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ABSTRACT

In the design of layouts for elsctric and magnetic field measure-
ments the electromagnetic scattzring from nearby conducting
objects must be taken into account and minimized to acceptable
levels. Quantitative results of machine computations are
presented here for the scattering of a vertically polarized tim=-
harmonic plane wave by a perfectly conducting vertical post on

a perfectly conducting horizontal plane. The upper half-space

is taken to be either free space or a highly conducting simple
medium. The incident wave is assumed to have wavelength (in

frse space) or skin depth (in the conducting medium) large
compared with post radius, but not necessarily large compared
with post height.

For the parallsl polarization assumed, this problem is edquivalent
to that of an unloaded dipole far from ground, and in fact the
program as written pertains to the dipole with arbitrary polariza-
tion of the incident wave.

Results are given in the form of normalized plots of scattersd
electric and magnetic field amplitudes as functions of distance
from the post in ths horizontal plane, and of radian wavelsngth
or 3kin dep*ﬂ Threz ratios of p>st height to radius are

trzztsd: 10, 120, znd 10C0.

rmalism and machine codes are discussed, to-

The mathematical 1o
gether with varicus checks, limiting forms, and physical inter-
prztavions of the results.

* licw at Douglas Aircraft Co., MSSD, Santa Monica, Californiza.
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SECTION 1.0
INTRODUCTION

Accurate "free-field" measurements of electromagnetic waves
are notofiously difficult to make because scattering by
conducting bodles in the vicinity of sensors always contribute
to the total measured fields. Estimates of the magnitudes of
scattered filelds are made (at worst) by intultion or (at best)
by seml-empirical methods. Anharmonicity of the incident
waves and conductivity of the propagating medium often are

additional complicating factors,

Tne results presented here are a first step toward obtalning
quantitative estimates of such perturbing fields for a geomebry
of particular interest in measurements of the nuclear electro-
magnetic pulse. We shall treat the case in which the incident
electromagnetic field is a harmonic plane wave having the tims

“IWE g travelling parallel to an infiniltely

dependent function e
conducting plane. Tne perturbing scatterer 1s a solid,
infinitely conducting post extending vertically from the plane.
The incldent wave is polarized with 1ts electric vector parallel

to the cylinder axis.

The problem is solved in twe major steps. First, the currents
induced on a set of zones on the post are computed in a self-
consistent way. That is, the electromagnetic interactions of

the zone currents are taken into account. Second, the scattered



field magnitudes are computed from the set of current elements,
which for this purpose are assumed concentrated on the cylinder
axis, Wavelengths are assumed'large compared with post radius,
but not necessarily large éompared with post height. Results
are presented here only for wavelengths ranging from very large
values (the static limit) down through the First resonance, for
which the scattered flelds are greatest. Subject to the
condition on post radius, higher resonances than the first may
be accurately dealt with by increasing the number of zones and,

consequently, computation time.

In order To investigate the effects of varying the propagation
characteristics of the medium, computations were made for the
cage of both low-conductivity and of high-conductivity media
above the infinitely conducting plane., That 1s, on the

assumptions of conduction current very small or very large

compared with displacement current.

Solution of this harmonic problem leads naturally to solution

of Transient problems which are closer to reality for EMP
fields. In fact results obtained for the present free-gspace
case can be used in conJunction with a Fourier inversion routine
with relative ease, subject only to the availlability of adequate
machine storage and operating time. Bodies of more complex
shape than the dipole can also be treated by the technique used

here; the main limitation being that the number of current zones



required will be greater, and the matrix inversion will be
more costly. The present version of this routine can invert
matrices up to 1000 x 1000 in size, although no arrays larger
than 512 x 512 were required for soluftion of the dipole

scattering through the first resonance.

All this is relatively straightforward and physically realistic
for a non-conducting propagation medium, and for a highly
conducting or very distant ground plane. However, for realistic
ionized media fThere are complications due %o non-linear and
digpersive effects. Also the ground plane in real situations

ig often nelfther highly nor very poorly conducting. These
topics have been discussed in the literature as well as in
earlier EMP notes, and undoubtedly will be subjects of further

detalled treatments.

