
Carl E. Baum
Air Force Research Laboratory
Directed Energy Directorate

For polarimetric radar it is important to be able to control, or at least accurately know, the polarization of

the fields radiated to the target from the radar antennas. This paper considers the properties of antennas with

currents all parallel to a fixed axis (hence, unipolarized). This results in a frequency-independent polarization at

each point in the far field Formulae are developed to relate the antenna far fields (and reception by reciprocity) to

the usual h,v polarizations at the target. These formulas further simplify if the far-field patterns are those of

electrically small antennas characterized by unipolarized electric dipole moments. In this latter case the antenna

patterns are frequency independent with simple formulae for the angular dependence applying to both frequency and

time domains. Implications for loading such electrically small antennas are discussed.
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For certain types of radars, specifically polarimetric SAR (synthetic aperture radar), control of the

polarization ofthe incident wave on the target and the polarization of the receive antennas is important. This relates

to certain signatures in the target scattering which can be used for target identification [13-16].

Symmetry is an important concept in controlling antenna patterns, including polarization [6, 18]. This can

be thought of as complementary to the symmetry in the target which strongly influences the scattering pattern,

including polarization [8, 9, 11-15, 17]. The antenna symmetry can be used for polarization control, but with

limitations depending on the relative orientations of the antenna and target (assumed in the antenna's fur field).

In the present paper we consider another technique for antenna polarization control: the restriction of the
~

antenna currents to flow only paralleVantiparallel to a given frequency/time-independent direction designated 10.

This gives a particular real frequency/time-independent polarization at each point in the fur field. However, this
~

polarization in general differs from point to point. Taking two choices for 10 (conveniently orthogonal) for two

such antennas gives two independent polarizations at each point in the fur field which can be used to mathematically

construct the usual h,v radar polarizations scattering dyadic to the transmit/receive properties of the two antennas.

Furthermore, by use of two orthogonal symmetry planes for the two antennas (with currents on thin wires) the two

antennas can be made mutually noninteracting so as not to disturb each other's pattern/polarization. Making the

antennas electrically small further simplifies the analysis by making the pattern simply that of an electric dipole.



--+
Consider, as in Fig. 2.1, a coordinate system for an antenna with a preferred axis la which is taken as the

za axis (subscript a for these coordinates). These are Cartesian (xa, Ya ' za), cylindrical ('Pa, (Ja, za)' and

spherical (Ta, ()a , ; a) coordinates related as

Xa = 'Pa cos«(Ja) ,
Za = Ta cos{(}a)

Ya = 'Pa sin«(Ja)
'Pa = Ta sin«(}a)

--+ --+ --+ --+ --+ --+
l'Pa = IXa cos«(Ja) + IYa sin«(Ja) , I;a = - lxa sin«(Ja) + IYa cos(;a)

t. ~1'1'. sin(O.) + I,. cos(0o)~ [Ix.cos(~.) + Iy• Sin(~o)]sin(Oo)+ I,. cos(0ol

19. ~ 1'1'. cos(00) - I,. sin(00) ~ [Ix. cos(~o) + Iy• sin(~o)}ns(00) - 1,. sin(0o1

The far field radiated by a current distribution limited to a region of space with finite linear dimensions (say

within a sphere of radius bwith b« Ta and centered on 7a = 0) is [10]

[
--+ --+)--+ --+ PO ~ a --+ --+ r I r. • TO

Ef(Ta ,t) = - 41r1'a ITa· at J. J TO, t- ; + a C dV~

1
c = [,uO&Or2
- == two-sided Laplace transform over time t

s == n+ j(j) == Laplace-transform variable or complex frequency

s .r == - == propagation constant
c





++ ++ -+ -+
Ira == 1 - Ira Ira

++ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+-+
1 = IXa Ixa+ IYa lya+ IZa Iza= Ira Ira + lOa 10a+ l'a I'a

== identity

Here the integration is over the primed coordinates over the domain Vti of the antenna Note the weighting fimction
--+ --+

er Ira· r;" giving phase from the various positions on the antenna (a complicating factor).

