of the transmission line. The inner conductor will attach to the directly
to the subreflector and have a nominal diameter that extends across the subreflector’s
shadow boundary. The outer conductor will continue from the vertex, to a point along
the conical path just before it intercepts the inner most ray path off of the subreflector. At
this point the edge will be turned and radiused, and it will continue along a path parallel
with the innermost ray path. It will not terminate on the main reflector, rather it will stop
abruptly at a point where it will clear all of the moving surfaces of the main reflector.

The design of the conical transmission line feed system for the COBRA III has
led to consideration of the question: What is the optimum size subreflector for a given
main reflector size? The trade off is between the desire to maximize the physical aperture
size, and to illuminate the available aperture area is such a way that produces a maximum
boresight gain. This optimization is needed because the electric field distribution in the
aperture is not constant, in fact it is a maximum at the interior and falls off (at a rate
dictated by the transmission line mode) at the outer extremes of the annular aperture
formed by the main reflector and the subreflector. The topics of this note are as follows.
First, the assumptions made concerning the propagation of the microwave power from the
transmission line, to the subreflector and into the main reflector will be stated. Next, an
outline of two related analysis and optimization methods will be given. The results of the
analysis will then be presented, and an optimum subreflector diameter determined. The
diameters of the main reflector and the subreflector will then be used to design the
conical transmission line feed.

In addition, considering the possible use of the COBRA designs with high power
microwave (HPM) sources [3, 4] a calculation of the optimum coaxial transmission line




impedance is presented. This optimum value will minimize the peak electric field for a
given power level. It will be shown that the system impedance associated with a peak
gain configuration is different from the system impedance associated with the
configuration to minimize the electric field in the feed line. Thus, the system impedance
can be bounded by the impedances of the peak gain and minimum field conditions.
Finally, an overview of the design of the COBRA III antenna is presented.
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Figure 1. A schematic diagram of the COBRA III prototype design.
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2. ANALYSIS ASSUMPTIONS

To permit a straightforward analysis of the radiating properties of the COBRA III,
certain problem simplifications and assumptions were used to reduce the complexity and
permit an optimization of the subreflector diameter. The problem simplifications are:

1. The field distribution in the aperture of the conical transmission, at
the cross sectional position where the center conductor leaves the
outer conductor, is assumed to be that of the TEM mode in a
coaxial cable with equivalent inner and outer diameters.

2. All of the power in the aperture is delivered from the transmission
line aperture to the subreflector, there is no reflection of the power
due to a transmission line impedance mismatch.

3. The field propagates to the subreflector, and is scattered into the
main reflector in an optical-like manner.

4. The field distribution in the main aperture has the same
characteristic (distribution) as the field distribution in the assumed
coaxial aperture. This assumption becomes exact in the high
frequency limit. The value of the electric field is adjusted so that
total power is conserved through the system.

These simplifying assumptions will permit the development of a simple method to
compute the radiated boresight field as a function of the subreflector size.

3. ANALYSIS TECHNIQUES

In this section the analysis method is outlined. This includes the computation of
the transmission line power, the projection and scaling of the electric field from the
coaxial aperture into the main annular aperture, the computation of the boresight radiated
field, and the optimization procedures to compute the ratio of the subreflector to main
reflector diameter to yield maximum gain.

3.1 Available Power in the Coaxial Aperture

If the TEM coaxial mode is assumed to be propagating in a coaxial cable with
inner and outer radii of 7, and r, respectively, then the electric field distribution is given
by




~ V. 1
=g~ (1)
In(r,/1,) p
where ¥, = transmission line voltage and is the potential difference between the inner
and outer conductors. The power in the coaxial aperture is

2z, 2nr, 2 2
.\ A |E] 2n  V,
Power= | \ExH )-2 pdpd¢ = pdpdp = ——=2— 2)
OI,,I( ) JI Mo Mo In(r, /7,)
for a circular coaxial aperture with its axis aligned along the z-axis and where
Mo =+/Ho /€, - This can also be written as
Power =V} /Z, (3)

where Z, = giln(r;, /r,) is the characteristic impedance of the coaxial cable.
T

3.2 Electric Field Projection and Scaling

As the electric field is guided from the aperture by the center conductor of the
coaxial cable to the subreflector and is scattered into the main reflector, it is assumed that
the field distribution spreads in such a way that power is preserved. A simple depiction
of this projection, or spreading, is shown in Figure 2.

