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Abstract

Previous results concerning generalized inhomogeneous TEM plane waves are
specialized to the case of unipolarized waves (in the formal coordinates). This
results in an additional degree of freedom in choosing acceptable coordinate sys-
tems which in turn imply lens designs. Applying this to purely dielectric lenses
(spatially variable permittivity, constant permeability) in the forms of bodies of
revolution, several example lenses are found. Some of these are previously known,
but one in particular non-obvious new lens design is found which can be called a
spherical transmission line with propagation in the @ direction.
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1 Introduction

A recent paper [6] has shown that one can have a generalized TEM plane wave propagating
in the us direction in u;,us, u3 orthogonal curvilinear coordinates. The formal fields are

functions of u; and u; only and have components in both these directions. The medium is

inhomogeneous but isotfopic with formal propagation speed (with respect to the uz coordi-

nate) a function of only uz. In this case the uj surfaces can only be planes or spheres. The
case of constant ¢ surfaces for u; gave a class of TEM waves propagating in the ¢ direction
in the usual (¥, ¢, z) cylindrical coordinate system, thereby giving a bending lens to change
the direction of propagation of a TEM wave guided by appropriate conductors.

In the present paper the formal fields are assumed to have only one component (elec-
tric in the u; direction, magnetic in the u, direction). This removes the aforementioned
restriction on the us coordinate surfaces. The formal constitutive parameters y' and € are
inhomogeneous but isotropic, and the real p is constrained to be pg as before.

Specializing the dielectric lens to a body of revolution with the magnetic field in the ¢
(ie., ug) direction, several examples of such lenses are developed. Two of these examples
correspond to well-known circular coaxial and circular conical transmission lines Witil uniform

media. Another two of these examples are non-traditional, involving line sources or foci.




2 Summary of Previous Results

In [6] a generalized kind of TEM plane wave has been shown to satisfy the Maxwell equations.

This takes the form in a (u;, u2, u3) orthogonal curvilinear coordinate system as

- = - -
. E'=E; (u2,u2) f(t — 7(u3)) , Eg - 13=0
- -3 - —
H'=Hj (u1,u2) f(t — 7(u3)) , Hy-13=0
N — - - P -
13 % E'=27 H(') , E6= -Z" 13 x H()
1
13
7' = [%] = Z'(u1,uz) (a function of only u; and u,)

(2.1)
V' = [u’e’]_% = v'(u3) (a function of only u3)

us ol
T (Us) = [) 3

v'(u3)
—_
Ej (u1,up) = =V ®L(ur,up), Vi-[€V®]=0
N .
Hy (u1,u2) = ~ V@), (u1, u2) Vi (V@] =0.
Here the magnetic scalar potential &}, may be multiple valued (as in a conformal transfor-

mation) as one goes around a conductor. The functional forms of Z’ and v’ can be combined

to give
oy, U, ug) = Z'(ur,u2) _ funf:tion of u; and uy times
v'(u3) function of uz (partly factored) 22)
2.2
- function of d us ti
6’(’U,1,’u,2’ U3) = ['U,('U:3)Z,(’U:1,U2)] 1 u n Uy and ug t1mes

~ function of us (partly factored)

Note that y' and € are taken as scalars. Since there are no field components in the I_;
direction, then these formal constitutive parameters need not have the 3,3 components (as
in a diagonal tensor form) specified. The formal fields, parameters, and operators above
(indicated by a prime 7 on the fields, potentials, and transverse (to 1_;) operators V} and V)
take the form as though (u;, ug, u3) were the same as (z, y, z) (Cartesian coordinates). These
are to be distinguished from the real or physical fields, parameters, and operators which,
when cast in terms of general orthogonal curvilinear coordinates (uy, ug, u3), take on a more

complicated form.

~




The transformation between the real and formal quantities is given by [13]
—), - —)I -
E'= (an,m)' FE, H= (an,m)' H

(C:z,m) = (On,m) - (€n,m) (l‘:;,m) = (On,m) * (tinm)

hy 0 0 bl 0 0
(an,m) = 0 hy O ) (7n,m) = 0 bi-:l 0 (2 3)
0 0 hs 0 0 bk
oz 1? dy 1? 8z 1?
2 _ — —
hs = [ 6u,,] + [ aun] + [ 6u,,] (scale factors)

3
[dg? = Z h2 [du,)® (line element)

n=1

where the constitutive-parameter tensors have been assumed diagonal in the u, coordinate
system.
Having assumed that the first two diagonal elements of the constitutive-parameter dyadics

are equal (isotropic medium), this led to
hl = h2 (24)

which required that surfaces of constant u; can only be planes or spheres (a restriction one
might wish to relax). Furthermore there was

p=hap, €=hse

1

3 1
Z'(uy,us) = [H—] = %] * = Z(uy,us) (a function of only u; and us) (2.5)

The imposition of

p=po (nonpermeable medium) (2.6)
then led to
€ = e(u;,u) (function of u; and u, only)
v= [poe]—% = v(uy,up) (function of u; and u, only) (2.7)
hs = ”_'(5(1;_“)2) (partly factored dependence on the uy)
3