-+
The basic idea here is to constrain all the antenna currents to be parallel (including antiparallel) to 10,

specifically,

-+ -+ -+-+
J(r'a, t) = J(r'a, I) la

£/(1 I) = JlOsin(Oa) 18 ~ IJ(-: 1- ra + ""tra 0 ~ ]dV.'a, 4 a ~ a, 0Hra vI c c
V'a

~ -+ -rra . (ll ) -+ --+ ~ -+
E( )_sJlOe sm17a 1 IYIraoraJ-( ).nr'/ ra, S ------- 0a e' ra, S U~a

4Hra
V~

-+
and, voila, the far-field polarization is given by lOa which is independent of time and frequency. It is a real

-+
direction in space, perpendicular to Ira (direction from the antenna), and in a plane containing the Zo axis and the

--+ --+

observer. However, as 0a and;a are varied there is still the complicated variation associated with e' Ira 0 r'a .

As illustrated in Fig. 2.2A one way to realize this condition is to constrain all (net) currents to thin wires, all
-+

of which are parallel to the za axis, and hence to la. Note also that we have a reference plane designated Sa and
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....•.
which is one of the planes perpendicular to 1a (say za = 0). Now ther-ecan be many thin wires (say N), all

perpendicular to Sa with various currents In) which can vary along the length of the wires. With various lengths

and various coordinates on Sa (Le., (xa,Ya» this configuration is quite general, constrained only by (2.4) and the

limited size of the source (antenna) region.

Going a step further, now let Sa be a symmetry plane as illustrated in Fig. 2.2B. 10 particular let the

currents be antisymmetric (7, 18], ie.,

....•.
where Sa is taken as the za = 0 plane, and positive current is taken in the +za (or + la ) directioo. The wires, of

course, have equal extent in the +za and -za directions but the various wires need not have the same lengths. This

is a kind of array which can be driven (with antisymmetric sources, such as illustrated), or parasitic (undriven).

These wires can be impedance loaded as well as long as the symmetry with respect to Sa is maintained. The pattern

of this antenna is then also antisymmetric with respect to Sa' Note that the symmetry plane can now be in part a

conducting sheet and no net surface current density (sum from za = 0+ (above) and Za = 0_ (below» will flow on

it. Furthermore, letting the conducting sheet have some small thickness this can be used to route (hide) various

transmission lines connected to the antenna elements and source(s) at the antena terminal(s).

For the special (but important) case that the antenna is electrically small the antenna is characterized in

transmission by its electric dipole moment

- 1 ....•.....•.
p(s) = s J J(r'a, s)dV~

v:a
t ....•.....•.

p(t) = ~ J J(r'a, t')dV~ dt'
~



-+ -+
This, of course. assumes that p*"O so that we need not go to other moments of the cmrent distribution.

Specializing to the case ofunipolarized currents gives

-+
This is a very simple pattern fimction sin(Oa) lOa in addition to the simple polarization. (Note that a lUlipolarized

electric dipole moment does not in general require lUlipolarized currents.)

Assuming that the antenna has a single port for transmission/reception we can characterize its performance

in various ways. including voltage. current. and wave variables, including reciprocity between transmission and

reception [3, 5]. The various forms of these transmission and reception parameters are relatable to eacll other. For

convenience. let us use the wave variables for which we have in transmission

- z. (s) -
Vt(s) = _ In _ Vs(s) ==transmitted voltage

ZL (s) + Zin(s)

Vs{s) ==source voltage

ZL (s) ==source impedance in transmission

= load voltage (termination) in reception

Zin(S) = ~(s) ==antenna input impedance
It(s)

...:,.(inc)-->. - ~ ~-, -, -+ I'
E (r~,s) =Eo(s)e-r jOra==incidentplanewave

-+
Ii ==direction of incidence (scattering from target)



-=. -+ .:::..(;nc ) -=+ -+ ..;.
Vr(S) = ht(lj,s)"E (O,s) = ht(lj,s)" Eo(s)=voltageacrossZL(s)

..::+ -+
h t( I j ,s) = effective height

..::+ -+ -+
h t( 1 j ,s)" 1 j = 0

Z- () v;. (s). . d" . c. dL s = --- notmg opposite rrectlOD conventums lor It an Ir
Ir(s)