Annular
COBRA
Aperture
Circular
Coaxial
Aperture
Figure 2. The electric field of the circular coaxial aperture is projected onto the

annular aperture of the COBRA (defined by the diameters of the
main reflector and the subreflector).




To have equal power in both apertures, the following relation must hold

2t V2 2m VE,

N In(, /7,) 7, In(r,, /75) @

“where r,, and r; are the radii of the main reflector and the subreflector respectively, and

Vs = the equivalent voltage. The relationship between the coaxial line voltage and the
equivalent voltage is easily found to be

VSM = Vab M (5)
In(r, /7,)
which is then used to define a new electric field distribution in the aperture in terms of the
coaxial line voltage

E =é __J/_'SM__1=Q' Ve ln(rM/rs)_l_. ©6)
aperture In(r, /r) p In(r,, /r)\ In(r, /1) p

3.3  Aperture Field Modification by the Segmented Main Reflector

To this point the assumptions have been that the transmission line traveling wave
leaves the circular coaxial aperture without reflection, and travels to the subreflector
confined within the volume that would be bounded by the inner conductor of the concial
transmission line and the outer conductor - had it extended onward to terminate on the
outer periphery of the subreflector. Furthermore, we have assumed that the field is
scattered from the subreflector into the main reflector and again spreads just to the point
that it fills the main reflector with a distribution that is like the field distribution in the
circular coaxial aperture of the transmission line.

The COBRA achieves its unique properties by adjusting path lengths from the
focal point of the main reflector to the antenna aperture in a prescribed manner [5] This
path length adjustment is equivalent to adding a phase shift (\¥(¢) ) to the portion of the
electric field illumination that is a function of the azimuthal coordinate. For a main
reflector with a surface that has been partitioned into four equal segments the amount of
the phase shift is given by




0, 0<¢p<mn/2
n/2, w/2<é<m

Y(9) = ™)
T, n<$<3n/2

3n/2, 3n/2<$<2n

.- The field then travels from the surface of the main reflector to the aperture in a collimated
fashion without spreading, and with the phase shift indicated above. Then, the field
distribution in the antenna aperture is

- V ln(r /r ) 1 W
E ,0) = ab ’ M''S) 2 i (#)’ <p< . 8
aperture(p ¢) e ln(rM /rs) ln(rb/r;) pe rS p rM ( )

3.4 Computation of Radiated Field and Subreflector Size Optimization

The radiated field is computed directly in the usual way from knowledge of the
aperture field distribution (Eq. 9). According to [ 6 ] the radiated field can be written as

.. cosf ek’
E, e (7,0,0) = jk,
2n

f(k,.k,) ©

r

where k, =k,sin6 cos¢ and k, =k,sin6 sin¢, and k,=2n/A. The term f(k,,k,)is
actually the 2-dimensional Fourier transform of the aperture field and in carteesian
coordinates is given by

fulkok) = [[E,(r)-a, ™5 dg (10a)
Sa

f(kok) = [[E, ) -4,/ da (10b)
Sa

where E ,(r')is the aperture electric field distribution. For an aperture with circular
boundaries '

2r Ty

f(x‘y)(kx,ky) = I J'EA (r‘) . ﬁ(x‘y) efkoP'Sinacos(Q-é') p'dp'd¢' (1 1)

0 rg

Finally, the far-zone electric field in spherical coordinates is




Emd,.a,ed(r,e,d))=jko£2;?i[ﬁe(fx cos¢+ f,sind) +4a, cos8(f,cosp— f, sin¢)] (12)
r

The optimum value of the subreflector size is defined as the value of subreflector
radius 7; that maximizes the boresight electric field. Assuming an aperture field

. distribution (Eqn. 8) the optimum subreflector diameter is then determined by computing

the radiated field (Eqns. 12) for all practical values of subreflector radius 0 < rg<ry,.