3 Unipolarized Generalized Inhomogeneous TEM Plane
Waves in Inhomogeneous but Isotroﬁic Media

Now modify the form of the plane wave in (2.1) by restricting to a single polarization in the u,
_-)

ecoordinate system. Specifically restrict the electric field to the 1; direction, or equivalently

the magnetic field to the Yg direction. With no other components then the gradients of the

potentials imply

E'y (u1) = — 1. a—i—@;(ul) (functions of u, only)
5 a4 _ (3.1)
H'o (u1) = — 12 E‘I);,(UZ) (functions of u; only)
Then (2.1) simplifies to |
- -
E'= Ey (u1) 11 f(t — 7(us))
= -
H'= Hy,(u2) 12 f(t — 7(ua))
EI 17 2
Z'(uy,u2) = 2‘ (w1) = {E— = product of function of u; and function of uy
H,, (u2) € ,
v'(ug) = [ e’]—% = function of u3 only
us .
duf
7(u3) = 0/ o' (ul) (3-2)
d d d
! Y Y 2 le—9 —
EOx (ul) dulée(ul) ’ du1 [6 d’U-l e(ul)] 0
d d d
1 —_— / . I___@I —_
Hi () = @), o [ ()] =0
The functional forms of Z’ and v’ can be combined to give
,_ Zluu) __ Fay(w)
v'(us)  Hg,(u2)v'(us)
= u'(uy,u2,u3) = product of functions each
depending on only one of the u, (totally factored) (3.3)
- H] (UQ) )
e’:'u"u, Z'u,u 1'-:—‘—“_—““—02
[v' (u3) Z" (u1, u2)] By, (ur)'(wa)

= € (uy, up, u3) = product of functions each

depending on only one of the u, (totally factored)

6
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Reflecting back on [6 (Section 4)] this unipolarized case fits the examples of the parallel and
series media given there.
Equations (3.3) are the only acceptable forms for a medium with a unipolarized wave.

Note that these equations imply

¢ [Bb, (w)]” = ' [Hp, (u2)]” (3.4)

which expresses the fact that locally the electric and magnetic energy densities are equal.
This result can also be obtained from (2.1), since

! - -

2 —bl 2 _)I 12—)1 —)I _)I _)I - M 1 1
(13 x E'o) - (13 x E's) = (2") HO'HO=E0'EO=?_HO'H0 (3.5)




4 Scaling Unipolarized Generalized Inhomogeneous TEM

Plane Waves

Now relate the formal fields and constitutive parameters to the real or physical quantities

represented in the u, coordinates. For the fields we simply have
Ej, (u1) = hiEy, ,  Hg,(u2) = haHo, (4.1)

Since the scale factors may be general functions of the coordinates at this point, then similarly
general are Eo, and Hy,.

Noting that since there is only an Ep, component of the electl:ic field, then only the 1,1
element in the matrices in (2.3) is needed for electric parameters. Similarly only the 2,2
element in these matrices is needed for magnetic parameters. This then gives

, _ hahs r _ hsha

e—-hle, h2u

(4.2)

In particular we do not at this point have the requirement of equal h; and h, as in (2.4),

thereby giving us some additional freedom. From (4.2) we also have

v= [ue]'% = h; [,u'e']-% = h3v'(u3)

1

_myr _he [W]?_ k2,

Z_[e] —h—l[el] —hlz(u17u2) (4.3)
_ h2 (l)l(ul) _ E01

T b Hp,(up)  Ho,

Thus v in general can be a function of all of the up, while v’ is only a function of us. If (3.3)

and (4.2) are combined we obtain

ha [E{h(ul)] 1

B= hihs | Hy, (u2) ] o' (us)
- hl [H(,)z (u2)] 1 (4.4)
h2h3 E(,h (ul) 'U'(’U.3)

Thus we have expressions for the medium parameters in terms of the scale factors, formal
fields, and formal wave speed. Hence a choice of a coordinate system (w1, ug, uz) will de-

termine the scale factors h,, which in turn will determine the real fields as well as pe and

ple.



5 Uniform Permeability Lenses

Now add the requirement that

p= po (5.1)

i.e., the permeability is uniform, typically the permeability of free space. In addition we

require that in the lens region.
€ 2 €min 2 €0 (52)

i.e., a permittivity bounded below by that of free space. The wave speed and impedance are

bounded by

v = [uoe] % < [woe] T =c
1 1 (5.3)
o-to)'s 2] =

From (4.2) and (3.3) we have

hshy _ w1 By (w)
he  po  po Hy,(u2)v'(us) (5.4)
= totally factored function of the u,

which gives a constraint on the h,. We also obtain

€ €€  h 1 Hg, (u2)

e _Mm1 5.5
€ €€  hohse Ep (u1)v'(us) (5:9)
which can be combined with (5.4) to give
2
£_|—°&
€0 [h:w’(ue.)} (5.6)

[EZ H{,z(uz)]i’ _ [ﬁ A ]2
h2 OE(’)l (’U.l) h2 Z’(ul,uz)




6 Case of Translation Symmetry in One Transverse Di-
mension in u, Coordinates

As a special case we can assume that ¢’ and y' are independent of u,, giving

B ' _ Z,(ul)
w0 = ) 61)

€ (u1, ug) = [v'(us) 2 (w)]”

From (3.3) this implies
Hg, = constant (not a function of any u,) (6.2)
Furthermore, (3.2) gives
' (up) = —quc')2 (6.3)

where an additive constant is suppressed. This is a translation symmetry of the formal
parameters with respect to us.

