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Abstract

In polarimetric SAR (synthetic aperture radar) the control of the polarization incident on the target can be
an important characteristic in target identification, such as for some targets on or near a flat ground surface. For
controlling these polarizations, whether for narrowband CW or for a pulse, symmetry in the transmit/receive
antennas and their relation to the earth surfacé is an important concept. This can be used to give ideal horizontal and
vertical polarizations, at least at some target locations, with small deviations from the ideal for nearby target

locations.




1. Introduction

In synthetic aperture radar (SAR) one moves one or more antennas, say in the y direction in Fig. 1.1, past
some target site and takes measurements retaining phase/time information at many positions y. Combining all this
data, say in a computer, with correction for distance to each point on the target site gives an image of the target site.
The resolution in the y direction (crossrange) is determined by the length of the synthetic aperture so obtained in the
y direction. The resolution in the x direction (downrange) is determined by accuracy of round-trip delay (or
equivalent phase in frequency domain) between antennas and position in the target site. Note that for present

purposes the ground surface S, is assumed flat and perpendicular to the z axis with the position of the antenna(s) at

a constant height k above S, .

If, instead, one moves the targets past the antennas one has inverse synthetic aperture radar (ISAR). The
considerations are fundamentally the same due to relativistic invariance. In the same spirit, let us consider electro-
magnetic fields at various positions on S, for a specific antenna position (7 = T)) ), instead of moving the antennas
and considering a fixed position on the target site. Thereby we will see the variation of the fields for various angular
and distance relations of the targets to the antennas.

The SAR can bevfully polarimetric with two polarizations for transmit and receive to obtain the full 2 x 2
scattering matrix for the target referred to some h, v (horizontal, vertical) coordinate system. Referring to Fig. 1.1
horizontal is usually intended to mean parallel to the ground surface S, with vertical meaning in the vertical plane
of incidence, a plane Sy of constant azimuth ¢. As one varies ¢ and r, however, the polarization of the field from
an antenna with fixed orientation (not rotating as it translates) can vary from the ideal, depending on the antenna
design. The incident field at S, is, of course, propagating in the r direction which varies with ¢ and r. The
polarization relative to Sy and S, can also vary depending on the antenna pattern. We would like to control this
pattern, particularly for its polarization properties. The amplitude of the incident field in the far field, of course,

varies as 1/r.

Looking ahead, with the y = 0 plane designated S,, as a symmetry plane for the antenna(s) and ground, we
have pure vertical and horizontal polarization on S, (also designated by ¢ =0). Based on this we can speak of the
antenna(s) as operating in “vertical mode” and “horizontal mode” in both transmission and reception. Retaining
these labels for ¢ away from O, we recognize that the polarizations may not be truly vertical and horizontal,
respectively, for each mode. We can furthermore observe that a true vertical polarization, meaning parallel (or
antiparallel) to _l)o , varies depending on the relative location of antenna and target. So as the antenna is moved (in
the Ty direction) relative to a target, the vertical polarization at the target changes. Similarly, a true horizontal
polarization, meaning parallel (or antiparallel) to T¢, varies at a target as the antenna is moved, although it does

remain parallel to S, .
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Fig. 1.1. Coordinates for Antennas and Targets




For some purposes one may wish a horizontal polarization defined by Ty . However, as we have seen,
this cannot be exactly realized except for ¢= 0. If this is important one must note that it can only be approximately
realized for a restricted range of ¢ around ¢ = 0. Similarly one may wish that a vertical polarization be parallel to a

plane of constant y. This is also limited to ¢ near 0 and/or @ near 72 (large ¥/h).

If the SAR uses a pulse (instead of narrowband CW) [12], this pulse will in general be a function of r (or
¥) and ¢ on S,. In particular, the frequency spectrum of the incident field can vary (even in the far field) as a
function of the angles (Aand ¢). This variation with frequency includes polarization as well. Of course, one can use
many frequencies instead of a pulse to obtain the same information, and the pattern and polarization questions are

similar.