3.5 Alternate Analysis and Optimization Technique

Another, more direct, approach to the problem can be formulated. From [ 1 ] the
boresight radiated electric vector potential of a COBRA aperture is given by

Jkor N ¥ T

e ] . \i ' 1 1]
Fi(r,8,0)=>— Z¢ j ,pr(p )sin(¢') p'dp'dd (13)
where E (p) = the azimuthally symmetric electric field in the aperture, and

o, = 2—; (n 1) for an aperture created with N equal segments (either in the main reflector

or the subreflector. This can be factored and re-written as

ejkor ™ ' 1 N .2=(n-1)
F(r,6,)=-— [Zn J.Ep(p')pdp'} [EEZeJ ¥ [cose,_, —cos, ] (14)
Is n=1

~—

)

o(p) é,(T)

The term C_(N) is independent of the inner and outer radii, so the procedure can

concentrate on the optimization of the ®(p) term. To do so, one must first assume an
electric field aperture distribution. In this case we assume a distribution of the form

E(p)=1 (15)
p

where y = Vet In(r,, /rs) and is a constant of proporﬁonality that maintains
In(r,, /rs) N In(r, /7,)

conservation of power in the aperture. Then

v er ‘
O(p) =2n [E,(p") p'dp' = 2mat j; p'dp'=2ry(r, -7;) (16)
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and it is desired to optimize this value subject to the value of the inner radius r;. Some
simple algebraic manipulations yield the following

Vs (rM ‘rs)
=2 a
() n\[ln(r,, /7,y JIn(r,, /15) 1n

.\ . .. ry =T, . .
so that it is sufficient to maximize the term —(l;‘E—J,;/L-)_ , or equivalently to maximize the
rlrs

function

_L’_M_L'i_ L-rg/m,)? _ 2(1“1)2__ (1-a)’
f(rS)_ln(rM/rs)—(rM) /7)) ey - ) i (18)

where o = r;/r,, . The size of the radius of the subreflector is bounded by 0<r; <r,, , or
0<acx<l.

4. ANALYSES RESULTS

The optimization of the subreflector diameter was conducted using each of the
two methods described. These results are presented here.

4.1 Results of the First Method

The radiated field and boresight gain was computed for the possible range of
values that the diameter of the subreflector could take. In other words, for

0<ry <n, =32.5 inches (19)

where r; =radius of the subreflector and r,, = radius of the main reflector. In Table 1 is

presented the physical aperture gain and the computed boresight gain for circular
polarization for a number of values of subreflector diameter values. The aperture of the

antenna is assumed to lie in the xy-plane, then the boresight direction is (6 =0° ,¢ =0°).
The physical aperture gain is simply

2 |
G, = IOLog[%— Area] = 10Log[[g%) (’5 -1 )} (20)
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The circular boresight gain is determined by computing the gain of a single linear
component of the radiated field on boresight, and adding 3-dB to it [ 1 ].

The trend in the results is clear at either extreme (7; — 0 or r, — r,, ) of possible

values for the subreflector diameter, the gain falls off. At these extreme values the
computed boresight gain is extremely sensitive to the value of the subreflector diameter.

- At intermediate values r; ~ r,, /2 the boresight gain is about optimum, and is a weak

function of the subreflector diameter. For the values computed it seems the optimum

value for the subreflector diameter is about 19 inches:

optimum 7; = 9.5 inches

1)

Graphs of the data presented in Table 1 are shown in Figure 3. In Figure 3a the
data is plotted against a logarithmic abscissa, while in Figure 3b the data is plotted
against a linear abscissa. Both representations clearly show the trends and result
described above. The subreflector diameter size of the COBRA III was chosen to be 20.5
inches, since this will allow us to utilize an existing piece of hardware without sacrificing
performance (see the data in the table below).

