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Abstract

In designing pulse-radiating antennas for broadbeam applications (as in synthetic aperture radar) the fre-
quency spectral properties of the pulse need to be controlled for the various angles. This paper considers a type of
aperture antenna for this purpose. Noting the presence of spectral notches on boresight for a simple circular metal
reflector, the reflector is resistively loaded in special ways to preserve the initial step rise of the far field (associated

with step excitation) but smooth the pulse decay to remove the second step associated with the aperture rim.




1. Introduction

In designing antennas for synthetic aperture radar (SAR) one wants a sufficiently broad pattern to take
appropriate advantage of the measurements of the scattering from a target while the antenna moves over a large dis-
tance (and thereby obtains a fine angular resolution via the large synthetic aperture). A SAR can also be designed to
use a pulse containing a very large band of frequencies [13]. The pattern of an antenna can be different at each fre-
quency depending on the specific type of antenna. One would like the pattern to be consistent at the various fre-
quencies of interest in the pulse. An important consideration in the pattern is polarization and its control over the

angles of interest in the pattern. Symmetry can help in this regard [7].

In designing a wide-angle pulse-radiating antenna one needs to be concerned with the radiated spectrum.
Specifically, one would not like some important frequencies to be missing (notches). The frequencies of such
notches may be a function of the angles from the antenna.

While an impulse-radiating antenna (IRA) can have good spectral properties on boresight [6, 12], it is
designed to have a narrow beam width. One can achieve a broader beam width from a wide-angle TEM horn or
‘ from a TEM-fed hyperboloidal scatterer, which converts one spherical TEM wave into a second one [4]. On bore-
sight, as we shall see, such an antenna radiates a pulse, which is not an impulse, but a gate function (step up
followed by step down). Such a function has spectral notches at frequencies for which the pulse width is an integer
number of sinusoidal periods.

As a special case, this paper considers the limiting case of a hyperboloid as a flat perfectly conducting cir-
cular disk. Noting the character of the boresight radiation, the disk is resistively loaded. Using a high-frequency
approximation for the reflection from a resistive sheet, the appropriate aperture integral for the boresight-radiated
field is performed. The radial variation of the sheet resistance is adjusted to control the waveform so that there is
still the initial step rise, but this is followed by a smooth decay to zero, avoiding the second step.

Figure 1.1A shows the configuration of interest. A spherical TEM wave is launched from the source at z =
2¢. A conical transmission line forming the spherical TEM wave is indicated; which precise form of the two or
more conical conductors one may choose is left arbitrary for present purposes. A ray (high-frequency approxima-
tion) is indicated reflecting (negative sign) from the loaded aperture S, on z =£. The reflected ray continues on a
straight line passing through the coordinate origin (7) = T)’ ). Figure 1.1B shows an equivalent problem (in the high-
frequency approximation) in which the source is placed at 7 =0 with areversal of the source voltage polarity on
reflection of the feed through the aperture plane. Now there is a transmission of the field through the loaded aper-
ture made to be the same in magnitude as in the first case. The resulting fields transmitted/reflected at S, are dis-
cussed in Appendix C. Note that the low-frequency performance of the two antennas in Fig. 1.1 is quite different
from radiation in the z direction due to the reversal of the electric dipole moment without reversing the magnetic

dipole moment [5].
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For purposes of present analysis the configuration in Fig. 1.1B is more convenient due to the use of com-
mon coordinates for the fields on the feed, on S,, and in the far field for z = oc. We have the usual cylindrical.

-~
(¥,¢,2z) and spherical coordinates (7,6, ) related to Cartesian coordinates (x, y, z) as

x = Wcos(¢) , y = W¥sin(¢)
¥ = rsin(@) z = rcos(6)

’

(1.1)

These are discussed in more detail in the appendices. The results will apply to the case in Fig. 1.1A as well, merely
by the appropriate interpretation of transmission/reflection at S, .