The scaling (Section 4) leads to the constraint
heHo, = Hy, = constant (6.4)

Adding the uniform permeability constraint (Section 5) leads to

hghy _ ¢ 1 Eg (w)

hy o po Hg,v'(us) (6.5)

= factored function of u, and us

In this last result we see that any dependence of the scale factors on u, must be cancelled
among the scale factors in the above combination. The result that Hy, is a constant can also

be obtained directly from (3.4) in the case that ¢ and p' are independent of u,.

10




7 Dielectric Body of Revolution for Generalized Coax

Now let us constrain the general form that the u, coordinates take in real Euclidean space
to be a body of revolution (BOR). The usual cylindrical coordinates (¥, ¢, z) are related to

Cartesian coordinates (z,y, z) via

z=Vcos(¢p), y= Usin(¢) (7.1)

Unlike [6], where propagation (u3) was taken in the azimuthal (¢) direction, here it (u3) is
taken in a generalized axial direction (combination of axial z and radial ¥ directions). This
gives what can be thought of as a generalized coax, the conducting boundaries of which are
bodies of revolution with respect to the z axis (Coo, Symmetry, continuous rotation with
respect to the z axis plus axial symmetry planes [3}).

Now choose

- -
uz =Yno, L=l
. (7.2)
¥,, = positive constant (dimension meters)

-
so that the magnetic field is in the 14 direction and the electric field is in some generalized

radial direction (f;) This immediately gives (from (2.3)) the scale factor

v
hy =g (7.3)

where we note that both z and ¥ may be functions of u; and us. Note that, consistent
with Section 6, all fields and constitutive parameters are now independent of u, (or ¢) when
expressed in terms of the u, coordinates.

Now the real magnetic field is given from (6.4) by

¥

Hy, = T

Hy, = Ho, (w1, us) (7.4)

This result shows that for our generalized coax the magnetic field Hy, f(t—7(u3)) has the sim-
ple result that its amplitude varies as ¥~! no matter what acceptable u; and u3 coordinates

we may choose.

11




The constraint (6.5) on the scale factors now becomes

U o _ 1 Ep(w)
hshy— = — = — =~
v Ho Uo H(;,U (Us)

= factored function of u; and us

so that we need to consider the functional dependence of h; and h; on u, and u3.'

12
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8 Construction of u; and u; Coordinates Via Confor-

mal Transformation

The u; and u3 coordinates are, with our previous cohstraints, already orthogonal to u,.
Being functions of only z and ¥, then we can consider u; and u3 on a plane of constant ¢.

One can construct orthogonal coordinates on such a plane via a conformal transformation

of the form

w({) = w1(¢) + Jws(¢)

( =z+j¥ (complex Cartesian coordinates)

(8.1)

such as done in [5]. With w as an analytic function of {, then w, and ws give an orthogonal
curvilinear system on the plane. We can then construct a more general orthogonal system

of the form.

u1(z, ¥) = ui(wi) (8.2)
uz(z, ¥) = uz(ws)

So u; is a scale of w; only, and similarly for u3. Instead of curvilinear squares given by equal
decrements of w; and ws, we have curvilinear rectangles given by equal decrements of u;
and us.

There is a scale factor for the w coordinates as

d¢
b= |4

d_’U)- -1
d¢

= huy = hug (8.3)

As an analytic function the derivative of w is independent of direction in the ¢ plane. As a
conformal transformation (curvilinear squares) the scale factors for w; and w3 are the same.

The scale factors for u; and u3z can now be expressed as

dw,
hn = da. hy forn=1,3 (8.4)
where
dw, .
—— = function of u, (or wy,) only (8-5)
du,

13




The constraint (7.5) on the scale factors now becomes

Ej) (u1) | ~

0,V (u3)

R, 1

Ny du3
v IJ'OIIIm

dw3

du1

X
dwl

(8.6)
= factored function of w; and ws;
(or u; and u3)

So X has to factor as a function of w; and ws,, restricting the allowable conformal transfor-

mations w(().

14




9 Simple Canonical Examples

As a first procedure to construct generalized coax examples let us expand {(w) in a power
(Taylor) series as
] C(w) = ap + ayw + agw® + - -- (9.1)

The constant term is uninteresting and can be absorbed into the a;w term by a simple shift.

The first-power term gives

C(w) =24 3j¥ = a; [wy + jws]

d
b= || = o
B ot |
X= T =Im™" [a,w] |a4| (9.2)

= |a1)*[Im[a;]w; + Re[ay] ws]

= factored function of w; and w;
provided a, is pure real or pure imaginary

which provides two acceptable cases. The. quadratic term gives
((w) = z+ jU = apuw?
¥ =Im [a,] [w? — w3] + Re[an] 2w ws

d a1
hy = ld—c- = |2aow| = 2 |a| [w? + w}]? (9-3)
w
2
X = -2 # factored function of w, and w.

v (except in trivial case of a; = 0)

As one can see higher powers of w only increase the complexity of the above terms in

unfactorable forms.

So let us look at the two acceptable cases in (9.2).