Table 1. The physical aperture gain and the computed boresight gain for
circular polarization are presented for a number of values of
subreflector diameter values.

Subreflector Size Aperture Gain Cir-Pol Boresight Gain
inches dB dB

1 34.1681 26.9202

3 34,1596 27.9722

5 34.1426 28.4758

10 34.0618 29.0846
15 33.9238 29.3108
20 33.7229 29.3359
20.5 33.6991 29.3298
25 33.4501 29.2132
30 33.0917 28.9579
35 32.6259 28.5641
40 32.0180 28.0064
45 31.2074 27.2301
50 30.0759 26.1212
55 28.3435 24.4025
60 25.0004 21.0662
63 19.0836 15.1508

11
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4.2 Results of the Second Method

To maximize the expression of Eq. 18, simply differentiate with respect to 7, set
the result to 0, then solve for r; .

—f(a)— L {(‘m(“f} 0

(22)
or,
d |(1-a) 2(1—a)(—1) (1-af 1 _
4 - 23
{ln(a)} In(c) YD o (ln(a))za 23)
and simplifying
(1-a)+2aIn(@) =0 (24)

to obtain the function we wish to solve. Unfortunately Eq. 24 is difficult to solve
analytically. However, if we plot Eq. 24 over the interval 0 < a0 <1 (all possible physical
values of the ratio of the subreflector to the main reflector) then the result shown in
Figure 4 is obtained.

1 LN DL DL DL DAL DL DL LA B B i
0.8 -
0.6 Optimum value of ]

subreflector to main reflector 1
0.4 ratio for coaxial transmission line j
0.2

/ mode distribution. -

04 | -

0 01 02 03 04 05 06 0.7 08 09 1

o

Figure 4. The optimizing function, Eq. 24, is plotted over the possible values of
the ratio of the subreflector radius to the main reflector radius.
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Using a root finding method it can be shown that the function, Eq. 24, has a zero
at a = 0.284668 , which then yields a value for the optimum reflector size of

optimum r; =7, xa =9.2517 inches (25)
which is very close to the value obtained using the previous method.

Since these two methods are logically equivalent (they both are based on the
computation of the boresight field) it is not surprising that the same optimum value is
found. Both methods were presented since each gives a slightly different perspective on
the problem.

4.3 Optimum Coaxial Transmission Line Impedance

A principal application of COBRA-type antennas will be their use with High
Power Microwave (HPM) sources that produce microwave output power in azimuthally
symmetric modes [ 3, 4, 7 ]. Of particular concern in many HPM sources is the reduction
of the peak electric field. Electric field breakdown is known to cause deterioration of the
performance (reduced output power and energy, pulse shortening, etc.) of HPM sources _
[ 8 ]. Consequently an antenna design and feed method that minimizes the peak electric
field would be of interest. A method similar to that used above can be used to determine
the coaxial transmission line impedance that, for a given power level and outer conductor
diameter, minimizes the peak electric field.

The electric field distribution in coaxial geometry is given in (Eqn. 1), and it is
clear that the peak value occurs at the surface of the inner conductor

Epenk =|E(p=':1)

=__Iiai__1_ (26)
In(r,/r,)r,

The power delivered in a coaxial line is

2n_ ¥, 2n 1 )
Power = P = ir) - E,.In(, /7, 27
ower Mo ln(rb/r;) Mo 11'1(7;,/};)[ peak (/, ,,) n] ( )
or the peak field in terms of a constant power is
1 n__ P
Eas ' 28
pk = p 21 In(r, /1) (28) D
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To find the optimum coaxial impedance, differentiate the above and solve for the zero of

py _ d |1 [my_ P -0 (29)
d(r,) d(r)|r,\2rnln(r/r)|

. which is equivalent to solving

1-2In(1/r,)=0. (30)

The value of r, that solves this expression is found to be r, = e’ ~0.606531 , and the

resulting optimal value for the coaxial impedance that minimizes the peak electric field
for a constant power is

Z. =X in(r, /r) =20 In(ef) = 30Q 31)
2n 2n

This value for the coaxial impedance minimizes the peak electric field in the transmission
line for a given amount of delivered microwave power.