In order to control the antenna pattern and polarization, including for pulses, this paper considers the use of
symmetry in the antenna design. Specifically the point symmetry groups (rotations and reflections) [10] are
considered. Such symmetry can be applied to the antenna(s) and the resulting incident field. It can also be applied
in the presence of the ground surface S, (thereby including the ground-scattered fields).

One can relax the symmetry requirements somewhat through the concept of partial symmetry [11]. In this
case causality gives the result that the signal from the back (negative x) of the antenna reaches the target after the
signal (positive x) from the front. For a limited amount of time (the clear time) the fields at the target are the same
even with the back portions of the antenna removed. This applies to fast pulses (including those synthesized from

many frequencies). Of course, no real antenna is perfect and various errors (hopefully small) will result.

For this analysis we have the coordinates illustrated in Fig. 1.1. Cylindrical (¥, ¢, z) and spherical (r, 6, ¢)

coordinates are related to Cartesian (x, y, z) coordinates via

x = Wcos(g) , y = Ycos(¢)

¥ = rsin(@) , z = rcos(d) (1.1)
1 1

‘l’:[x +y ] . r=[‘l‘2+22]2 =[x2+y2+z2]2

The associated unit vectors are

_l-)-y cos(¢) - T,p sin(¢) -l)y = ?q: sin(¢) - T¢ cos(g)

"
]

Txcos(p) + Tysin(g) . 1g = —Lxsin(g) + 1y cos(¢)

€
n

~




- - -
1, = 1wysin(6) + 1z cos(6)
~— - - -
= 14 sin(6)cos(@) + 1y sin()sin(@) + 1 ; cos(6)
- - -
1g= 1w cos(6) — 1;sin(6) (1.2)
- - -
= 1x cos(6)cos(@) + 1y cos(6)sin(g) — 1 ; sin(6)
- - - - - -
ly = 1,sin(6) + 1gcos(¢) , 1z = 1,cos(6) — 1gsin(6)
These coordinates are related to both the antenna and ground surface S, (z=-h) as in Fig. 1.1. Later, other
coordinates are introduced for special antenna types and orientations. These are rotations of the above coordinates
(still centered on the antenna(s)), and are distinguished by subscripts.
N
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2. Target Symmetry

In addition to the antenna(s) some targets of interest on or near the ground surface have important
symmetries. In particular if the target is a body of revolution with rotation axis Ta =T z with axial symmetry
planes (infinitely many), then in the h, v coordinates (true, as discussed in Section 1) there is no cross polarization in
the backscattering dyadic [7, 8]. The lack of an h, v component (and hence of a v, h component due to reciprocity) is
called the vampire signature.

For this special signature then it is useful to have the horizontal defined by -—l-)¢ and the vertical by -Ta

in the coordinates of Section 1.




3. O, Antennas with Respect to the z Axis (True Vertical)

A class of antennas with a high degree of symmetry is described by the O, symmetry group (orthogonal in
two dimensions). With the axis of revolution ?a taken as the z axis, the ground surface S, and any vertical
layering of the assumed isotropic earth fit into this symmetry as well [7]. Another way of designating this symmetry
group is C., indicating invariance to all two-dimensional rotations with every axial plane (containing _l)a )a

symmetry plane.

As indicated in Fig. 3.1 one can obtain the two polarizations by appropriate antenna designs. The vertical
mode (Fig. 3.1A) has current density restricted as '

- - -
J=JgMW.) 1y + J;(W.2) 1,

@G.1n

- -
J,(r6) 1r + Jg(r,0) 1o

Various antennas such as a circular bicone or thin-wire or ACD (asymptotic conical dipole) [9] coaxial with the z
axis have this property. Note that these antenna currents are in transmission. In reception additional currents
(orthogonal to the above) are induced in the antenna, but the axially symmetric coupling of signals to/from the

antenna only interacts with this basic form in (3.1).