Note fthat rationalized MKSA unilts are used throughout,

(@8]



SECTION 2.0
ANALYSIS OF SCATTERED FIELDS

The scattered fields due to a time-harmonic electromagnetic
plane wave incident on a perfectly conducting solid post

of finite length have been calculated. The incident wave 1is
polarized with the electric field parallel to the axis of the
post, which is assumed to rest on a perfectly conducting
Aground-plane. The cages in which the upper medium 1s non-
conducting and in which 1t 1s linear and highly conducting are

both treated.

The calculations have been made by numerically solving the
rigorous integral equation for the total current on the post.
This sclution involves inverting a matrix, representing the
kernel of the integral equation, by machine computation. The
fields of interest were then calculated numerically using the
integral representation of fthe electromagnetic filelds due to a

known current distribution.

Initial computations and shorter runs were performed on a CDC
3600 machine, and longer production runs on the CDC 6600

machine at Kirtland Air Force Base,
2.1 FORMALISM

The formulation of this problem is a specialization of that

developed in a Northrop Report, NVR-2788, which presents a



general numerical method for solving problems of electro-
magnetic scattering from perfect conductors.l The approach
used here 1s an application of the method to the special case

of a cylindrical scatterer.

We begin the derivation of the general integral equation by
recalling an integral representation for the magnetic field
in a homogeneous medium.2 We conslder the case in which there
may be sources outside our region of interest, and we call the

field due %o these sources Hex. Thus:

|
S

_I_I-(E) ex(_ +VX r GL:I' )J(_ (

all space
where ,
; ik r-r
G(r,r) = A the free-gpace Green's function,
== i@ﬂ'{ 2""_1‘_ f >

J(r’) = the volume current density,

k = the propagation constant in the medium,
This equation may be specialized for the case where there are
only surface currents. Defining the surface current densify
K(r) and bringing the curl operator inside the integral,
equation (1) may be rewritten in the form

H(r) = B%(x) + FVGL, “Vx X(z/)dc’. (2)

surface

Now let us take the cross product of this equation with the
unit normal at some point r_ on the surface to which the

currents are confined, obtaining

10



alz,)x H@) = alg )z B ()
+ fa(z,) =0 6¢(z,2")x K(z')ldo’ (3)

surface

Now it may be shown® that when r - r_ equation (3) becomes

nlz,)*H(z,) = n(zy)x ¥%5(z,) + & £(z,)

giff-“-g rn@; x [ ez ,z’)x K(x')ldo’, (%)

O

where S, 1s a small element of surface surrounding r,. The
%_g(go) appears because of the singular nature of G(r,r’). It
may also be shown that the limit exists independent of the
parﬁicular shape chosen for SO, go thisg is not really a
"principal value' type integral, as 1t has sometimes mistakenly

been called in the litergture.

Now for a perfect conductor, by definition we have:

nxi = K.

Using this in equation (4) and making the simplifying notational

change r. - 1, there results finally
2x(@) = (@) + [ n@)xl olzz)xx(z ), (5)

¥ (z) = n(z)=x (),

11



and the integral is to be understood in the sense of

equation (L), Now 1f a perfect conductor is immersed in a

field due to some external sources which are known, then_ﬁexﬁg)
may be calculated at each point on its surface. Equation (5)

is then a vector surface integral equation for the defermination
of the total surface currents flowlng on the body. Once this
equation has been solved the total fields at any point in space
may be calculated by again employing equation (2) or its

equivalent form for the electric fieldgz

E(r) = E(z) + 1o [ C (z,2")K(x)ac’, (6)
surface
where
D (o) =1{u~+ -j;—é 7 }a(r,r’) = the free-space dyadic

Greent's function,

U = the unit dyadle,
i \\ .

v

et

= the double gradient dyadic.

The central problem, of course, 1s in solving egquation (5).