• -+
showmg the 1(Ja constant polarization. Writing this in the form



~ -+ ~ - -+
F t( Ira's) = F t(Oa,;a;s) = F',(Oa,;a;s) I(Ja

~ -+ ~ -+ ~ - -+
ht( I j,s) = ht(- Ira's) = ht(H-Oa,;a -H;S) = h,(H-Oa';a -H;S) I (Ja

- -+ silo - -+
F',( Ira's) = --h,(-Ira,s)

2HR

-+
For currents polarized in the I a direction (2.10) applies and gives

T (s) = ~(s)
P It(s)



-+ -+
Note that in general F t (and hence h t) can be different for different antennas. In such a case a superscript

a (later taken as 1,2,···) can be used. For convenience these functions are assumed to be the same for the various

antennas, as expressed in appropriate antenna-based coordinates.



For measuring the target scattering dyadic two polarizations are required. This in turn implies at least two

antennas for transmission and two for reception (which may be the transmitter antennas as well). Retaining the

unipolarized cWTents in each antenna it is important that the two antennas do not significantly interact. Note that the

two antennas need to have different polarizations for the scattering-dyadic measurement.

One approach to this design is as illustrated in Fig. 3.1. Here we take two antennas such as discussed in

Section 2. Denoting these as I and 2, they are assumed to have symmetry planes Sl and S2 (mutually
~ ~ ~

perpendicular). The polarization direction I a fur the cWTents now takes on two values II and 12 with
\

Furthermore, let the I antenna elements lie on S2 so that the 2 cWTents do not excite CWTentson the I elements (by

symmetry), and conversely. This does not imply that the two antennas are identical except for a rotation by tr / 2

~
about the axis designated by I f as the line of intersection of SI and S2, with

This axis can be used to define the location of a (thin) conducting tube, inside of which transmission lines can be

placed to feed both sets of antenna elements from two ports also located on or near this axis.

Various designs are still possible for the two antennas, including a single element pair (thin-wire antenna)

or an array of elements such as a log-periodic antenna. As mentioned previously, symmetrically positioned pairs of

identical impedances can also be included in the elements.

Of course, a convenient choice for the two antennas is to have them identical so as to have the same

radiation and reception characteristics except for a coordinate rotation (ta now becoming two sets of coordinates,

11and 12). If desired, one antenna can be shifted (translated) along the axis with respect to the other, but this

introduces a phase shift (dependent on angles to the target) between the two antennas.
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The antennas are now positioned and oriented as illustrated in Fig. 4.1. First, establish site coordinates as

in Fig. 4.1 A. These are the standard Cartesian, cylindrical, and spherical coordinates as in (2.1) and (2.2), except

with no subscript The coordinate origin, -: = -0, is taken at a height h above the ground surfitce Se which is

assumed flat. The z axis is taken as perpendicular to Se. The x axis is assumed extended over the target site, an

orientation appropriate for a side-looking SAR with antenna motion in the y direction.

--+ --+
Ih = - I;

--+ --+
Iv=-IO

These vary over the target site, but they are appropriate to characterizing the target scattering. including the lack of a

crosspol component for targets with 02 symmetry, including the ground presence (the vampire signature) [13-16].

In general, these polarizations are not the same as those radiated by the antennas to the target location. For later use

we have the transverse dyadic with respect to (direction to the target) as

++ ++ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
lr == 1- lr lr = 1010 + 1; 1; = Ih Ih + Iv Iv

--+
Now take antenna 1 with II in the y direction so that Sl, the symmetry plane perpendicular to the antenna

elements, is the y = 0 plane and is perpendicular to Se. This symmetry then includes the ground as well. Antenna I
~

bas horizm1ally oriented elements. but this is not the same as horizmtal polarization 1 h on the target site, except

on SI. As indicated in Fig. 4.18 the antenna may be canted (rotated) downward toward the target site by an angle

'1'0 with respect to the x axis. This gives the orientation of the other symmetry plane S2 of the antenna.

--+
Antenna 2 now bas I 2 in the y =0 plane and oriented at an angle of '1'0 from the vertical axis.

Regarding 1 f as the nominal forward direction from both antennas to the target site, this is also in the y plane and

depressed by the angle '1'0 from the x axis. This antenna has the same symmetry planes S2 and SI as antenna 1.