9.1 Usual coax: propagation in the z direction

Letting a; be imaginary we can choose (for simplicity)
ai=-j, ((w)=-jw, hy,=1

(9.4)
z=w3, ¥Y=u

15




so that propagation is in the z direction. Surfaces of constant uz are planes, and surfaces
of constant u; are circular cylinders on which conductors can be placed to form the usual
coaxial waveguide (cable).

To fill in the details we have

dw3

U3

v'(u3) = function of uz (or ws) only (9.5)
(i.e. not a function of u,)

= ¢ # function of u; (or w;)
and also

du1

d'w1

1 [}-
_[MelE _he )t 2
Z_[e] —hl[e’] T Uk
du

Z'(uy)

Z'(u;) = function of u; (or w;) only (9.6)

w,
v, |dw _
m T (i.e. not a function of u3)

=¢ # function of u; (or ws)
Combining these results we have |
€ = constant
= constant A (9.7)

Z = constant

So our coax has a uniform dielectric medium, as we should expect. From the wave impedance

we next infer

T, U
Ho (1) = 5~ Ho, = —"Hy,
v, v (9.8)

Eo,(uy) = ZHp,(u1) = Z 7 Hy, = Z—u—fH{J2
So both E and H fall off as ¥~ ! as is well known for a coax.

At this point we can note that there is some flexibility in our choice of v'(u3). As in (3.2)
we integrate to obtain 7(u3) which will just give u3/v, the delay in our coax. For simplicity

let us select
1 . .
v' = ['¢] "% = constant (i.e. not a function of us). (9.9)

16



Then we also have
1
Iel 2
hy=— = [#__] = constant. (9.10)
v Ho€
Choosing this constant as 1 we have

v="1

d’l.U3

dU3

duws
dU3

hs=1=h, (9.11)

uz = w3 (+ sign chosen and integration constant suppressed)
Concerning the u; coordinate there are various possibilities. One that admits constant
¢’ and p' comes from

€ = constant, pu’' = constant

Z' = constant, Fg; = Z'Hy, = constant (9.12)
hy Z
h_2 = =z = constant
Setting this constant to 1 gives
Z'=2Z
, 2 Z
u= o = " = Ho

(9.13)

dw| _ 4wy

E’t:; dul

v
‘ dw? w 1
— 40 — 1 _ ot T R el
uy—uy =Y, [ o =V,.ln (w§0)> =V¥,,fn (‘I’m)
©)

1

with integration constants and signs chosen for convenience (e.g. zero voltage on one of the

conductors). Here u; is proportional to the electric potential.

9.2 Radial transmission line

Letting a; be real we can choose (for simplicity)
a=1 ((w)=w, h,=1

(9.14)
zZ = w, ¥ = w3

17




so that propagation is now in ¥ direction. Surfaces of constant us are circular cylinders,

and surfaces of constant u; are planes on which conductors can be placed to form a radial

transmission line.

Now we have

- - - _1 _ ~1  hy |dws| ,
Ul = (o F = e e = 3212 )
= L|dws v'(u3) = function of u3 (or ws) onl
= ws | dus 3) = Us w3 y

= W2e # function of u; (or w;)

and also
1 ! i
_.1_-1&25_"'2 ﬁz_l d_ul_’
vz=Y [6] —\I’h]_ [6’] _‘Ilmhw dwl Z(u3)
_ 1 |du Z’(u ) = function of u; (or w;) onl
- ‘I’m dwl v . “ ' Y

= W2e # function of uz (or w3)

Combining these results gives

¥2¢ = constant

€ | Un 2
emin— v

€min 2 €o

¥,. = maximum ¥ of interest

Then we also have

-1
v=[ue] 2 = Umax g,

~1
Vmax = [I—‘Oemm] 2 <c
1
_[mlz_, ¥
Z“[e] = Zowe

Zma.le:#o] SZO

€min

(9.15)

(9.16)

(9.17)

(9.18)

So now we have a nonuniform dielectric medium, but one of simple functional dependence.

This result can also be derived by the technique in [13 (Appendix F)]. While the wave

18
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impedance varies with position, the characteristic impedance Z, is constant as can be seen

from
d d
L, = —— = -
¢ Z27T\I’ Zmax 27V,
(9.19)
d = distance between conducting sheets
- (on planes of constant z (or u;))
We next infer
v v
H, = Z2H =-Z2H
(1) = g Ho, = 3 " Ho, (9.20)

Eo,(v1) = ZHo,(v1) = ZmaxHy, = Eo, = constant
which should not be surprising.
Concerning the u; coordinate, there are various possibilities. Noting the constant electric

field one can make u; proportional to w; and for convenience

dw :
u=w =z, ?IJII' =1, h=1 (9.21)
This in turn implies .
7' = %Z = &me_\ll_ = Zmax = constant
2 ¥ Ty (9.22)

Ey, = Z'Hy, = ZnaxHy, = constant

Considering u3 there is again some flexibility. Choosing

v =€ =% = constant (not a function of u3) (9.23)
this gives
v v v Umax W3
hy = — = 2 = X _2 .24
ST v ¥, v Y, (9-24)

Combining with

dw3 dw3
=h,, | —=] = |—= .
hs v | Fus dus (9.25)
this gives
’ w3 n ’ v

ug — ugo) - v \I’m f d’Uj,3 _ v ‘I’max tn w3 — v \I’maxen v

Umax wgo) w3 VUmax wgo) Vmax U,
(9.26)

