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ABSTR4CT 

In the design of layouts for elec tric and magnetic field measure- 
ments the electromagnetic scattering from nearby conducting 
objects must be taken into account and minimized to acceptable 
levels. Quantitative results of machine computations are 
presented here for the scattering of a vertically polarized time- 
harmonic plane wave by a perfectly conducting vertical post on 
a perfectly conducting horizontal plane. The upper half-space 
is taken to be either free space or a highly conductirg simple 
medium. The incident wave is assumed to have wavelength (in 
free space) or s 'xin depth (in the conducting medium) large 
compared with post radius, but not necessarily large compared 
with post height. 

For the parallel polarization assxned, this problem is equivalent 
to that of an unloaded dipole far from ground, and in fact the 
program as written pertains to the dipole with arbitrary polariza- 
tion of the incident wave. 

Results are given in the form of normalized plots of scattered 
electric and magnetic field amplitudes as functions of distance 
from the post in the horizontal plane, and of radian wavelength 
or skier depth. T:hree ratios of post height to radius are 

^ ̂  L _ A . t-p--r - 7 - - -4=:c- Iv. .-"-ad, -__'-A 7 -...- s '- 4 1l;cJ . 

The mathematical formalism and machine codes are discussed, to- 
cet;&- with various checks, limiting forms, and physical inter- 
pret ations of the results. 

* x:~-.~ at DoYtglas Aircraft Co., !,;SSD, Santa clonica, California. -a./., 
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SECTION 1.0 

INTRODUCTION 

Accurate "free-field" measurements of electromagnetic waves 

are notoriously difficult to make because scattering by 

conducting bodies in the vicinity of sensors always contribute 

to the total measured fields. Estimates of the magnitudes of 

scattered fields are made (at worst) by intuition or (at best) 

by semi-empirical methods. Anharmonicity of the incident 

waves and conductivity of the propagating medium often are 

additional complicating factors. 

. 

Tne results presented here are a first step toward obtaining 

quantitative estimates of such perturbing fields for a geometry 

of particular interest in measurements of the nuclear electro- 

magnetic pulse. We shall treat the case in which the incident 

electromagnetic field is a harmonic plane wave havi:ng the time 

dependent function e -'W and travelling parallel to an infinitely 

conducting plane. Tne perturbing scatterer is a solid, 

infinitely conducting post extending vertically from the plane. 

The insident wave is polarized with its electric vector parallel 

to the cylinder axis. 

The problem is solved Fn two major steps. First, the currents 

induced on a set of zones on the post are computed in a self- 

consistent way. That is, the electromagnetic interactions of 

the zone currents are taken into account. Second, the scattered 
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field magnitudes are computed from the set of current elements, 

which for this purpose are assumed concentrated on the cylinder 

axis. Wavelengths are assumed large compared with post radius, 

but not necessarily large compared with post height. Results 

are presented here only for wavelengths ranging from very large 

values (the static limit) down through the first resonance, for 

which the scattered fields are greatest. Subject to.the 

condition on post radius, higher resonances than the first may 

be accurately dealt with by increasing the number of zones and, 

consequently, computation time. 

In order to investigate the effects of varying the propagation 

characteristics of the medium, computations were made for the 

case of both low-conductivity and of high-conductivity media 

above the infinitely conducting plane. That is, on the 

assumptions of conduction current very small or very large 

compared with displacement current. 

Solution of this harmonic problem leads naturally to solution 

of transient problems which are closer to reality for EMP 

fields. In fact results obtained for the present free-space 

case can be used in conjunction with a Fourier inversion routine 

with relative ease, subject only to the availability of adequate 

machine storage and operating time. Bodies of more complex 

shape than the dipole can also be treated by the technique used 

here; the main limitation being that the number of current zones 



. 

required will be greater, and the matr1.x inversion will be 

more costly. The present version of this routine can invert 

matrices up to 1000 x 1000 in sLze, although no arrays larger 

than 512 x 512 were required for solution of the dipole 

scattering through the first resonance. 