While we might think of antenna 2 as approximately vertical, this does not in general give vertical polarization 1v

on the target site, except on SI.
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For the special case that V'o =0 we have the interesting result that antenna 2 produces pure vertical
~ ~

polarization since I fJ:l :::: I e all over the target site. However, antenna 2 still does not give pure horizontal
~ ~

polarization, except in the limit of small h so that the incident fields are nearly in the z:::: 0 plane and I ~ ::::I".

Antennas I and 2 can be designed for both transmit and receive. If one desires greater isolation between

transmission and reception, one can supplement this antenna pair by a second pair: antennas 3 and 4 as indicated in

Fig. 4.2. In this case, if we locate the centers of both pairs on the y:::: 0 plane then we can have Sl:::: S3 as a

common symmetry plane for both pairs. S4 is then different from S2, but can be made parallel to it if desired.

Furthermore, neither S2 nor S4 is a symmetry plane for the entire array, but a plane centered between S2 and S4

can be.

In order to maintain the lack of coupling between the various antennas it is now necessary to make the

separation D» b. Not only does this reduce the coupling from one antenna pair (say I and 2 in transmission) to

the second pair (say 3 and 4 in reception). It also reduces the scattering from one pair off the second pair back to the

first. This reduces the effect of symmetry breaking (S2 distinct from S4) in allowing say antenna 2 to couple to the

conductors (thin wires) in antennas I and 3, and thereby distort the polarization purity implied by (2.4). Note that

the common Sl = S3 symmetry plane implies that antennas 1and 3 can mutually couple, as can 2 and 4. However,

this symmetry also means that in terms of signals at the antenna ports neither can antenna 1 mutually couple with

antenna 4, nor 2 with 3.

One may also wish to constrain D« r so that the various angles of both antenna pairs with respect to a

target are nearly the same, simplifying the analysis, and thereby the data reduction.
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Having the fields of antenna I described in 71 coordinates in Section 2, these coordinates can now be

related to the site coordinates discussed in Section 4. In Cartesian form, this relation is indicated in Fig. 5.1 and

given by

Xl = X cos(V'o) - z sin(V'O)

YI = X sin(V'O) + z cos(V'O)
zl =- Y

~ ~ ~
I XI = Ix cos(V'O) - 1z sin(V'O)

~ ~ ~
I Yl = I x sin(V'O) + I z cos(V'O)

~ ~
IZI = -I y

~
The electric field incident on the target is polarized in the 181 direction which we can think of as quasi-

horizontal (with a minus sign). With horizontal polarization as in (4.1) then we can form

~ [ ..... ] ~ ~
ft,h= Ih- -]81 = 1;- ]81

~[-7x sin(~) +7COS(~+IT1.,cos(flI) +7" sin(flI >]cOS(8') - 7" Sin(e.)]

= -cos(V'o)cos(46!)COS(Ot)sin(;)-sin(V'o)sin(;' )COS(Ot)sin(;) + sin(Ot)cos(;)

= -cos(;' - V'o)coS(Ot)sin(;) + sin(Ot)cos(;)
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--+ [--+ ] --+ --+Ji,v = 1 v· -101 = 10· 101

~[[1', 00#) + I'y sm(;)]cos(8) - I' z 'in(8) ]

· [[1"1cos(M +1'" ,m(<Il)]cos(8,) - I'ZJ ,;"(0,)]

= cos(lfI'o)cos(~)coS(Bt)cos(9S)coS(O)

+ sin(lfI'o)sin(~ )cos(Bt )cos(9S) cos(O) + sin(O l)sin(9S) cos(O)

- sin(lfI'o)cos(~)cos(Ot )sin(O) + cos(IfI'O)sin(9SI)COs(Bt)sin(O)

= cos(~ -lfI'o)cos(Bt)cos(9S)cos(O) +sin(Ot )sin(9S)cos(O)

-sin(~ -IfI'O)cos(Bt)sin(O)

This gives the portion of the field with vertical polarization. For computing fh,h and f 1,v for a given location,

-: = (x,y,z) on the target site, one can use (5.1) to compute -:I(XloYJ,ZI). These in turn via (2.1) can be used to

compute the various angles and/or the appropriate trigonometric functions of these angles which are in turn

substituted into (5.2) and (5.3).