4.4 System Impedance

The system impedance for the COBRA 111 is defined as the coaxial transmission
line impedance that would result when the diameter of the inner conductor equals that of
the subreflector, and the diameter of the outer conductor equals that of the main reflector.
Then,

Z

System

=L@ /r,) (32)
2n

The system impedance found to be optimum if one wishes to maximize the boresight gain

is then

377

Z ek Gain —;‘—;’t-m(r,, /7,)==_-In(1/0.284668) = 75.4Q (33)

The system impedance found to be optimum if one wishes to minimize the peak electric
field in the feed and antenna component of the system is then

7 Minimum Fld _ ;1_0 In(r, /7,) =1L inet) = 300 (34)
T

System 21[
The system impedance for the COBRA 1II antenna is then bounded by

7 Minimum Field _ 30,0) < 7 < ZPeok Gain _ 250 (35)

System System System

15




5. CONICAL TRANSMISSION LINE DESIGN —

In the COBRA III prototype design we are driven more by the desire to
demonstrate the antenna concepts and realize the peak boresight gain, than we are in
minimizing the peak electric field. The source and antenna measurements will be
conducted with low power, therefore the optimal value of the radius of the subreflector is
~ determined by the peak gain consideration. The design and geometry of the feed will be
subject to three restrictions:

1. The diameter of the inner conductor will be equal to the shadow
area of the subreflector;

2. The diameter of the outer conductor would be equal to the diameter
of the subreflector, should it extend to the outer conductor; and

3. The outer conductor of the transmission line will extend outward

just to the point where it intercepts the ray from the subreflector.

These constraints result in the shape of the feed structure being as shown in Figure 1.
This section uses the results of the earlier analysis to quantify the design and dimensions
of the conical transmission line feed.

As it turns out, it has been shown that the paraboloidal reflector exactly
transforms a spherical TEM wave (such as that supported by the conical coaxial -~
transmission line) into a planar TEM wave [ 9 ]. Then it is reasonable to expect that
once the value of the system gain has been determined, the impedance of the conical feed
transmission line is determined to be that which matches the system impedance defined
by the diameters of the main and subreflectors. It will be shown that this is the case, and
is compatible with the above criteria.

5.1  Characteristic Impedance of a Conical Transmission Line

The characteristic impedance of a conical transmission line is given by

Z,

_3717 m[ cot (8, /2)} G6)

2n | cot(6,/2)

[ 10 ] for a free space dielectric. The angles correspond to the inner and outer half angles
of the conical conductors, as shown in Figure 5.

16




Figure S. The geometry of a conical transmission line.

5.2 Design of the Conical Transmission Line Feed

The dimensions of the conical transmission line feed are dictated by the need to
optimally illuminate the main reflector. The earlier analysis has given the optimum value
of the radius of the subreflector. Next, we specify that the conjugate focus of the
subreflector is at the vertex of the main reflector. This implies that the vertex of the
conical transmission line be located there as well so that the wave incident on the
subreflector will be spherical with its origin in the proper place — the conjugate focus of
the subreflector. Other considerations are that the diameter of the inner conductor, as it
terminates on the subreflector, should be equal to the diameter of the shadow region of
the subreflector. The half-angle of the outer conductor should be such that the outer
conductor would extend to the edge of the subreflector, should it continue that far. These
considerations and restrictions completely define the geometry of the conical
transmission line feed.