All this is relatively straightforward and physically realistic 

for a non-conducting propagation medium, and for a highly 

conducting or very distant ground plane. However, for realistic 

ionized media there are complications due to non-linear and 

dispersive effects. Also the ground plane in real situations 

is often neither highly nor very poorly conducting. These 

topics have been discussed in the literature as well as In 

earlier EMP notes, and undoubtedly will be subjects of further 

detailed treatments. 
0 

Note that rationalized MESA units are used throughout. 
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SECTION 2.0 

ANALYSIS OF SCATTERED F IELDS 

The scattered fields due to a tim e-harm onic electrom agnetic 

plane wave incident on a perfectly conducting solid post 

of finite length have been calculated, The incident wave is 

polarized with the electric field parallel to the axis of the 

post, which is assum ed to rest on a perfectly conducting 

ground-plane. The cases in which the upper m edium  is non- 

conducting and in which it is linear and highly conducting are 

both treated. 

The calculations have been m ade by num erically solving the 

rigorous integral equation for the total current on the post. 

This solution involves inverting a m atrix, representing the 

kernel of the integral equation, by m achine com putation. The 

fields of interest were then calculated num erically using the 

integral representation of the electrom agnetic fields due to a 

known current distribution. 

Initial com putations and shorter runs were perform ed on a CDC 

3600 m achine, and longer production runs on the CDC 6600 

m achine at Kirtland Air Force Base. 

2.1 FORMALISM 

The fomlJlation of this problem  is a specialization of that 

developed in a Northrop Report, ~~~-2798, which presents a 



general numerical method for solving problems of electro- 

magnetic scattering from perfect conductors. 
1 The approach 

used here is an application of the method to the special case 

of a cylindrical scatterer. 

We begin the derivation of the general integral equation by 

recalling an integral representation for the magnetic field 

in a homogeneous medium. 2 We consider the case in which there 

may be sources outside our region of' interest, and we call the 

field due to these sources Hex. Thus: 

Sk) =_Hexb) +7x r G(r,r')Jk!)dV', 
'all space- 

where 
,ikj ~,r '1 

G(zd) = 4rr,xu+j , the free-space Green's .function, 

g&O = the volume current density, 

k= the propagation constant in the medium. 

This equation may be specialized for the case where there are 

only surface currents. Definfng the surface current density 

&&) and bringing the curl operator inside the integral, 

equation (1) may be rewritten in the form 

,H(r:) = gex(g) + fC/G(r,r')~_K@')da'. 
$urface- 

(2) 

NOW let us take the cross product of this equation with the 

unit normal at some point To on the surface to which the 

currents are confined, obtaining 



+ .f&,, x [ G&‘)x _K&‘)b’ 
surface 

(3) 

NOW it may be shorlm' that when r +x0 equation (3) becomes - 

-+ ',2'; ,f nko)x r G(ro,~~)x$(~')]d~', (b) 
0 S-So 

where So is a small element of surface surrounding ro. The 

$gk,) appears because of the singular nature of' G(z,_r'), It 

may also be shown that the limit exists independent of the 

particular shape chosen for So, so this is not really a 

"principal value" type integral, as it has sometimes mistakenly 

been called in the literature. 

Now for a perfect conductor, by definition we have: 

zlxg = ,K. 

Using this in equation (4) and making the simplifying notational 

change r. 4 2, there results finally 

$ g(r) = sex(r) -i- ,r r&)x [ G(r,_r' 

where 

_KexC,) = s&)x FJex(r), 

)Xr;(r’ )ldo’, b> 
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and the integral is to be understood in the sense of 

equation (4). Now if a perfect conductor is immersed in a 

field due to some external sources which are known, then _K ““(29 

may be calculated at each point on its surface. Equation (5) 

is then a vector surface integral equation for the determination 

of the total surface currents flowing on the body. Once this 

equation has been solved the total fields at any poFnt in space 

may be calculated by again employing equation (2) or its 

equivalent form for the electrFc field2: 

I3&> = _EeXk) + iw j- surfacec (Il,;'+,K(II')dO-', 
where 

(6 9 

p (&‘,s ) = fU + -$ 77 ]G(r,rf) = the free-space dyadic ’ = - 

Green’s function, 

g= the unit dyadic, 
y ;: = the double gradtent dyadic. 