19




with integration constants and signs chosen for convenience. At this point it is convenient

to choose
v = Vpmax
giving
Z! Z
p == = == = g = constant
€ = [v'Z']_1 = [v,m._,(Z,,mx]—1 = €min = constant
as well as

R4
h3=h2=\1,—'

1\
uz — u§°) =V,.In (—\I’——) .

m

20
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(9.29)




10 Additional Examples

Another procedure to construct generalized coax examples involves expanding {(w) in terms

of the exponential of a power series as
i C(w) = Goebotbrwtbawt+ (10.1)

Noting the factoring requirement in (8.6), the motivation behind such a choice comes from
the fact that the exponential of a sum is a product of exponentials. The constant term is
uninteresting and can be absorbed into the byw term by a simple shift. The first-power term
gives

((w) = 2+ 7T = (o™

hy =

d
2| = laome] = IncCo)
= |Coby| eRer] | (10.2)

U =Im [Coeblw] — eRelbrwl[y [Coejlm[blw]]
—_ @ _ |Col.71|2 eRelb1]

T ¥ Im [Coeﬂm[blw]]

which provides two acceptable cases. The quadratic term gives

((w) = Goe™”
_ |
oo = ‘dw

X

_ ‘2§0b2webz"’2| = [2bw] |¢(w))]

= |2byw| eRelt2w’] . (10.3)

¥ =Im [goebz“"]
h2
X = ——\IJ"’— # factored function of w; and w,
(except in trivial case of (o = 0 or b, = 0)

Higher powers of w also give unfactorable forms.

Looking at the cases in (10.2), the separability is limited by the denominator
Im [Coej Im[blw]] = |¢o| Im [eﬂm[blw]+jarg(€o)]
= |(o| sin (Im[b; w] + arg({o)) (10.4)

= |(o| sin (Im[b; Jw; + Re[by|ws + arg((o))

21




This separates provided b, is pure real or pure imaginary. The numerator does not have this
separability problem. Here (o is merely a convenient scaling constant.

For these cases it is convenient to introduce the usual spherical coordinates (7,6, ¢) with

z=rcos(f), ¥ =rsin(f) (10.5)

This gives for our conformal transformation

C(w) = re’® = (peh®

“T 31; [en (é) +j9] - 51_ [e" (IC |> jle - afg(Co)]] 109

with the related factors

(10.7)

So we can see that w; and w, need to be functions of 7 and 6 alone, separately, and in either

order.

10.1 Circular-conical transmission line: propagation in the r di-

rection
Letting b, be imaginary we can choose (for simplicity)

bl = —J ) CO = ‘I”m > Oa C('LU) = ‘I’me—jw

ho =Upe®, w =—0, ws=4{n (é—) (10.8)
v -jw w3 o L
hg = TI’; =Im [e J ] = —e" sm(wl) = ESH}(G)

so that propagation is in the r direction. Surfaces of constant uz are spheres, and surfaces

of constant u; are circular cones.

22
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To fill in the details we have

v =luod ™ = h W€ = hy |52 o'(u)
U3
w d’l.U3 ' .
= V,,e"? |—=| v'(u3) = function of uz (or ws) only (10.9)
dU3 )

(i.e. not a function of u,)

= ¢ # function of u; (or w;)

and also
1
wolz  he [1']2 ¥ jdu|,,
Z= _— —_ — | — = _— Z
[ c ] hy [5'] U, h, |dw ('Ul)
— _Sln(wl) —__dul Z’(U1) = function of u; (01' 'wl) only (1010)
\Ilm d’LU1

(i.e. not a function of u3)

= ¢ # function of u3 (or w;)

Combining these results we have

€ = constant
v = constant (10.11)
Z = constant

So our circular-conical transmission line has a uniform dielectric medium. From the wave

impedance we next infer

‘I’m 7 —C_ws ’ Q

Hoa ,8) = g Ho, = Sy e = iy o
— — ‘I’m r e _ Z¥m !
Eq, (u1,u3) = ZHo,(w1) = ZTI,‘Hoz = _Zsin(wl) ~ rsin(9) Hy, (10.12)

So both E and H fall off as rsin(#) which is well known for such structures.

Again for convenience choose

v = [y e’]—% = constant (i.e. not a function of u3) (10.13)
Then we have
Iel 2
hs = 2, = [L] = constant (10.14)
v Ho€o
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Choosing this constant as 1 we have

dws
dU3

dw3

hs =1=hy,
3 dU3

= U,,e"

uz = U,,e"® = r (+ sign chosen and integration constant suppressed) (10.15)

For the u; coordinate let us for convenience choose constant u' and € as

¢ = constant, u' = constant

Z' = constant, Ey = Z'H;, = constant (10.16)
m_Z _ constant
ho  Z
Setting this constant to 1 we have
Z2'=2
, Z' Z
A
=2 =z =
v dw dw
hy = hy = ‘I’—m = —e"® sin(wy) = Ay dull =¥,e"* du11|
‘ ©
v — u(O) — /W1 dwlll B m tan (%‘) (10.17)
17 =7 %m »® sin(w] oo tan (%)

-+ ()

with integration constants and signs chosen for convenience (e.g. zero voltage on the “inner”

conductor (§ = 6, = —w§°))). Here u, is proportional to the electric potential which takes

the well-known form.