1r
Ot=2" ' 9S=0

Ji,h =1 , Ji,v =0

-=.(1) --+ e-rr -=.(1) --+ -(I
Ef (rl,s)=--FI (lrl'S)Vi )(s)

r
e-rr - --+ -(1)

=- f/<Bt,tPi;s) 1 o.Vi (s)
r

For present purposes we assume that the two antennas are identical except for the rotation previously discussed. The

above incident field can now be decomposed into h and v components as



-+ ~(1) -+ e-rr - -(1)
Ih· Ef (r 1,s)= ---f!(Ot,;r;s) It h J'I (s)

r '
-+ ..:+(1) -+ e-rr - -(1)
I v • Ef (r I,s) = ---f(Ot,A;s) It v Jtt (s)

r '

-+ ..:+(1)-+ fJOS2e-rr --(I)
I h • Ef (n,s) = -----sin(Ot) It h Tp(s) Vt (s)

41fr '

-+ ..:+(1) -+ f.JOs2e-rr - -(1)
1 v· Ef (n,s) =-4-1f-r-sin(Ot) fI,v Tp(s) Jtt (s)

In this last form we see one advantage of electrically small antennas in the factorization of the dependences on

frequency and angles, simplifying the analysis of experimental data



Having the fields of antenna 2 described in 12 coordinates, these also need to be related to site

coordinates. In Cartesian form this relation is indicated in Fig. 6.1 and given by

x2 = x cos('I'O) - z sin('I'O)
Y2 =y
z2 = xsin('I'O) + Z cos('I'O)

-+ -+ -+1x2 = Ix cos('I'O) - 1z sin('I'O)

-+ -+ -+1z2 = 1x sin('I'O)+ 1z cos('I'O)

-+
The electric field incident on the target is polarized in the 102 direction which we can think of as quasi-

vertical (with a minus sign). With vertical polarization as in (4.2) then we can form

-+ [-+]-+-+h,h = 1 h· - 1 9J. = I;. I 9J.

~[-I'x sin(~) +I'y COS(~)]

[-+ -+ -+]• [1 X2 cos(;.z) + 1 Y2 sin(;.z)] cos(8.z) -1 Z2 sin(8.z)

= -cos( 'I'O)cos(;.z)cos(8.z)sin(;) +sin('I'O)sin(8.z)sin(;) +sin(;.z)cos(8.z )cos(;)

-+ [-+]-+-+h,v= Iv· -19J. = 10·19J.

[-+ -+ -+]= [I x cos(;) + 1y sin(;)] cos(B) -I z sin(B)

[-+ -+ -+]• [I X2 cos(;.z) + 1Y2 sin(;.z)]cos(8.z) -1 Z2 sin(8.z)





= cas( ¥'o) cos( 92 ) cos( ~ ) cos( ;)sin(;)
- sin(¥,o )sin( ~) cos(;)cos(8) + sin(92 )cos( 0]. ) sin(;)cos(8)

+ sin( ¥'o) cos(92 ) cos( 0]. ) sin( 8) + cos( ¥'o ) sin( 0]. ) sin( 8)

This gives the portion of the field with vertical polarization. As in the previous section one can now compute the

various angles from the two sets of Cartesian coordinates for the target.

0].=8-¥,O , ;=0 , 92=0

h,h=O
h,v = COS(lfIO)COS(OO)cos(O)-sin(lfIO)sin(OO)cos(O)

+ sin(lfIO)cos(O].)sin(O)+ cOs(lfIO)sin(~)sin(O)

= COS(lfIO)COs(O-~) +sin(lfIo)sin(O -~)

=1

0=0]. , ;=92

h,h
h v = cos2«(J) cos2 (0) + sin2(;)cos2 (0)+ sin2 (0),

=1

The fields radiated to the targets are just like in the previous section «5.5) - (5.7» except with the index 1

replaced by 2.



The target in turn scatters the incident fields back to the two antennas. These fields are naturally

represented in the usual h,v radar coordinates. The far scattered electric field back at the antennas (-: = -0 ) is just

[11, 13)

-=.(sc,a)~ -rr ~ ~ -=.(a)e ~
Ef (O,s) =--Ab(lr,s)oEf (r,s)

41l"r

~ ~ ~T~
Ab( 1 r,s)= Ab( I r,S) (reciprocity)

= backscattering dyadic

For present pmposes we can regard this dyadic as 2 X 2 relating to the transverse fields in the h, v coordinates. Note

the superscript "a" since the above relation applies to fields incident from both the I and 2 antennas. This also

applies to the combination offields from both antennas.