The central problem, of course, is in solving equation (5). 

The general approach’ involves imagining the surface as a 

large set of connected triangles, on each of which a constant 

current is assumed. However, this method will not be discussed 

in detail here as the cylinder is a rather special geometry 

for which certapn simpliffcations are appropriate. For a 

plane wave incident on a cylindrical surface we can make the 

following substitutions: 

12 



g”“(II9 = _Ho&)eik(2*.Z) = incident plane wave, 

d.29 = ,& cosip + J sin@ = unit normal on the cylindrical 

surface at azimuthal angle@, 

r = - as&) + z& = vector position on the cylindrical surface, 

i,.J,& = rectangular-coordinate unit vectors (introduced 

for convenience), 

k = propagation constant, 

E = unit vector in the direction of propagation of the 

incident wave. 

The additional definitions of XI(~) and 2 on the top and 

bottom faces of the cylinder are obvious. 

Then equation (5) becomes 

- a[l-nk 

+f 
s2 

]&*',Kk')~ f(R.$dO' 

~n.(r)~X(rr)(z+h)3 f(R2)da' , 

s3 
where Sl is the side surface, S2 and S3 are the end surfaces, 

and 

f(R) = (ikR-l)eikR 
&-rR3 ' 

(7) 

Now we define, in terms of cylindrical coordinates ( p, 9, z), 



, 

2* 
Is (Z) = l E*&(r)add, 

I 0 

1s ( p ) = ;2n (& cos @ + J sin @ >‘g(r) P dh 
2 0 

s3 

and integrating equation (7) with the field point on the side 

of the cylinder we obtain 

+ 2a(z-h 

8a2sin2$ f(R& (z ')dz 'd;k 
1 

f (R2)Is ( P'* >d diI& 
2 

f(R3 )Is ( P')d P'd+J 
3 

with similar equations for the field point on the top or 

bottom surface. 

Now from physical arguments and by inspection of the equations 

it becomes clear that 

d1 (P)’ 
s2 

dIS (P )I 

IS2 
\O> = 1s co) = dp = 3 

3 dP 
P 0 = P 0 = 

but 
d21 

s2 
(P ) d21S ( P )i 

f 0, and ---$A, f 0. 
ip = 0 

= 
0, 



Therefore assume: 

Is (P > = IS2b) P2 ag= Is 
2 I 

k-h) -$ J 

Is ( P > = Is (a 
3 3 

> P2 
a”=- IS (h) -f!! . 

1 a2 

This assumption becomes better as ka - 0, but is quite 

accurate even for ka w 1. 

Then adopting the simplifying notation 

1 (z) -+ I('), 

we have 

$ I(z) = IeX(Z) - J 
n/2 h 

J 8a2sin2$ f'(%,)I(z')dz'd$ 
0 -h 

+ g (z+h)I(-h) Jv ra cos $ f(R2) p2dp d$ 
0 0 

- ; (z-h)I(h) Jn Ja cos Jr f(R3) p2dp d$, 
0 0 

where 

RI2 = (z-z q2 + 4a2sin2 $J 

R2 2 = (z+h)2 i Z2 f p2 - zap COS $J 

R32 = (z-h)2 f a2 + g2 - 2ap cos JiJ 

IeX(Z) = i2rra e ikz c0se J1(ka sine )HzxJ 

8 = angle of incidence with respect to the cylinder axis. 



Equation 8 is the one which has been solved numerically. 

2.2 COMPUTATIONAL TECBXIQUES 

The numerical solution of equation (8) starts by replacing 

the integral by a finite sum of terms calculated on the 

assumption of constant currents on each of several small 

sections into which the interval h 2 z 2 -h is divided. 

Mathematically we define 

U(x;a,b) = 0 for a > x > b, 

= I for b > x > a. 