10.2 Spherical transmission line: propagation in the 6 direction

Letting b; be a real we can choose (for simplicity)

h=1, Coz\pm>0, C(’UJ)=‘I’m6w

hy = U™, wi=fn (\I,L) , ws =0 (10.18)
v Wl wy T
ho = T = Im [e*] = "' sin(w3) = T sin(6)
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so that propagation is in the 6 direction. Surfaces of constant us are circular cones, and

surfaces of constant u; are spheres.

Now we have

1 hy, |dw
‘Il_l =‘I’—1 —%_:\I,—lh I N-3 —. W __3 r
] v [1o€] 3 [W€] T | dus v'(u3)
=1 |%¥s] (4s) = function of us (or ws) onl
= sin(ws) d'u,3 u3) = 1unction 0 ug (Or wg) only

= U2 # function of u; (or w,)

and also
1 h 13 1 duy
_1Z = 111_1 ﬁo_ 2 p— ___2.. y_ = ——L !
v [ € ] \I’hl ¢ ‘I’mhw d’LU1 z (UI)
e” ™! |du, :
= 7 o Z'(u;) = function of u; (or wy) only

(i.e. not a function of u3)

= U2e # function of uz (or ws)

Combining these results gives
T2 = constant
€ [Un]® [ Um ]°_ ™
emn LY |  [rsin(@)]  sin®(w;)

€min = €0

¥,, = maximum ¥ of interest

Then we also have

_1 ¥
v= [P'Of] *= vmax"i:
VUmax = [I“'Oemin]_i <c
1
Loz ¥
Z = _.] = Zax——
[ € Z ..
1
3
Zma.x = [ to ] < ZO
€min
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(10.22)




We next infer

|\ e 1 )}
H — __72 ! — ] — m ]
0 (11, 3) 1\ Ho, sin(ws) %2 ™ rsin(6) 02

v o, wr -
Eo,(u1,us) = ZHo,(u1,u3) = Zma.xi— 6, = Zmaxe™" sin(ws) Hy,
m .
rsin(6) ., (10.23)
. = Zni g Hi,
So E and H have opposite dependencies on 7 sin(f).
For convenience choose
V' = [u’e’]—% = constant (i.e. not a function of u3) (10.24)
Then we have
_ v _ p',el %_vma.x €min %_vmax v
hy = v [#06] R [ € ] T v U, (10.25)
Choosing
v' = Umax (10.26)
we have
¥ ) rsin(f
h3 = ‘—I’—,; = h2 =e"! SlIl(’U)3) = \I’.,,(, ) (1027)
Combining with
dw3 dw3
h, =l |5 = m w1 s .
3=h dus v dus (10.28)
this gives
w3 " t w3
us — ugﬁ) — q’m/ .dw3” =0, 0n an ( 2
w® sin(wg tan [ 25
L (10.29)

= Ut (55(%)

with integration constants and signs chosen for convenience (e.g. 6o = 0 being some reference

cone for the wave propagation).
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For the u; coordinate let us for convenience choose constant u’' and € as

¢ = constant, pu' = constant
Z' =constant, E; = Z'H,, = constant

h_ 2 Z [e ]% zZ ¥,

- E—E_Zmax €min Zmax ¥
Choosing
2" = Zpax
we have
, 2 Z
B=g =3 " K
=[Z) T =[z)F =
This gives )
\I’m dw1 d'w1
hi = —h =1—h —| = V,,e™
¥ 2 Uy du1
T =Up, / el duw! = ¥, [ - "’50)]
Uy = \Ilme

with integration constants and signs chosen for convenience.

(10.30)

(10.31)

(10.32)

(10.33)

Since this gives a new type of transient lens let us consider an illustration of it as in fig.

10.1. This is taken as a cross section on any (z, ¥) plane (constant ¢ and ¢+). One possible

application is a connection to a coax at the z = 0 plane, where the propagation is parallel

to the z axis. This would allow launching a wave from a near-line source (small ;) onto a

coax, or receiving a wave from a coax onto the lens which brings it to a line focus. With

U,, defining the radius of the outer spherical conductor, and ¥, defining the radius of the

inner one, these same dimensions can be used to define the radii of the circular cylindrical

conductors of the coax. With permeability o, the permittivity €. (uniform) of the coax can

be chosen as some average of the €(¥) in the lens at the z = 0 plane. A good choice would

be to have the transmission-line characteristic impedances match at this interface. From
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coax | lems

Lo

€c (uniform)

Figure 10.1 Spherical Transmission Line
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(10.23) we have for the lens

Y
Zmax [ P
7 WY L [&Y
Clens — 27 - m Wm
T, { d¢ (10.34)
: }
Zma.x = [ Fo ]
€min
For the coax we have
1
_ Mo 21 ‘I’m
Zeoay = [éc] 2ﬂ_£n ( \Ill) | (10.35)

Equating these gives

o [1 B [\1%] 2} o (%?) (10.36)

The reader can compare the imperfect matching to coax in this example to the matching

problem for a coaxial bend to coax [3, 4].