-=.(a) ~ ~(sc) ~
v>a)(s)= ht (- 1 rQ,S). Ef (O,s)

-=.(a) ~ 4 1-=.(a) ~
h t (- 1rQ,s) = .-!:...[Y;n(s) + YL(S)r F t (l rQ,S)

sJlO
4 1-=.(a) ~ -=.(sc) ~

v>a)(s)=.-!:...[Y;n(S)+YL(S)r Ft (IrQ,s)oEf (O,s)
sJlO

2 R
-=.(a) ~ -=.(sc) ~

-(a) 1l"
Vr (s)=--Ft (lrQ,S)oEf (O,s)

sJlO

Again the 1 and 2 antennas are assumed identical except for a rotation. Here the :far scattered field is a linear

combination of the fields scattered from the incident fields from both antennas I and 2.

The previous two sections have considered the properties of 1~a)for the two antennas, as well as its

projection onto h,v components. What we need is a 2 X 2 matrix equation relating transmission and reception of the



scattering in the 1,2channels to obtain some effective scattering matrix which can be related to the scattering dyadic

in h,v coordinates.

~
As one can readily see this matrix is symmetric as is required by reciprocity. The problem is now to calculate A b

from (X~l~) which we can obtain by measurement. We have four matrix components, presumably from,

measurements from which we can infer the four components of the backscattering dyadic in h,v coordinates. Of

course, by reciprocity only one of the off-diagonal components needs to be computed.

- ~ - ~
Aby,h( Ir,S)=Abh,v( I r,S)



..:+(n') -+ -+
F",h' == Ft (I r,S) • Ih'

All four of these filctors are available from measurement (or calculation) of the antenna transmissim function as in

(5.5), together with its decomposition into h.,v coordinates as discussed in Sections 5 and 6. With the four choices of

the n, m combination we can fonn the matrix equation

-(2)
XlI,
-(1)

XI2,
-(I)

X2,1

-(I)
X2,2

l'i,hFl,v

Fl,hF2,v
F2,hl'i,v

F2,hF2,v

l'i, vl'i,h

Fl,vF2,h

F2,vl'i,h

F2,vF2,h

F,2
I,v

Fl,v F2,v
F2,v Fl,v

p;2
2,v

Abh,h

Abh,v

Abv,h

Abv,v

~ -+
Inverting this 4 X 4 matrix with the X n,m known from measurement we have the four components of A b( I r, s) in

h,v coordinates.

After solving (7.9) we should have equality of the off-diagonal components of the backscattering dyadic.

Of course, this is mly approximate in real measurements due to noise. At this stage one might average the off..

diagmal components for a hopefully more accurate estimate. An alternate procedure is to impose this (7.5) from the

start as well as



-(1) _ -(I)
X2,1 - XL,2

which we can impose by averaging the measurements of these two latter parameters, or by measuring only one of

them and using this measurement for both. We can then set up a matrix equation in the fonn

2 fi,hfi,v

FL,hF2,v+fi,vF2,h

2 F2,hF2,v

~
With the antenna polarizations controlled to be in the IOn directions we have as discussed in Sections 5

~(n) ~
F (Om;n;s) = i(n)(On,;n;s) IOn

(') ~ ~
Fn',h' == it n (On';n;s) 10" • Ih'

Here the frequency dependence is separated in a scalar mctor giving frequency-inependent polarizations. Writing

out the four terms we have

_ -(1) .
FL,h --Pi (8},¢I,s)Ji,h , ~,v=-p<l)(8t,;.;s) Ji,v

F2,h = - ip) (0].,9J,; s) 12,h ' F2,v = - i(2)(0].,9J,;s) h,v

where the angular functions In',h' are tabulated in Sections 5 and 6. Substituting these in (7.9) and (7.1 I) we can

see that the scalar pattern functions it(n')(On',;n';s) still appear in the matrix in a mixed way such that they cannot

be mctored out of the matrix which is then still frequency dependent in a complicated way. However, we do have

the advantage of etrectively having scalar antenna patterns times an easily calculable frequency-independent

polarization.