The general approach1 involves lmagining the gsurface as g

large set of connected triangles, on each of which a constant
current 1s assumed. However, this method will not be discussed
in detail here as the cylinder is a rather apeclal geometry

for which certain simplifications are apprecpriate. For a

plane wave incident on a cylindrical surface we can make the

following substitutlons:



5 (r) = H (g)eik(ﬁﬁz) = incident plane wave,

n(r) = 1 cosd + J sin?d = unit normael on the cylindrical
surface at azimuthal angle ¢,
r = an(r) + zk = vector position on the cylindrical surface,
i,J,k = rectangular-coordinate unit vectors (introduced
for convenience),
k = propagation congtant,

p = unit vector in the direction of propagation of the

incident wave,

The additional definitions of n(r) and » on the top and

bottom faces of the cylinder are obvious.

Then equation (5) becomes

3 eE() = LE () + 3E [ EEEE=)

- all-n(@)alz' )]k X(@')} £(R)ac’
+ [ fn(e)E(@)(zh)) £(Ry)a" (7)
S
>

where S1 1s the side surface, 82 and S3 are the end surfaces,

and

Now we define, in terms of cylindrical coordinates ( o, %, z),



Ig (z) = j‘2 k*K(r)ad?,

1 o}
21’7
I, (e)=] (L cos ® + J sin ¢ )'K(r)e 4%
2 o;
°3

and integrating equation (7) with the field point on the side

of the cylinder we obtain

/2 b .
% Isl(z) = IS}JE(Z) - j‘h 8a°sin® ¥ f(Rl)ISl(z Ydz ‘a v
-
m a & i
+ 2a(z+h) [ [ cos v £(BR,)Ig (™ )a p°dy
o © 2

il a8 i '
+ 2a(z-h) Cr) J; cos ¥ f(R3)I53( 0’ )d p-av,

with similar equations for the field point on the top or
bottom surface.

Now from physical arguments and by inspection of the equations

it becomes clear that

dIS(p) dIq (o)
ST i ki e Wk S
o 3 P

p:o p=o
but

dEIS(D) dzIS(D)‘
Eae 4 0, and ——as— £ 0
de 5= 0 dp b =0



Therefore assgume:

2 2
Ig (p) = Ig (a) —5 = Ig ("h)—i‘g:

2 2 a 1
(p) (‘> o (h) e
I o = I q) ke = - I h .
83 S3 a2 Sl a2

Thig assumpbion becomes better as ka - O, but 1is quife

accurate even for ka ~ 1.
Then adopting the simplifying notation

Isl(z) - I(z),

we have
. /2 h
11(2)=1%(2) -] fh 8a%sin®y £(Ry)I(z ‘)dz ‘ay
. O —

o T a 2
+ < (z#0)(-n) [ [ cos ¥ f£(Ry) o"dp d¥
o O

= & (z-n)I(n) jﬂ ja cos § £(R,) oodp 4
2 3/ P 9p Us

O (e}
where
312 = (z-z’)2 + haZsin® ¥
R22 = (z+h)2 +z° 4 p2 - 2ap cos i,
R.2 = (z—h)2 + 2% 4 92 - 2ag cos {,

)
1°%(z) = 12ma o7 °°%% g (xa sine JEZT,

(8)

8 = angle of incidence with respect to the cylinder axis.

15



Equation 8 ig the one which has been golved numerically.
2,2 COMPUTATICNAL TECHNIQUES

The numerical solution of equation (8) starte by replacing
the integral by a finite sum of terms calculated on the
assumption of constant currents on each of several small

sections into which the interval h > z > -h 1is divided.
Mathematically we deflne

U(xja,b) = 0 for a > x > D,

I forb>x>a.