The required conical transmission line feed needed for the third COBRA
prototype antenna will have the following dimensions. The radius of the subreflector is

slightly oversized at r; =10.25 inches, the distance of the front face of the subreflector

to the vertex of the main reflector is approximately 14, and the diameter of the
subreflector shadow region is about 4 inches. This defines the half-angle of the inner
conductor to be

0, = tan"(i/—z) =8.1%°. (37)
14
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The half-angle of the outer conductor is defined by the flare angle needed to
insure that the outer conductor would cover the subreflector, should it extend to that
point. Then, the diameter of the outer conductor would be 20.5 inches, and the length
will be the sum of the distance from the vertex of the main reflector to the front face of
the subreflector and the thickness of the subreflector — which is 3.5 inches. This defines
the half-angle of the outer conductor to be

0, =tan

_,( 20.5/2

=30.35". 38
14+3.5) (38)

The resulting impedance of the conical transmission line is then

Z,

=377111[ cot(8.13/2)}z809 (39)

2n | cot(30.35/2)

The reflection coefficient when driven by a 50 Q line will be

1_=50—80

=-0.231, (40)
50+80

with a resulting standing wave ratio of

1+]0] _1+0231_,

SWR = = =1.
1-|T| 1-0.231

(41)

Instead of traveling all the way to the subreflector, however, the outer conductor
of the conical transmission line will stop just before the point where it would intercept the
ray that originates from the shadow zone boundary of the subreflector. Without a
rigorous demonstration, it turns out that this length will be approximately 9.75 inches. At
this point the end will turn back toward the main reflector and follow a path parallel with
the inner most ray. The inner angle of the outer conductor will be approximately 70-
degrees, and it will be fitted with a 1-inch radius at the point where it turns back to the
main reflector. The outer conductor will stop such that it clears the surface of the main
reflector by 1-inch when all petals of the main reflector are in the forward most position.

Note that the conical transmission line impedance of Z, =80Q is consistent with
the peak gain system impedance of Zgi " = 75Q and should result in a near optimum

value of gain for the COBRA III prototype.
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6. COBRA III SYSTEM DESIGN SUMMARY

In this section a brief summary of the design of the COBRA III prototype is
presented. Common to the COBRA II and COBRA III prototype antennas are the main
reflector and the subreflector. More detailed descriptions of these components can be

~ obtained in [ 2 ].

6.1 Main Reflector

The main reflector is a paraboloidal surface with a usable diameter of 62.5 inches,
and a focal length to diameter ratio of 0.25. It has been partitioned into 4 equal segments,
with individual positioning capability and control.

6.2 Subreflector

The subreflector is a hyperboloidal surface with its convex side facing the main
reflector, and with its prime focus located at the prime focus of the main paraboloidal
reflector. Its conjugate focus is located at the vertex of the main reflector. Its axis is
coincident with the axis of the main reflector, and its apex (the closest point on the
subreflector) is 14 inches from the vertex of the main reflector. Its eccentricity is 1.623,
which places the prime focus of the main reflector and the subreflector 2 inches behind
the apex of the subreflector. The subreflector diameter is slightly oversized at 20.5
inches. The shadow region on the subreflector (the inner diameter of the subreflector for
which rays are blocked by the subreflector as they reflect off the main reflector) is
approximately 4 inches.

6.3 Conical Coaxial Transmission Line Feed

The conical coaxial transmission line will have a nominal characteristic
impedance of Z, =80 Q based on the half angles of the inner and outer conductors. The
inner conductor will attach to the directly to the subreflector and have a nominal diameter
of 4 inches at the attachment pont. The outer conductor will continue from the vertex, to
a point along the conical path just before it intercepts the inner most ray path off of the
subreflector. At this point the edge will be turned and radiused, and it will continue along
a path parallel with the inner most ray path. It will not terminate on the main reflector,
rather it will stop abruptly at a point where it will clear all of the moving surfaces of the
main reflector.
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A schematic rendering of the COBRA III prototype antenna in the N = 4
configuration is shown in Figure 6. The inner and outer conductors of the conical
transmission line feed are visible, as well as the outer conductor collar. Also, a
(styrofoam) structure is seen to support to center conductor of the conical transmission
line.

Figure 6. A schematic rendering of the COBRA III prototype antenna in the N
= 4 configuration is shown. The inner and outer conductors of the
conical transmission line feed are visible, as well as the outer
conductor collar.
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