Then 
N 

I(a) = c Ijuh~j,zj+l). 
j=o 

Substituting t-his expression in equation (8) we may numerically 

compute the integral in terms of the I j for any z. This 

computation 1s made for z-values corresponding to the centers of 

each of the zones implFclt in equation (9). The right and left 

sides of equation (8) are then equated for each of these 

z-values, resulting in an equation of the form: 

N 
$ Ii = ITX + c 

j=o "ij Ij* 
(10) 

A certain amount of care must be taken in the numerical 

computation of the diagonal elements Ail, because the 

corresponding integrand in equation (8) is singular for this 



matrix element. However, the computations may be carried out 

with the help of a generalized elliptic integral, the deta:ls 

of which need not concern us here, as they are straightforward 

and tedious. 

Equation (10) may now be written in terms of real and imaginary 

parts, and the corresponding large set of real algebraic 

equations for the I j may be solved on a digital computer using 

a matrix inversion routine capable of handling a few hundred 

equations with sufficient accuracy. This routine has been 

developed as a mathematical tool and was used in the post 

calculations. Once the Ij variables have been determined 

they may be used in combination with equations (21, (6), and 

(9) to numerically compute the electromagnetic fields at any 

point in space. 

The present case of a perfectly conducting cylindrical post 

mounted perpendicularly on a perfectly conducting plane is 

handled as outlined above for the symmetrical case of a plane 

wave incident normal to the axis of the post. The propagation 

constant used in the above formulation is then the propagation 

constant of the upper medium. Thus, for the incident plan? wave 3 

H 2X i(kpsr - w.t) =se -- J 

E ex = E ei(!Lp.r - wt) -- - -9 , 



ex 
pxg = (Wk) zex 

k2 = ycw2 +- ipaw. 

Far the "free-space" medium, with &UJE) 6 1: 

E. - = (p/c)+ = z. 3c 377 ohms. 
HO 

For the highly conducting medium, with a/(ure> >> 1: 

k = (I + i)/6, 

6 = (WJ/2) -' = the skin depth, 

EO - (c,lugj$ (I + ip. 
H_- 

J 



SECTION 3.0 

RESULTS 

Geometrical relationships are shown in Fl.gure 1. it is to 

be noted that a post of height, h, on a highly conducting plane 

is equivalent to an isolated dipole of length 2h for these 

scattering computations. The scattered electric field is 

opposite in phase to the incident field, and thus cancels it 

at the post surface so as to meet the required boundary 

condition. The scattered magnetic field is azimuthal and 

parallel to the incident magnetic field on the side of the 

post which faces the source. Both fields are azimuthally 

uniform in the present approximation. In the case of the 

conducting medium there is an additional phase factor between 

the electric and magnetic vectors3, although it is not of 

special interest here. 

In the following figures the results for the non-conducting 

medium are grouped before the results for the conducting 

media. In either case the scattered fields for post length- 

to-radius ratios of 10, 100, and 1000 are grouped. For each 

value of this ratio, normalized plots of scattered electric 

and magnetic fields are presented as functions of distance, 

with wavelength as a parameter; and as functions of wavelength, 

with distance as a parameter. Special "perturbing magnetic 



field" plots are given. These are contours zf scattered 

magnetic field components contributing 10% or 1% error to a 

measurement of the incident magnetic field. Th-is component 

is largest for back or forward scattering, and there are 

nulls in the transverse plane. Obviously, no such nulls 

exist for the electric field. 

The following symbols appear: 

a/h = post radius/pgst height 

A z 
ug conductivity of the medium [mhos/meter] /2rr x 

f'requenz:y [hertz] x dielectric permittivity 
[farads/meter] ), 

E PO = scattered electric-field amplitude/incident 
electric-field amplitude, 

H ,/KC = scattered magnetic -field amplitude/incident 
magnetic-field amplitude, 

R/h = distance from post axis to observation 
on the plane/post height, 

point 

x/h = wavelength/(2n x post height) = radian wavelength/h, 

d = azimuthal arfgle, measured from the plane of 
Incidence ($ = 4 - A/?). 