For our analysis we have the usual conventions

1

¢ = [Hoeg] 2 = speed of light
1
Zy = I:-'lel—o-] 2 = wave impedance
0

(12)




2. Spherical TEM Wave: Initial Considerations

Describing the problem in terms of the virtual feed in Fig. 1.1B, we have the fields to the left of S, inci-

denton S, as an ideal step-function wave of the form

() v
E (7.t,) = -;‘% V., ®(6,Pult,)

retarded time

t, =t ——

T, = ct, = retarded time in length units ' 2.1)

A® = change in potential function between feed conductors

—l)ai + _l>ocsc(9)—a—

Vs = logg 3¢

The potential function satisfies the Laplace equation on the unit sphere and can be described as discussed in
Appendix A. '

The first simple way to view this problem is to imagine an observer on the z axis in the far field (large z).
The first signal arrives as a step at ¢, = 0. This corresponds to the field incident on S, (with unity transmission)
on the z axis, scaled by r~L. It takes some extra time to reach the aperture edge at ¥ = a. This extra time in

length units is

1
T, = ct, = [£% + a%]2 -¢ 2.2

For an observer in the far field (on axis) this is the retarded time the observer first “sees” the truncation of the aper-

tureat ¥ = a.

For simplicity, let us assume that the antenna has reflection symmetry R, with respect to the y =0 plane.

The fields are taken as symmetric with respect to this plane [11]. On the z axis this means that the electric field is
polarized in the y direction. Assuming that S, is perfectly transparent (+1) in Fig. 1.1B, or perfectly reflecting (-1)

in Fig. 1.1A, then we can write the far field on the z axis as [3]

U, ¢ -
E @lat) == Eg 1y [W(T) - u(T,-T,))




= - V), - .
Eo=Ep 1y = E*"/(£ 120,) 1y = aperture field on z axis for ¢, >0 2.3)
~
The down step is an approximation since the aperture field is not only E(v) after the aperture edge is reached
(additional scattered fields). However, as we shall see, using this as the aperture field the aperture integral for the
far field gives the above result.
~
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3. Aperture Transmission/Reflection

Consistent with Ry symmetry, and for analytic simplification,, let the aperture loading be described by

O, symmetry (all two-dimensional rotations and axial symmetry planes). Let the fields incident on S, be
weighted by the dyadic

© - - - =
W(.¢9) = Wy (¥) 1w 1y + Wy(¥ 19 19) (.1
This can be used to describe the transmission or reflection of the feed wave at S, as desired.

Appendix C has the formulae to compute Wy and Wy for the applicable case based on sheet resistances
R;) and R;; . Note that Wy corresponds to the E wave and hence R;, while Wy corresponds to the H wave and
hence Ry, . The angle of incidence @also corresponds to the @ of the spherical coordinates used here.

>
Various choices for W can be made consistent with (3. 1) with

OSWy <1, 0SW<1 3.2)

The two components can even be made the same. Note, however, that if one wishes to have the resistive sheet iso-

tropic, then the two components above are in general different, except for small 8 (as an approximation).




4, Far Field Computed from Aperture Integral

The far electric field specialized to the z axis is [2]

- —(a)
E 1,.8) = -a
(@lety) = 5— = j’E: (¥4t =3 S,
a
—(a)
E;: (¥,¢:t) = tangential electric field on aperture
© -
=WM.¢9 - E (¥.¢0 @.1

W (¥) cos(9) Eg" (¥.4:1) + Wy(¥) E(Y (¥.0:1)
1
= [£2 + ¥2)2 = r on aperture S,

r, .
t — -2 = retarded time on aperture S,
c

Note that r— £ becomes r in the far-field asymptotics. Note also the inclusion of cos(6) accounting for
- -
1w« 1 9. Various details are discussed in Appendix B.