The horizontal mode (Fig. 3.1B) has current density (in transmission) restricted as

- - -
J=Jg(¥.9) Iy = Jg(r.0) 1¢ 3.2)

Electrically small circular loops coaxial with the z axis have this property. As the wavelength decreases to become
comparable to the loop circumference one needs to take care in enforcing (3.2), say by multiple signal feed points
uniformly spaced around the loop circumference. Such techniques have been used in various types of sensors such
as the MGL (multigap loop) and others discussed in [9]. In the limit of a large number of such azimuthal, equal-
amplitude sources the above ideal divergenceless (zero-charge density) current distribution is achieved. Again in
reception other distributions may be induced on the antenna structure, but summing (or averaging) the signals from

the azimuthally distributed signal ports gives a response to the desired term as in (3.2).
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Fig. 3.1. Antenna Currents in Transmission with O, Symmetry for Two Polarizations




The electromagnetic fields radiated by such antennas have, for the vertical mode, a @ component of the far
electric field (including an r component in the near field) and a ¢ component of the magnetic field, all independent
of ¢. In the far field these vary as 1/r times a function of 8. This is the ideal type of polarization (for an antenna
limited to near 7 = T)) ) discussed in Section 1. For the horizontal mode the roles of electric and magnetic field are
interchanged as compared to the vertical mode, retaining the ideal type of polarization. Again there are the
limitations of rotation of —1)9 and _l)¢ as ¥ and ¢ to the target are varied. This variation is minimized for ¢

restricted to near 0 and @near 72 (side looking).

One can impose additional symmetries such as R, (reflection through the z = 0 plane). This gives dihedral
symmetry D4 [10]. One can design both vertical- and horizontal-mode antennas into a single antenna structure,

or have them displaced coaxially along the z axis.




4. O, Antennas with Respect to the y Axis (Horizontal in the Direction of Antenna Motion)

Antennas with O, symmetry can also be oriented horizontally as indicated in Fig. 4.1. Note now that the
symmetry applies only to the incident fields since S, is now parallel to the rotation axis -l-)a of the antennas. For
convenience now we introduce a new set of coordinates, designated by a subscript 2 with the interchange (rotation)

of coordinates as

Xp =2 , Yph=X , Zp =Y 4.1
With this subscript then we have cylindrical and spherical coordinates as in (1.1) and (1.2) referenced to the z; axis.

Note now that the rotation symmetry makes every plane of constant ¢, a symmetry plane. As indicated in

Fig. 4.1 we can define an elevation angle at the target by

veon-t @2

Such planes, designated S, are then symmetry planes for the incident field. Every target in the target site is

intersected by some S, .

Vertical mode for polarization is now defined by the loop-like currents in Fig. 3.1B with now a subscript h
on the z coordinate. The associated electric field for the incident wave now has only a ¢; component. This
incident electric field is perpendicular to Sy, and as such has only y, and z;, components, or x and z components
in the original coordinate system. With a z; (or y) component, the polarization varies as a function only of y; (or
x) on S,. For small variation of ¥ over the target site, this is a small variation of the vertical-mode polarization.
The associated incident magnetic field has only a 85 component. This is not truly horizontal (except for z; =0 =

y). From (1.2) we have
Toh = _l) x, cos(6p) cos(@p) + T yp, cos(6p ) sin(@p) + TZ sin(6y,) 4.3)

giving generally all three Cartesian components. For ), near 272 and/or ¢ near 772 (small ¥), however, the true

vertical component can be small.

10
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Horizontal mode for polarization is now defined by axial and radial currents in Fig. 3.1A, now with respect

to the z, coordinate. The radiated electric field has a 8, component while the radiated magnetic field has a o

component. This merely interchanges the roles of the two components that exist in the vertical mode.