6/h = skin depth/pDst height. 

NDTE: E. and Ho for the case $ 3>1 are free,-field values " 
at the post axis. Thus no assumptions are made about 

attenuation of the incident wave. 
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Figure 1. Geometry of Post Scatterer. 
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SECTION 4.0 

VERIFICATION AND COMMENTS ON TXE RESULTS 

4.1 PREDICTED ACCURACY 

No general analytical method has been found for relating the 

accuracy of a field computation to the number of current zones. 

Reasonable physical and theoretical arguments have been made 

for choice of N 2 h/a, but the value of k/h no doubt also has 

an effect. By employing N = 32 for h/a = 10, and N = 100 for 

h/s = 100, errors in the current distributions due to the 

zoning have been limited to f 2s for R/h 2 0.2. For h/a = 1000, 

N = 256 was used, and the results are less accurate than for 

the other cases. This was a necessary limitation imposed by 

inefficiency of the K>RTRAN-IV version of the matrix inversion 

routine employed for work on the CDC 6600 machine. Larger 

values of N could have been used for computation with the CDC 

3600 computer, for which a machine-language program had been 

prepared, but this would have increased, costs considerably. 

Nevertheless, the inaccuracy in the field data for h/a = 1000 

is believed to be less than several percent because of the 

empirical finding that relative errors in the fields are much 

less than the errors in the corresponding current distributions. 



G a 

4.2 COMPARISON NITH THEORY 

4.2.1 The Case D/(we) <cl. A detailed theoretical expression 

for the scattering cross section of a cylinder is given in 

King's treatise on antennas4 but it has not yet been evaluated 

for the precise values of h/a used here. Nevertheless a rough 

check can be made. The backscattering cross section is related 

to the scattered field by 

cb/~2 = (E/$)~ 'cnp"/~', 

so that 

1 
E/E0 = h>’ (k/h> (+. 

2r 
>’ (R/h) -1 

(11) 

(12) 

In the reference (page 508), plots of Gb/x' are given for 

values of fl (the Hall& parameter) corresponding nearly to 

our cases of h/a =lOO d 1000. We compare values at the first 

resonance, for a distance R/h = 10, which is sufficiently great 

to correspond to the radiation zone. Note that the value of 

k/h was obtained from our Figures 10 and 16, as were the 

E-values for comparison. 

First-Order Theory Machine 1 

110 1 75 / 0.685 1 1.01 Io.122 1 loo / 0.112 1 
j 15 / 900 i 0.670 / 0.92 IO.lli? 11000 ; 0.100 1 
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For sufficiently great distances from the post (R/h 22) the 

dependences on R and k should match those for a short electric 

dipole. 3 Thus both E and H fall off as (R/h)-1 for R/h 2 

5 k/h. Note that this criterion for radiation-zone behavior 

depends upon electrical length of the scatterer as well as 

relative distance. At fixed R/h in thLs regime the fields 

decrease as (k/h)-2, until k/h becomes large enough to 

violate the condition on it. If 2 < R/h < k/h, the near-zone 

dependences are (R/h)-3 for E, and (R/h) -Z for H. Here E 

becomes independent of X/h, i.e., it is quasi-static, whereas 

H falls off as (k/h)-1, and approaches zero as the charge 

distribution becomes static. 

For R/h 5 2, the effects of finite size of the scatterer are 

important. At the surface of the post, the scattered field fs 

equal and opposite to the incident to meet the boundary 

condition for large surface conductivity. The scattered 

magnetic field depends upon surface current and adds to the 

incident field. It is dependent upon the effective center 

impedance of the scatterer, which may be easily shown to be 

about 70 ohms for the dipole, or 35 ohms for the post, for 

resonance. 

The quasi-static electric-field values have been checked 

against the results of a variational approximation to the 

field due to a hollow conductive cylinder placed in a 
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uniform electric field. The inethod is novel and revealing, 

although the result is implied in a familiar textbook problem5. 