Converting retarded time to distance units we have

S0

- 1 9
E Glat) =5 = [E (t.2-2yus,
" Sa 4.2)
. 3@ 27 _(a) . ’
=— —| | E: (¥.4;t-2)¥d
2mar,££ o (Bgir=-Y¥dgd¥
Substituting from.(2. 1) in terms of the potential function we have
f) Y, 2x
-2 -2 1 Vg 0
E 1z.ty) = —— W(¥.9) - V. 0(6,9)Vdpd¥
@ Tztp) 2,"@31]'{0 (¥.9) - V,0(0.9)¥dg
0 for 7, <0
1
¥, = [[z + T2 - -e2]2 for 0<T, <T, | 4.3)
aforT, > T,
1
T, = [¢% +a)2 -¢

~



Here ¥, is the circular radius illuminated on the aperture as a function of retarded time as seen by the far-field

observer on the z axis.

From Appendix B we have the conversion of the 6 coordinate to ¥ on the aperture. There we also observe
that the integrals over @ as in (B.5) leave only the m = 1 terms in the field expansion on Sg, the other terms giving

zero. Collecting terms we have

E @lat) = —L Wy (DI + ¥2) 2 ,

SNGH N - 3 ‘}r 1 T
1 —_—
0 €2+ w2)2 4 ¢

(4.4)
1
+ Wo(t) P (42 + w212 - | a¥

Consistent with previous results we have chosen a; to be zero to give an electric field at the aperture center as in

(2.3) and (B.4) to be oriented in the y direction. We then can identify

- - h -
Eg=Eyly = -25 1y = aperture field for' ¥ =0 and ¢, >0 4.5)

We also have

¥,
o7,

1
(¢ + Tle 1 - ] 2[ucr-ucr, -7,)
4.6)

1
v + w22t -ur; -1)]

Combining these with (4.4) gives




-1
S0

L 1
E @laty) = Eo | We(¥ [ +w2]2 + ¢

1
[ 3 ] [l2 +q12]2 .y [u(T})—U(Tr“Ta)] @7

r

+ Wp(¥y)

1
W ()L + Wy(Ep)E2 + W22
1
(2 +¥2)2 + ¢

- ¢
= Eo —~ [(T) - u(T, - T,))

The last factor u(T,.)—-u(T, —T,) is the gate function previously discussed. The W weighting factors are at our

disposal for tailoring the shape of the waveform.

A special case of interest has
Wy (¥) = W¢(‘P) = W(¥) 4.8)

With (4.8) this convenientl); gives

E (z1z.4) = Eo— WY, ) [u(Ty) - w(T, - Tp))
) 4.9
= ol 2_s202 (T -
= Eo " Wit + T,1° - £°1%) [w(T}) - w(T, — T)]
If we let the weight be uniformly one, then
E (z1z.41,.)= Eo-r-[u(T,)—u(T,—Ta)] (4.10)

reproducing the result in (2.3). Another simple waveform of interest has

10



WM, =1 - -;L for 0< 7, < T,

a
1

2 + w212 - ¢
1
(62 + a2)2 - ¢

(4.11)

1 -

for 0 < ¥, <a

For small a/ ¢ (or equivalently small ) this becomes

2 2
=1-| X a a
W(¥,) =1 [a ] [l + 0[[,] H a 70 4.12)

for 0< ¥, <a

This special loading gives a waveform which rises as a step with a straight-line decay to zero at 7, = T, . This

avoids the second step, giving a discontinuous derivative instead. The required dyadic sheet resistance can be con-
structed from the results of Appendix C. For a reflector as in Fig. 1.1A, the resistance is zeroat ¥ = 0 and infinite

at ¥ =a, for both Ry and Rgy.

Returning to (4.7) one need not assume that the two weight functions are the same. A simple triangular
waveform as in (4.11) can still be achieved by using the more general form in (4.7) and equating it to 1-7,. /T, .