Going further, let us further simplify the problem by assuming that the antennas are electrically small.

Recalling (2.25) we then have



In this case we know these matrix elements from measurement and the On' and Ih',h' are purely geometrical and

need not be recomputed for each frequency, but only for different target locations in the data processing.

sin2(o.)};2l,h
sin( ~ ) sin( ~ ).li,hh,h

sin( ~ ) sin( 0. )h,h.li,h
sin2(~)f2 2,h

sin2(o. ).Ii,hJi,v

sin('h)sin(~).Ii,hh, v

sin(~)sin(o. )h,h.li, v

sin2(0].)/2,hh,v

sin2 (o.).Ii, v.li,h

sin( 0.) sin( ~).Ii, v12,h

sin(~ )sin(o. )/2,v.li,h

sin 2 (0].)12,vh,h

Abj,h

Abh,v

Ahv,h

Ahv,v

sin2(o.)};2I,v

sin( Ot) sin( ~ ).Ii, v12,v
sin( ~ ) sin( Ot)12, v.Ii,v

sin2(Jl.. )f2or,/. 2,v



CSC2(Bt)X(2) 2 2 Abhh1,1
fi,h !t,h!t,v !t,v!t,h fi,v

CSC(Bt)CSC(~ )Xi~{ !t,hh,h !t,hh,v !i,vh,h !i,vh,v Abh,v
(7.17)=

CSc(~)cSC(Bt)Xi~? h,h!i,h h,h!i,v h,vfi,h h,v!i,v Abyh
2 2

CSC2(~)X(2) f2,h h,hh,v h,vh,h f2,h Aby,v
2,2

which is equivalent to (7.16), but simpler looking. The matrix to be inverted now is a function of only the angles,

and so need not be inverted for each frequency and can apply to a complete temporal waveform.

As previously in (7.11) this can be expressed using a 3 X 3 matrix using reciprocity. Adapting the form in

(7.17) we have

csc2 (Bt) X(2)
1,1

csc(Bt)csc(~) X[~
CSC2(~)X(2)2,2

2 fi,h!i,v
!i,hh,v + !i,vh,h

2h,hh,h

An important point to note about the electrically-small case is that the electric-dipole transfer fimction

Tp(s) is removed from the matrix as a common factor. Errors in Tp(s) do not appear in the reconstruction of the

h,v polarizations via the matrix inversion. The matrix elements are only functions of geometrical parameters (angles

and range r) which one can determine accurately.



What this says is that antenna 2 gives pure vertical polarization and that A" can be directly found by transmis-"V,v

sion and reception from antenna 2 alone. As can be seen in (5.2) and (5.3), such a simple result does not similarly

apply to antenna 1.

~ ~
With unipolarized currents so that the antenna 2 polarization is in the 18:l. == I(} direction we have

2 Ft,hJ1,v

Ft,h F2,v

o



- -2 [ - (I) - 2 - ]
Abh,h = fi,h X1,I - 2Fi,hFi,vAbh,v - fi,v Ahv,v

F.-2 X- (I) 2F.-2 ",-2 Fi X-(1) F,-2 ",-2 F,2 X- (l)
= I,h 1,1- l,hr2,v I,v 1,2+ l,hr2,v I,v 2,2

Fi~~ -2 F;:~Fi~vFi,v

o F.-Irl
I,h 2,v

o 0

F.-2F,-2 F.2
l,h 2,v I,v

F.-I ",-2 Fi- Ih r2' Iv~ "}v,

r2
2,v

2ft,hft, v

ft,h
o



[~~~] /,-2 2 2 2 csc2 (Ot )xg)-2Jlh!t,v fJ.h fl,vl,h ,
I fi-;!t,v • csc(8t ) csc(~ )x~~Ab = 0 fJ.h'h,v ,

Aby,v 0 0 I csc2 (~)Xfl

So this special case of Vto = 0 simplifies the algebra. Antenna 2 has the properties of an 02 antenna

(including the grOWld)giving a pure vertical polarization over the target site. Antenna I does not have this special

property. So a partial separation of the h,v polarizations is achieved.