It is found that the static field is 

E/E0 = (R/h)-3[3 In (4h,'a)-71W1 

Comparisons are made in the table below: 

R/h 
10 

40 

h/a 
10 
100 
1000 

10 
100 
1000 

Variational 
2.46 x 10 -4 
9.09 x 10 -5 

5.59 x 10-5 

3.842 x 10;; 
1.423 x 10 
8.737 x 10-7 

Machine 

2.40 x 10 -4 
: 

-2.3 j 
9.0 x 10-5 -1.0 ; 
5.8 x IO-~ +3-G i 

, 
3.810 x lo:," -0.83 i 
1,415 x 10 -0.56 I 

I 
8.366 x 10 -7 -4.25 I 

The agreement is satisfactory, although there is again reason 

to believe that the number of zones was too small in the 

computations for h/a = 1000. 

Further checks can be made at the optical limit, )r/h << a/h, 

when the computatfons are extended to wavelengths shorter than 

for the first resonance. 

4.2.2 The Case O/WC) >> 1. The effect of a conducting 

medium surrounding the post is to attenuate the scattered wave 

rapidly, with the attenuation rate greatest for the smaller 

values of h/h. For 6/h 2 5 for the electric field or 6/'h 2 20 
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for the magnetic field the field ratios are approximately the 

same as those for the same values of k/h in the quasi-static 

limit of the non-conducting case. This is not particularly 

surprising, because the propagation constant (2rr/rC) is 

essentially equal to the skin depth (6) for plane-wave 

propagation in a conducting medium. The details have not been 

investigated due to the limited usefulness of these data. The 

positions of the rather broad resonances do not occur within a 

narrow range of L/h values, independent of R/h, as for the 

non-conducting case. In fact the value of 6/h for which 

resonance occurs shifts to higher values about as R/h, with 

26/h r R/h at the peak, for the range of values plotted. 

4.3 COMPARISON WITH EXPERIMENT 

Sevfck has measured the backscattering cross sections of silver- 

plated,steel rods having a = 3.5 x 10 -2 cm at a fixed wavelength 

of x = 10.0 cm6. He varLed )t/h by varying the length h, so a,h 

was not constant. Therefore, comparison with our data provides 

only a rough check, but the agreement is encouraging, as shown 

in Figure 38. Equation 12 was used for converting values of 

GE/X 2 to equivalent field ratios, E/E,. 
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SECTION 5.0 

COMPUTER PROGRAMS 

Antenna currents were computed with DIPOLE, and electric and 

magnetic fields with FIELD. A practical necessity for use of 

DIPOLE is an efficient matrix inversion routine. We have used 

MLRT*, which, in the COMPASS version for the CDC 3600 machine 

will invert well-conditioned matrices up to 1000 x 1000 in 

size. The ASCENT version has not been written, so a FORTRAN-IV 

version was used for computations on the CDC 6600 machine, with 

a resultant limitation to matrices smaller than about 256 x 256. 

About 90 seconds of central-processor time were required for a 

typical N = 256 problem on the CDC 6600, and this time varies 

approximately as N3. Additional peripheral-processor time is, 

of course, required. Although not discussed above, the current 

distributions are also available, as are the phase angles for 

the FIELD output. Arbitrary scattering angles may be assumed. 

Related programs have also been written although they are not 

yet operational: FOREST will solve the scattering problem for 

an array of perfectly conducting dipoles of various lengths, all 

dipoles assumed normal to the same symmetry plane. This is 

equivalent'to an array of dipoles normal to a common perfectly 

conducting plane. MAZE will solve the scattering problem for 

an array of perfectly conducting dipoles of various lengths, with 

the dipoles at random positions and orientations. 

* MLRT is a Northrop Corporation proprietary program. All the 
other named programs were developed with Air Force fugds. 
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With the availability of an efficient FOURIER inversion 

program, transient scattering problems may be solved for a 

wide variety of practical geometries. Loaded scatters, as 

well as geometries more complex than the cylinder can be dealt 

with by these techniques although the practical difficulties 

are generally formidable. In fact other investigators have 

successfully solved specialized problems involving rotational 

symmetry. 
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