Using

1
cos(d) = €2 + ¥?] 2 (4.13)

in the formulae of Appendix C with
Rg = Royy(¥y) . R = Rs¢(\Pr) . 4.14)
various Wap (‘¥,.) and Ws(¥y) can be synthesized from

1
W (F,)8 + Wo(P )2+ w212
1 -
[£2+ ‘¥,2]2 + ¢

1- (4.15)

I




A special case has

~
Roy (‘¥y) = Rep(¥y) = Rs(Fy) (4.16)
making the resistive sheet isotropic (but nonuniform). Except for small a/¢ (small 8) then Wy and Wy are differ-
ent, but (4.15) can be solved to find R;(‘¥,), depending on whether the reflection (Fig. 1.1A) or transmission form
(Fig. 1.1B) is desired.
N
N
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5. Concluding Remarks

Here we have considered a canonical problem concerning aperture loading for broadbeam antennas for
SAR using a pulse involving a broad band of frequencies. The resistively loaded aperture is planar in this canonical
case. The function of the resistive loading is to improve the frequency spectrum of the pulse on boresight. Off
boresight the edge of the aperture does not have the same effect as a second step, this signal being dispersed (not

arriving simultaneously) at the observer.

For good low-frequency performance there is the question of optimal termination of the TEM feed. This
has previously been considered in the context of various types of IRAs. With a resistively loaded aperture, the
aperture resistance will need to be included as part of the termination.

There are other approaches to this spectral-control problem. One can shape the reflector (or contour the
lens) so that in the central region the ideal flat-plate (or more generally hyperboloidal) region is retained, while
deformed near the outer edge (W =a). This will also disperse the second step to some degree (to be determined)

as seen on boresight.

13




Appendix A. TEM Potentials and Fields

An important part of the antenna design concerns the properties of TEM waves, both planar and spherical,
for their dispersionless characteristics. This includes potentials, fields, and associated operators.

A.1. Plane waves

In cylindrical coordinates on a plane with
x = Wcos(g) , y = Wsin(g) (A1)
We have a potential function of the form [10]

o0

m
P (y g) = 2 [—\g—‘—] [am cos(m@) + by, sin(mg)]
m=0 0

Yo = arbitrary scaling constant (meters) (A.2)

This satisfies the Laplace equation on the plane as [9]

(p) 2¢(P)
V%,(D(p)(\l’.s) =y} i[\p ?L(.\P_‘i)_:l + y2 _3_9_(_"22 =0 (A.3)

¥ ¥ 392

Here we have not included negative powers of ¥ (or a logarithmic term) since we are considering the case that

®P) is well behaved near ¥ =0.

With the gradient we have

() (p)
WP (¥.9) 3, , L AP(¥Y 2

§)] =
Vp @ (H.9) v ¥~ a¢ ¢

o0 m~1
%X ‘l’io] [[am cos(mg) + by sin(me)| 1 .
m=

_)
+ [-am sin(m¢) + b, cos(m¢)] 1g

14



This can be used to expand electric and/or magnetic fields in a planar TEM wave.
A.2. Spherical waves

The functional expansion for plane waves in (A.2) can be converted to one for spherical waves by a stere-

ographic projection [10] as
6
¥ = 2 /{tan 5 (A.5)

where £ is the distance from the source (r =0) to the projection plane, tangent at 6 =0. Here spherical coordi-

nates (r,6,¢ ) are related to cylindrical coordinates (¥, 4,z ) as
¥ = rsin(6) , z = rcos(8) (A.6)

with ¢ the same in both systems. For convenience we can set both £ and ¥ to zero for potentials and fields on

the unit sphere.

The potential function now takes the form

oD@, = Y [2w{§)]m[am cos(m@) + by, sin(mg)) (A7)

m=0

and is well behaved near @ =0. For small @ this has the form

)(6,9) = Y 6™apcos(mg) + bysin(mg)] + O(6%) as 60 : (A.8)

m=0

recovering the form in (A.1) near the point the stereographic projection plane is tangent to the sphere. This spherical
potential satisfies the Laplace equation on the unit sphere as [9]

25(s)
2(5) _ 3| »300@0) | 2 320904 =0 A9
Vo (6,9) csc(e)—ao [sm(ﬂ) 39 csc (8)—-———-—————-a pe (A.9)

With the gradient we have

15




0.0 2 30 0.0) -
T 0TSO

oo ~1
= Zm [[2 mn(g)r secz(—g) [ay, cos(m@) + by, cos(m¢)]?9
m=1

" . -
+ csc(a)[z tan(;)] [-a,, sin(m¢) + b,,cos(m@)] 10

Vsd’(S) (o, 9 =

This can be used to expand electric and/or magnetic fields in a spherical TEM wave.