29




11 Concluding Remarks

The generalized unipolarized TEM plane wave, when applied to a body of revolution with
generalized axial propagation, has led to a set of lenses with interesting properties. The
permittivity po is constant but the permittivity e is allowed to vary as a function of position.
’i‘wo of the examples (coax and circular-conical transmission line) have a uniform € and afe
well-known classical examples. The remaining two examples have € varying as U2 like
the cases of azimuthal propagation in [1-4,6]. Here we have examples of cylindrical radial
propagation and 6 propagation between spherical conducting surfaces, the latter being quite

unusual.
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Appendix A. Orthogonal Curvilinear Coordinates on a
Plane

In Section 8 orthogonal curvilinear coordinates are constructed based on a conformal trans-

formation of the form

w(¢) = w1(¢) + jws({)

(=z+jy (complex Cartesian coordinates)

(A1)

The real and imaginary components of w are then separately scaled to give the orthogonal
curvilinear coordinates of interest. Here we show that this is a very general approach,
covering all the possibilities.

Note that general two-dimensional coordinates on a surface S can be written with line

element as [10]

2 2
[de)? = Z z 9n,md@UndU,, = positive-definite quadratic form

n=1m=1

921 = 91,2 ‘ (A.2)
gnm = Gnm(U1, U2)
[d€)? = g1.1[dUL)? + 2g1,2dU1dU: + go2[dUs)?

This is also written in the form

- 1 T
AP = | gh vy + B2+ 19022 = dal”
| 915,1 J
1 912 — 7 [911922 — 9%,2]% (A.3)
91,1dU1 + 1 als, .
L glz,l .

N

= real and positive for real

2
[91,192,2 - 91,2] : ) .
surfaces with real coordinate lines

At this point we can note that if (Uy, U,) are orthogonal curvilinear coordinates this reduces
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to
2 3 3
[de]* = [91,1dUl +.792,2dU2]

[91%,1dU1 - jgz%,szz]

(A.4)
= g11[dUL)? + g22[dU-]
g12=0
Following [12] we can write (A.3) as
) g12+ 7 [91,1922 — 91,2%]2
X1= gl,l y X2 = 1
912,1
) . (A.5)
[ = [(xn) - (dUR)][(x3) - (dUn)]
Xn = Xn(Ula U2)
Let
¥ = ¥(Uy, Us) = ¢ + jp = non-zero integrating factor of A6
(Xn) : (dUn) =0 ( )
i.e. .
d€ = Y(xn) - (AUR) = ¢ [x1dU1 + Xx2dUs]
(A.7)

& = £(Uy, U,) = complex valued function
The existence of such an integrating factor (actually an infinite number of them) is basic to
the theory of first-order differential equations [9]. So we can always construct things this

way, subject to appropriate differentiability conditions (smoothness) of S and the defining
function for the coordinates (7, 8].

Then we have
EIdET = v [0) - @063 (4]
=y [de’
E=6+ 16, 6 =real
ey = [ + e
e = o e + ) = [ £] [£]
Yyt >0

 (A.8)
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so (&1, &,) are a set of orthogonal curvilinear coordinates. These coordinates (&1, &2) are called
isometric or isothermal coordinates. Here we see that general coordinates (U, Uz) can be

transformed to isometric coordinates. For orthogonal curvilinear coordinates we have

1 .
X1=91=h, X2=Jjg3,=Jha . (A.9)

where the h,, are the customary scale factors for orthogonal curvilinear coordinates (U, U2).
Note that since U; and U, are each functions of the usual three-dimensional Cartesian

coordinates

I

7 =11 +yI, + 21, ) (A.10)

then we can also regard £, v, gn.m, fin, €tc. as functions of r, as well as functions of (U, Uz).

Citing some results [9] we have

Xlga['% - Xz-éa—[% =0 (A.11)
is the necessary and sufficient condition 1;hat ¢ (nonconstant) be the general solution. The
integrating factor satisfies

106 1 0¢

= 3= o (A.12)

It is also known that the most general integrating factor has the form %=(£). Furthermore
[10], given isometric parameters (&1, &2) for a surface every other pair is given by an analytic
conformal transformation of £. The integrating factor satisfies a differential equation. From

the requirement that (A.7) be exact we have [9]

5%;(¢xl) = o5 (¥x2) (A13)

which leads to

au, _au, v %80, ~ X'au,
__0tn(y) _ 9fn(y)
- X2 aUl Xl 6U2

Ox1 _ Ox2 _ 1 [ oY 3"/’]
(A.14)
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Now (A.8) has the form

[de]* = b [[dea]” + [déa]”]

(A.15)
he = 9|7

It is shown in [13 (Appendix A.5)] that if S is Euclidean (a plane being a special case of

this), then (A.8) implies that £(¢) is an analytic conformal transformation where

¢ = r + jy = Cartesian coordinates of plane
or other Euclidean surface

-1

_|d6| _ |d€ A.16
h‘"'d& ‘Idc (419
2 2
h§=h§n= [%] + [gfy—n] forn=1,2

So now we see that the integrating factor ¥ is simply related to the scale factor h¢ of this last
transformation. Thereby a general set of coordinates (U, Uz) on a plane can be transformed

to a conformal transformation with an analytic complex function.