A common technique used to make wire antennas resonate at frequencies for which the antenna is

electrically small is the addition of inductive loading. However, inductive coils do not have currents all running in

one direction. A typical coil is a helix and has a magnetic-dipole moment given by

A = area per turn

N = number of turns

-+
As illustrated in Fig. 9.1, such a coil can have n: parallel or antiparallel to I a depending on the sense of winding

pitch. (Other orientations are also possible.) The presence of such a moment is undesirabie because of how it

distorts the polarization of the far field, a polarization which we would like to be governed by p, the electric-dipole

One technique for canceling the magnetic-dipole moment is to make the two oppose each other as

illustrated in Fig. 9.1 by making their winding pitches have opposite sense. This restores the za = 0 plane as a

symmetry plane, about which the currents and fields are antisymmetric. However, these coils can present other

problems due to their mutual interaction. In arrays of such thin-wire elements as in Fig. 2.2B and Fig. 3.1 there may

be many such coils. Consider, for example, a log-periodic antenna in which now, potentially, one element can

couple to another via these coils, a transformer effect. For various possible reasons, one may wish to avoid this

additional coupling. (Conceivably, one may wish in some instances to utilize this coupling.)

Another approach to removing the effects of such magnetic dipole moments is to design the coil(s) to have

negligible such moments. This is accomplished by designing a coil such that the magnetic field produced remains

internal to the coil structure. The general theory is developed in [2]. A simpler approximate form is given in [4]. In

this simpler bisolenoidal (or multisolenoidal) form, for each loop turn its magnetic-dipole moment is cancelled by

another loop turn with opposite sense, but displaced as part of a second parallel solenoid so that the magnetic fluxes

do not cancel. This is an approximate solution in the sense that higher order magnetic moments (quadrupole, etc.)

remain.

As illustrated in Fig. 9.2, one can think of this as a figure -8 winding on two parallel cylindrical (circular or

otherwise) dielectric forms for supporting the windings. (The forms may be removed for an air-core coil if desired.)

With N turns in each solenoid of length l with aoss-section area A the inductance is



tI

-+ t L
m

-+
p

v-
2

za =0 symmetry plane
-+
1 a and possible ground plane

V-
2

-+

~

Lm



Two cylindrical dielectric
winding forms (optional)



--+
(valid for sufficiently large N / f.) Note that the magnetic flux density B reverses direction between the parallel

solenoids, and the magnetic flux leaving the end of one solenoid enters the end of the adjacent solenoid

(approximately).

Besides viewing such inductors as lumped elements, one can make a distributed bisolenoidal inductor by

letting l be large (even the entire length of the antenna element). In this case we have an inductance per unit length

L' = 2}1()N,2 A

N' = number of turns (each solenoid) per unit length

In this case the antenna element becomes a slow-wave structure. The inductance per unit length can even be

variable as L'(za) based on a variable turns density N'(za) and/or a variable cross-section area A(za)'

One can add sL'(za) as an additimal series impedance per unit length in a transmission-line model of a

wire antenna [I], and look for useful forms of such loading. This can also be combined with resistance-per-unit

length R'(za) for damping the antenna response for desirable transient response [I]. This opens various

possibilities.

One need not be limited to a single loaded-wire element, but can have arrays of same. say in log-periodic

form. By this technique one can in principle have electrically small arrays with multiple-wavelength waves on the

slow-wave structures, if desired. The present considerations are but an introduction to the various design

possibilities.



This basic idea of unipolarized antenna clUTentshas led to various implications for antenna design for

frequency-independent fur-field polarization. Combination of two such antennas with orthogonal antenna clUTents

has led to the requirement of two orthogonal symmetry planes applying to both of the antennas. Within these

constraints there is still much flexibility in designing arrays of parallel thin wires. Furthermore, such wires can be

symmetrically impedance loaded for various reasons, including a desire to make them electrically small so as to

simplify the analysis in terms of a unipolarized electric-dipole moment.

It will be interesting to see where these ideas may lead. While the present analysis is in terms of

unipolarized electric ClUTents,what about the electromagnetic dual, i.e., unipolarized magnetic clUTents? The

present analysis still applies with the interchange of electric and magnetic fields. The question is then how to

synthesize such magnetic currents from loops to give magnetic moments without significant electric moments. This

should be achievable using pairs of coils whose magnetic dipole moments add, but electric-dipole moments subtract.
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