16
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Appendix B.  Spherical TEM Potentials and Fields on Plane

~ Having the general form of a spherical TEM wave in terms of 8 »@ on a unit sphere (Appendix A), we
need to find the potential and tangential components of the fields on a plane. This plane is the antenna aperture
plane (discussed previously) consisting of a plane at z = £. On this plane we have
-1 1
sin(f) = ‘l‘[tz + \‘,2] 2, cos(8) = f£2 + w2) 2
¥
tan(d) = —
) 7
) 1
2 25
w{g) _l-cosg) | +VY ]2 -4
2 sin(6) v
) 1
2 25
2(9) 1+ cos(8) .! + ¥ ]2 +¢
cos“|—| = = -
2 2 1
2[!2 + ‘P2]2
- - -
lg =cos(@) 1y - sin(f) 1,
Ad - -
lz+- 16 =cos(6) 1w
- - . - - . - -
~ ly = cos(g) 1x+sin(#) 1y , 1g = —sin(g) 1 x +cos(g) 1 y
1
ra = [e2 + '1’2]2 (B.1)

value of 7 on aperture plane ( Sg) (to distinguish from r in far field)

As these are to be used in integrals over S, we need to distinguish these coordinates from those for the fields away

from S, (evaluated by such integrals).

The potential evaluated on S, then takes the form by substitution in (A;.7) to give

1
o [e2+\y2]5-z
Q(a)(\y’m:z 2_._..‘{’—_
m=0

[ay, cos(m@) + by, sin(m¢)] (B.2)

For the fields tangential to we obtain from (A.10)

17




L d
= 1. V,0@ g —

Ia
m—1
2 +w22 g
Zm [12 ‘Pz] 2 2[ ] 2 ; [a,, cos(m@) + by, sin(m¢)] ?\y (B.3)
m=1 [tz + ‘1’2]5 +1
m
2+ w2]2 -t 5
+— 2=———=——| [-apsin(m@)+b,, cos(m@) 1¢

k4 b4

Note the factor of r, 1 ; this accounts for the decrease with r of the spherical TEM wave on S,. The gradient is on
the unit sphere, but the coordinates have been changed to ¥,¢ on S, Vwith the & component projected as a ¥

component.

A special case of interest is on the z axis. For ¥ =0 (and thereby & = 0) only the m=1 term is nonzero

giving

>
— 1z - V,0@(¥,9)

¥=0

1 R . -
;[[al cos(¢) + bysin(@)] 1w +[—ay sin(¢)+by cos(¢)] 1 ¢} (B.4)

1. - -
7[01 1x +b]ly]

For the present problem the symmetry has the electric field in the y direction. This allows us to identify b T yl £

with the electric field in the center of the aperture.

We need integrals over ¢ as

2r
[ (am cos(m@) + b sin(me) Ty d¢

0
2r

- - -
= I [ay cos(m@) + by, sin(m@)] [cos(P) 1 x +sin(¢) 1 y]1do 1y do
0 -

18
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- -
mlay 1x+b 1y] for m=1

__)
0 for m>1

2n
j [—apy Sin(MP) + by cOS(m@)] 1 ¢ d
0

27 (B.5)
= [ (~am sin(mg) + by, cosime)} [~sin($) Tx + cos(9) T yldg
0

- -
”[allx'f'blly] for m=1

_)
0 for m>1

Only the m = 1 terms survive due to orthogonality. Asin (B.4), if @) =0 the above is polarized in the y direction.
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Appendix C. Transmission and Reflection of Plane Wave at Resistive Sheet

For the fields at the antenna aperture we need the tangential electric field in the presence of a resistive sheet

on plane S. As illustrated in Fig. C.1, the sheet is on a plane of constant z (consistent with earlier coordinates). The
transverse dyadic is
z (C.1)

This is independent of which of two choices we take for positive z.