Restricting S to be an z,y plane (or other Euclidean surface with these coordinates) we

_[o=1, [9v)
911 = 150, aU,

_[o6z1* 8] A17
g22 = [5‘(};] + [—3?2-] ( )

_ _ 0z 0Oz 4 dy Oy
912 =921 = 57 B0, T 8U; 00,

Further restricting the coordinates to be orthogonal we have

_ 0z Oz 4 dy Oy
~ 98U, 0U, 98U, 8U,

1
x1=9{,=h, h1>0

have

L
X2 = 1932 = jh2, h2>0 (A.18)
a2,
911—‘6—071' = h]
_| o _ e
922 = |50 = h3
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Some previous results become
oc . B¢
s, Mg, =
10t j 8¢
R 0U,  hy0U;
: 0 (k) = oo (o)
A, Y = gy, P

Ohy _ Bhy _1[. O _,
T an ~ My,

0

Y=

au, ‘ou, ¥

(A.19)

_ ., Otn(y) . Ofn(y)
= Jha—gp~ ~ 5y,

df = [hldUl +jh2dU2]

- [def = |d¢P* = B [dUL)” + B3 [dUR)”
= || % |d¢|* = hZ |d¢f?
In (A.19) we have
dé = % [h1dU; + jhadly) (A.20)

An incremental length in the U1' direction is h,dU;. If 1 is real this is just dz. In the U,

direction the incremental length is hodUs, but jh,dUs is just jdy. This gives

d¢ = ¢ [dz + jdy] = ¥d¢ (A.21)
More generally (complex 1) we have

d¢ = |yp|e?*EWd(¢
128 ¢ = [cos(arg(v))dz — sin(arg(y))dy]
+ j [sin(arg(¢))dz + cos(arg(y))dy]

= rotation of d¢ by arg(v)

(A.22)

showing a local rotation of the (Ui, Us) coordinates with respect to the (z, y) coordinates.

So now we can identify

g% = 1 = integrating factor (A.23)
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Since £ is an analytic function of ¢, then so is 4. The most general integrating factor is

¥Z(€) which is now analytic in ¢ and £. Se we can write

G0 (A.24)
If we choose
=(6) = 971() / (A.25)
then we have 1 as an integrating factor and
% - ' (A.26)

& = ( + constant
So what we have shown is that for Uy, U, as orthogonal curvilinear coordinates on a plane

(Euclidean surface), then (A.7) is ezact without an integrating factor.

Returning to (A.19) we can now write
df = hydU; + jhadU, (A.27)

as an ezact differential equation. Furthermore we have from (A.19)

oh, 0y
a0, ~ a0, (4.28)

Taking real and imaginary parts we have

Ohy Oh,

5[]—2=0’ 5[7’{20 (A.29)

from which we conclude

hi = hy(U;) (not a function of Uz)
(A.30)
he = ho(Uz) (not a function of Uy)

By a change of variable

hl(Ul)dUl = dul, U = /hl(Ul)dUl
(A.31)
hz(Ug)dUz = du2 , Ug = /hz(Uz)dUg
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we have

~—
d¢ = du = du, + jdus
u=1u; + Jus (A.32)
§ = u + constant
where we can set this constant to zero for convenience.
Summarizing, for a plane (Euclidean surface) an arbitrary orthogonal curvilinear coordi-
nate system (U;,Uz) is constructed in the form
£(¢) = &(¢) + 3&(¢) = u(¢) = w1 (¢) + jua(() .(analytic)
Uy = Ui(u;) (not a function of uy)
U, = Uy(uz) (not a function of u)
U, = /hll_l(ul)dul : ' (A33)
U2 = /h’z—2(’U,2)d’U.2
N du,
h = h = —
1-(U1) 1 (ul) dU1
dU2
hao(Us) = hs = —=
2( 2) 2(“2) dU2
all such coordinate systems being representable this way.
We note that integrating factors always exist for differential forms in the plane. In vector
analysis terms a vector field T can be expressed as a gradient of a differentiable function
f (ie., F=V f) iff vV x F = _ﬁ), modulo topological restrictions on the domain. The
corresponding result in the formalism of differential forms is that a 1-form o is expressible
as o = df iff da = 0, which is a special case of the Poincare Lemma [11]. We may also ask
under what conditions are there functions f and g satisfying o = gdf? That is, when is
there an integrating factor for the differential equation o = 07 The Frobenius Theorem [11]
provides an answer. Certainly if a = gdf then the exterior derivative da is given by
do = dgadf = dgag~ e
~- (A.34)

da =0 a
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where 8 = g~ 'dg = d(fn|g|), and so
apda = apfra = 0.

The symbol “A” is the wedge or exterior product. For a 1-form o = Pdz + Qdy + Rdz in

R3 this is the condition

P(R, — @:) + Q(P. — R.) + R(Q: — B,) =0. (A.35)

Thus if F is not expressible as a gradient then F = gV f for some differentiable functions
f and g iff F.Vx F = 0. Hence if F is a differentiable vector field in the plane, then
F-Vx F =0is always satisfied and the existence of an integrating factor g is guaranteed.

The general differential geometric result is that if « is a non-vanishing 1-form in a neigh-
borhood of the origin in R?, then arda = 0 iff do = an8, for some 1-form 6. This result is

a special case of the Frobenius Integration Theorem [11].
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