12



5. Ry Antennas: Vertical Symmetry Plane

N
A lesser symmetry is that of a single symmetry plane. Figure 5.1 shows the case of a vertical symmetry
plane Sy for both the antennas and the ground. The fields are then established as symmetric for vertical mode and
antisymmetric for horizontal mode [10]. Symmetric fields have Z") parallel to Sy and Ti)perpendicular to Sy on
the symmetry plane. Antisymmetric fields have the two field orientations on Sy interchanged from the symmetric
case. This assures pure vertical and horizontal polarizations on Sy, and hence along a path on the ground surface
Se givenby (y,2) = (0,-h).
Considering vertical mode (symmetric) we have
- © -
E(x,~y,z2) = Ry + E(x,,2)
- © -
H(x’-y'z) = —-R y * H(xv )"-Z)
© - o - - - - 100
Ry=1xlx—ly1y+lzlz=0~lo 5.1
0 0 1
Ey (xsoy Z) = 0
Hy(x0,z) =0
N Hz(xyo,l) = 0
Expanding the fields in a power (Taylor) series near y = 0 we have variation of the fields here as
Ey(x,y,z): first order in y (odd)
E;(x,y,2) and E,(x,y,z): second order variation from values at y = 0 (even)
Hy(x,y,2) and H,(x,y,z): first order in y (odd) 5.2)
H y(*,¥,2) : second order variation from value at y = 0 (even)
So while the fields do not have ideal polarization away from y = 0, smooth variation of the fields makes the
deviation small and of the form in (5.2) due to the symmetry.
For horizontal mode (antisymmetric) the roles of electric and magnetic fields in (5.1) and (5.2) are simply
interchanged. Near y = 0 then these have the same small deviations from the ideal polarization.
N

13
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Note in fig. 5.1 that for these symmetry results to hold, the horizontal and vertical antennas need not be

colocated. They merely need to share the common Sy symmetry plane. However, if they are closely spaced the

angles from each to the target will be nearly the same, thereby approximating backscattering.

15




6. Ry Antennas: Nearly Horizontal Symmetry Plane

Another choice for a symmetry plane is illustrated in Fig. 6.1. In this case we choose a symmetry plane So

which contains the y axis (and is thereby perpendicular to Sy). Instead of being exactly horizontal, let this plane

intersect the earth surface S, somewhere in the middle of the target site. The deviation angle y introduced in

Section 4 is taken to have the specific value g in this case.

Note now that the antennas are symmetric with respect to Sg. The incident fields are symmetric

(horizontal mode) or antisymmetric (vertical mode) with respect to this plane with the symmetry described by a
reflection dyadic of the form

© © - -

Ro=1- 191 , 1lodls§

0 0 0 6.1)
Ad - - - - - = . .

l=lx1x+1y1y+lzlzsldeﬂtlty

This can be interpreted in terms of the fields in Section 5 by an appropriate rotation of coordinates. Hence, near So

the fields have small deviation from being perpendicular or parallel to Sy .

Since Sp is not the same as S, , then the fields are not perpendicular or parallel to S, , but are nearly so if
Yo is small. Furthermore Sy intersects S, in the target site along some line of constant x. If, however, y is

sufficiently small, and the target site is not too extensive in the x direction, then the variation of the elevation angle

yaway from g is small and the vertical/horizontal decomposition of the fields over the target site approximately

holds.

While Fig. 6.1 illustrates the fields for the vertical mode on a ray on Sy (v =0 plane), one should note that
—’ . . . . .
in this case H is not in general oriented in the y direction, but is more generally oriented parallel to Sg. This case

is the same for the electric field in horizontal mode.

16
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7. Combined Dipole Antennas

Consider now electrically small (or even larger in special designs) dipoles, electric and magnetic, at the
coordinate origin. For this purpose we have the coordinate with subscript ¢ as in Fig. 7.1. the preferred propagation

direction (center of pattern) is taken as z.. The two dipole moments are oriented as

- =
prlg =0 (electric-dipole moment)

- -

m-+ 1z, =0 (magnetic dipole moment) a.1)

Note that the orientation of the (x., y.,2.) coordinates with respect to the ground surface S, is not yet specified.