N
I(a) = 3 IJU(z;zj,zj+l). : (9)

Substituting this expression in equation (8) we may numerically
compute the integral in terms of the IJ for any z. This
computation 1s made for z-values corresponding to the centers of
each of the zonesg implicit In equation (9). The right and left
gides of equation (8) are then equated for each of these

z-values, resulting in an equation of the form:

—
i
=
®
2|
+
™
o
[
T
o

L certain amount of care must be taken in the numerical

computation of the dlagonal elements Aii’ because the

corresponding integrand in equation (8) is singular for this



matrix element, However, the computations may be carried out
with the help of a generalized elliptic Integral, the details
of which need not concern us here, as they are straightforward

and tedious.

Equation (10) may now be written in terms of real and imaginary
parts, and the corresponding large set of real algebralc
equations for the IJ may be solved on a digital computer using
a matrix inversion routine capable of handling a few hundred
equations with sufficient accuracy. This routine has been
developed as a mathematical tool and was used in the post
calculations. Once the IJ variables have been determined

thev may be used in combination with equations (2), (6), and
(9) to numerically compute the electromagnetic fields at any

point in space.

The present casge of a perfectly conducting cylindrical post
mounted perpendicularly on a perfectly conducting plane 1is
handled as outlined above for the symmetrical case of a plane
wave incident normal to the axis of the post. The propagation

constant used in the above formulation is then the propagation

2
constant of the upper medium. Thus, for the incident plar~ wave~
Hex _ ei<K97£ - wt)

H 3
-—o

- wt)

2

[

8% _ g otlkp-
—O



1%

n)

k

For the "free-space” medium, with gAwe) << 1:

K

X

= w(pe)?,

Eex _ (wH/K>_§ex
2 .
= pew  + ilpow.

2

i
H_O = (u/e)® = 2 = 377 ohms.

o}

For the highly conducting medium, with o/(we) >> 1:

Kk

&

E
0

H

o

(1 +1)/s,
1
(Low/2)"2 = the skin depth,

= (uws)® (1 + 1)7L.

18




SECTION 3.0

RESULTS

Geometrical relationships are shown in Figure 1. It is to

be noted that a post of height, h, on a highly conducting plane
is equivalent to an isolated dipole of length 2h for these
scattering computations. The scattered electric field is
opposite in phase to the incident field, and thus cancels it
at the post surface so as to meet the required boundary
condition. The scattered magnetic field is azimuthal and
parallel to the incident magnetic field on the side of the
post which faces the source. Both fields are azimuthally
uniform in the present approximation. In the case of the
conducting medium there is an additional phase factor between
the electric and magnetic vectors3, although it is not of

special interest here.

In the following figures tThe results for the non-conducting
medium are grouped before the results for the conducting
media., In either case the scattered fields for post length-
to-radius ratios of 10, 100, and 1000 are grouped. For each
value of this ratio, normalized plots of scattered electric

and magnetic fields are presented as functions of distance,
wlth wavelength as a parameter; and as functions of wavelength,

with distance as a parameter. Special "perturbing magnetic



field" plofs are given. These are contours of scattered
magnetic field components contributing 10% or 1% srror to a
meagsurement of the incident magnetic field. This componeant
1s largest for back or forward scattering, and there are
nulls in the transverse plane. Obviocusly, no such nulls

exlst for the =lectric field.

The following symbols appear:

a/h = post radius/post height

< = conductivity of the medium [mhos/meter] /2m x
we frequenzy [hertz] x dielectric permittivity
[farads/meter] },

E /E_ = scattered electric-rield amplitude/incident
electric~-field amplitude,

H /H. = scattered magnetic-field amplitude/incident
0 i N
magnetic-fleld amplltude,

R/h = distance from post axis to observation point
on the plane/post height,
x/h = wavelength/(2p x post height) = radian wavelength/h,
¢' = gzimuthal angle, measured from the plane of
incidence (¢' = ¢ - 7/2).
§/n = skin depth/post hesight.