For the incident wave we take the orthogonal unit vectors

- -
11 x 12 = 13 = direction of incidence
11 = vertical polarization (in plane of incidence) . (C.2)

horizontal polarization (parallel to S, )

—
N
L]

On S we also need

=’ - - -
11 =cos(@) 11 + sin(f) 13 = 19 X%
angle of incidence

-
1z

1 (C3)
6

’

- -
The tangential fields on S are referencedto 11 and 12, and @ is consistent with usage in earlier sections.

On § we have a resistive sheet which we take as uniform, but also as a dyadic of the form

© =" 2 - =
Rs =R 1111 + Rp 1212 9

This makes R;l apply to an E wave and R,y to an H wave as indicated in Fig. A.1. Note also now that the trans-

verse dyadic has the representation

2 (C.5)

~
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Fig. C.1. Plane Wave Incident on Resistive Sheet.
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C.1. E wave

For an E wave we have the incident fields

—(inc)

—(inc)

E =(m7T, g =7, (C.6)
E(im—‘) = ZO H(im—‘)
The tangential incident fields on S are

(inc) (inc) ,
- PR .
E,; =1, FE =cos(8)E('"c)_l)1

(o)}

Slne) o (o) .
H =1,+-H =H@7,

Our interest is in the resulting tangential electric field on S. For this we need the transmission coefficient for the

-—)
transmitted wave; this applies both to the electric field referenced to 11, as well as the tangential part referenced to

’

—
1 1. From [1, 8] we have

(trans) - (trans)

-1
£ @no) = & '(inc) cos(e)] (C.8)

s1

This applies to the transmission case in Fig. 1.1B. For interpreting the case of reflected fields as in Fig. 1.1A we
have the corresponding reflection coefficient.

(refl) (refl) -1
R = E- _E___ -[1 +Eﬂsec(a)] =T -1 (C9
gtne) — plinc) Zy ,_
C.2. H wave

For an H wave we have the incident field

—(inc) . .
E = EWm) 1, H = -Hn) 1,

E(im:) = ZO H(inc)

(C.10)

22



The tangential incident fields on S are

tne) (i) .

E, =1;-E =EgoT7, on
ine) —y(inc) oy (C.11)
H =1;-H =-cos(9) H? 1,

In this case the transmission coefficient for the electric field (which is also the tangential part) referenced to 72 is
(1, 8]

-1
E(trans) ZO
T2 = ——E-:-(;‘-:T = [1 + 2R52 sec(6) (C.12)

For use with reflected fields at S, we have the corresponding reflection coefficient

E(re 2R, -1 '
Ry = S =" 1+ Y—Z-(-)—-;os(g) =T -1 (C.13)

C.3. Transmission and reflection dyadics

For a combination of E and H waves incident on S at common angle 6 we have the transmission dyadic

© -’ o - -
T=T1 1111 +DH 1212
-l ’ ’ _1 (C-l4)
-’ = - -
=[1+ Z cos(a)] 11 l1+[l+ Z sec(G)] 1212
51 2Rsy

Note that 7} and T; are, in general, different and can be independently specified if one is willing to construct an

anisotropic resistive sheet (say, by a fine grid of resistors). If one wishes to equate T; and T, we have a constraint

Rso
Rsl

= sec?(6) (C.15)

Note that for small @ this gives

%& =1+ 0 as 650 (C.16)

s1
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So for small @ , one can approximate this constraint by a uniform isotropic resistive sheet. y
S——

One can similarly construct a reflection dyadic as

>
i\
{
$
!

(C.17)

i "1 ’ G -1 ’ ’
2R > 5 2R "
—-[1+==4 sec(a)] 1111 - [l+—"-2—cos(0)] 1212
[ A Z)

Equations (C.15) and (C.16) apply equally well to this case.
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