These coordinates also are related to each other as in (1.1) and (1.2). Their orientation in terms of the (x, y, 2)
coordinates in Fig. 1.1 can be specified in various ways to give desired polarizations and directions of propagation.

The special case of interest has the dipole moments at right angles to each other and balanced as [1-6]

- - - - m .
p=plp, m=mlm, p=— , c = speed of light
c
7.2)
- - - - - - - - ->

-

Then on the z, axis the electric field is polarized parallel (or antiparallel) to 1 p and the magnetic field similarly to
_—)

1 m, and the electric and magnetic field have the ratio Zg, the wave impedance of free space, in both near and far

-
fields with Poynting vector in the 1 direction. For convenience now choose

Tp=Tr . Tm= Ty (7.3)
consistent with (7.2)

The far fields are given by

Bf(Pe.n) = - :-:r: pos® B(s) 41

By = - 4,;:;0 25 d2

18
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- Red - - -
d]=1rc lxc"lrcXch
- - - © - - -
dzE]rcxlxc+lrc lyc=lrcxd]
A A - -
lrc =1 - lrc 1;2_
1

Ho |2
% = [—] . ¢ = [ug &0]2

2]
Mo = permeability of free space (7.4)

£p = permittivity of free space

s = Q + jw = complex frequency or Laplace-transform variable (two-sided)

- -
The two pattern functions d1 and d 2 contain the information concerning polarization and variation with angles

6. and ¢,.
One can define a power pattern in the far field [4] (related to the Poynting vector)

- - - - - > 5 -9

P=d1xd2=d1x[1rc><d1]= lrc[dl-d1]
=Prc er

-
Ir

- 4 - S BT S )
1P = 2[4 12+ 1) = [1x,* 1512 =[1y - 1p]

2{1+cos(8,)]-sin2 (8, ) cos® (#,) — sin? (8, ) sin? (4, 1.5
2(1+cos(8,)] -sin%(8,)

1+2cos(6,.)+ cos2 CH)
=[1+cos(6.)]

<Y
"

c

This is known as a cardiod pattern. It has rotation symmetry (O, ) with respect to the z, axis. One can normalize

this via

\ T 2r
EE{ ‘!;[l+cos(9,_.)]2 sin(6,) d6,. d¢,

n
%I[l+cos(0¢ )2 sin(8,) d6, e
0

1
1
3 J’l (+vi%dv  (v= cos(8,))

20
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the 47t normalization being from the area of the unit sphere. So the directivity of this antenna is

y
R .3 [1+cos(8,.)]? a.n
Favg 4 ‘

Considering the vector field components the situation is not quite so symmetrical. From (7.4) the two
pattern functions characterize the angular dependence of the fields, and can be used to characterize the two

polarization modes of the antenna, since the two polarizations correspond to an interchange of the roles of the

electric and magnetic fields, or a rotation by /2 (90°) around the 2. axis (for this kind of antenna).
The first pattern (for the electric field) which we can call the vertical mode is described by

- - - - - - -
dl = lxc - lrclrc‘lxc— lrcXch

- - - -
= 1x.—[1x,sin(f;)cos(¢.) + 1y_sin(f,)sin(g.) + 1 2. €05(8.)]sin(6.) cos(¢.)
- -
— 1z sin(6;)cos(@.) + 1x. cos(6,) (7.8)

- . 2 2 ) .
1 x.[1+cos(6,)—sin“(6,) cos (00)] 1y, sin“(6.)sin(@.)cos(@.)

- —l’ z. Sin(6.) cos(@.) [1+cos(6,)]

On the x. =0 plane we have

n
P = i?
1.9
- -
di = 1x, [1+cos(6,)]
Similarly on the y. = 0 plane we have
¢, = 0,rm
- - . -
d1 = 1x, cos(8,)[1+cos(6.)] - sign(xc) 1z, sin(6.)[1+cos(8,)] (7.10)

-
= - 1g,[1+cos(8,)]sign(x,)

21




This shows the 1 + cos( 8, ) pattern in both E and H planes for the vertical mode, with polarization in the vertical

direction.

The second pattern (for the magnetic field) which we can call the horizontal mode is described by

x. sin(0;)cos(@.) + 1 e sin(6.)sin(g.) + 1 z, €0s(6.)]sin(6.) sin(g.) (.11
_l)xc sin (0 )sin(@.)cos(g.) + lyc[1+cos(0c) sin (0 )sm2(¢c)]

-
-1

7. [1+ cos(6,)]sin(8, ) sin(g, )

On the x, =0 plane we have

3
P = i;’
- - -
d2 = 1y, cos(6.)[1+cos(6.)]-sign(yc) 1z sin(8.)[1+cos(f,)] (7.12)

—l)oc [1+cos(8,)] sign(y,.)

On the y. =0 plane we have

¢, = 0rx
- - (7.13)
d2 = 1y [1+cos(6.)]

Again we have the 1+ cos(6.) pattern in both E and H planes for the horizontal mode with polarization in the

horizontal direction.

With these results let us return to the geometry discussed in the previous section (Section 6). As in Fig. 6.1
we have a symmetry plane So which is nearly horizontal and is perpendicular to a vertical plane S,,. Specifically

let z, the axis of our combined-dipole pattern lie on the intersection of Sg with S, and point toward the target

site. By appropriate choice of x. and y. both Sp and S, can be symmetry planes for the incident fields.

22
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Recognizing the two pattern functions as describing the two polarization modes we can choose

-_
Ye ==y » ly =-1y (7.14)
xc and z. in S, plane

Here x. is a nearly vertical coordinate and z, is a nearly horizontal coordinate; both can be described in terms of x

and y as

ze = zcos(yg) + xsin(yp)
xe = xcos(¥g) — zsin(yg)
- - -
Tz, = Lzcos(wg) + Lxsin(wo) (7.15)
- 5 -
lxc = 14 COS(WO) - 1z sm(l//o)

- -
With these definitions, one can compute d | for vertical mode and d 2 for horizontal mode in terms of (x, y, z ) or

(x¢, Ye» 2¢) coordinates.

On the §,, plane (a symmetry plane for such fields), and hence for y = 0 on the target site, the polarization
is purely horizontal and vertical as discussed in Section 5. For positions away from Sy the polarization is not ideal,

but approaches the ideal case for small . In any event the polarization can be calculated from the formulas given

previously.

23




8. Concluding Remarks

Using symmetry concepts one can attempt to get the polarizations as purely vertical and horizontal as
possible. It desired, one can then correct deviations from the ideal by rotating the scattering dyadic in a computer
based on the actual calculated and/or measured incident-field orientations at each position of interest on the target

site.

As discussed in Section 3, O, antennas with a vertical symmetry axis provide purely vertical and
horizontal polarization over all of S,. However, such antennas have patterns independent of azimuth ¢, implying

that they transmit to (and receive from) positions away from the target site (negative x). This introduces undesirable
clutter into the SAR image. So some compromise of this pattern is appropriate. One can use the concept of partial
symmetry discussed in Section 1 to help here. By placing some large scattering surface some distance behind the

antennas (negative x).one can make the signal from the target reach the antennas some clear time . before this
signal scatters from the surface back to the antennas. If the target-scattered pulse width (of interest) is less than tc
then in this time window the O, symmetry analysis is still correct. The return of the direct scattering surface also

needs to be placed at a time which does not interfere with the desired target-scattered signal. Additionally this rear

scattering surface can be made absorbtive.

More generally, limiting patterns to some range of ¢ requires one to consider less symmetrical antennas.

Symmetry planes as discussed in Sections 5 through 7 are still appropriate for this purpose. Many kinds of antennas
can be constructed with such symmetry planes. How pure are the polarizations away from the symmetry planes will
depend on the design specifics. Note that deviations from the ideal are frequency dependent, generally different for
every frequency in the radiated and scattered pulses.
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