G o ,
NOTE: Eo and HO for ths case " »>>1 are free-field valuzs

at the post axis. Thus no assumptions are made about

attenuation of the incident wave.

n
C
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SECTION 4.0

VERIFICATION AND COMMENTS ON THE RESULTS

4.1 PREDICTED ACCURACY

No general analytical method has been found for relating the
accuracy of a field computation to the number of éurrent zZones.
Reasonable physical and theoretical arguments have been made
for cholice of N » h/a, but the value of x/h no doubt also has
an effect. By employing N = 32 for h/a = 10, and N = 100 for
h/a = 100, errors in the current distributions due to the
zoning have been limited to p 2% for R/h > 0.2. For h/a = 1000,
N = 256 was used, and the results are less accurate than for
the other cases. This was a necessary limitation imposed by
inefficiency of the FORTRAN-IV version of the matrix inversion
routine employed for work on the CDC 6600 machine. Larger
values of N could have been used for computation wlth the CDC
3600 computer, for which a machine-language prograrm had been
prepared, but thils would have ipcreased costs considerably.
Nevertheless, the inaccuracy in the field data for h/a = 1000
is believed Lo be less than several percent because of the
empirical finding that relative errors in the fields are much

less than the errors in the corresponding current distributions.
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4,2 COMPARISON WITH THEORY

4.2.1 The Case ¢/(we) <<1. A detailed theoretical expression

for the scattering cross section of a cylinder is given in

King's treatise on antermasLL but it has not yet been evaluated
for the precise values of h/a used here. Nevertheless a rough
check can be made. The backscattering cross sectlon 1s related

to the scattered field by

TNE = (B/E,)% WTRPSE, (11)
so that

1
2

IVIRY 2 -1
B/E, = (n)® (x/n) (o,/A%)% (R/n) (12)

In the reference (page 508), plots of Gb/x2 are gilven for
values of o (the Hallén parameter) corresponding nearly to

our cases of h/a =100 at 1000. We compare values at the first
resonance, for a distance R/h = 10, which is sufficiently great
to correspond to the radiation zone. Note that tThe value of
x/h was obtained from our Figures 10 and 16, as were the

E-values for comparison.

First-Order Theory Machine

a h/a | x/h Gb/xg E/E_ | h/a |E/E

10 75 { 0.685 1.01 0.122 100 0.112
15 900 | 0.670 0.92 0.114 1000 | 0.100
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For sufficiently great distances from the post (R/h >2) the
dependences on R and x shculd match those for a short electric
dipole.> Thus both E and H fall off as (R/n)™> for R/n »

5 x/h. Note tﬁat this criterion for radiation-zone behavior
depends upon electrical length of the scatterer as well as
relative distance. At fixed R/h in this regime the filelds
decrease as (k/h)_g, until x/h becomes large enough to

violate the condition on it. If 2 < R/h < x/h, the near-zone
dependences are (R/h)™> for E, and (R/h)™° for H. Here E
becomes independent of */h, i.e., it is quasi-static, whereas
)—l

H falls off as {(x/n s and approaches zero as the charge

distribution becomes static.

For R/h < 2, the effects of finite size of the scatterer are
important. At the surface of the post, the scattered field is
equal and opposlte to the incident to meet the boundary '
condition for large surface conductivity. The scattered
magnetic field depends upon surface current and adds to the
Incident fileld. It is dependent upon the effective center
impedance of the scatterer, which may be easily shown to be
about 70 ohms for the dipole, or 35 ohms for the post, for

resonance.

The quasi-static electric-field values have been checked
against the results of a wvariational approximation to the

field due to a hollow conductive cylinder placed 1in a
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uniform electric field. The wethod 1s novel and revealing,
although the result is implied in a familiar textbook problem5.
It is found that the static field is

B/E, = (R/h)3[3 1n (4h/a)-717%

Comparisons are made in the table below:

OOV /7
R/h h/a Variational Machine % = % error
10 10 0.6 x 1074 | 2.0 x 107H 2.3
100 | 9.09 x 1072 | 9.0 x 1072 1.0
1000 | 5.59 x 10™° | 5.8 x 1072 +3.6 |
40 10 3.802 x 107° | 3.810 x 107° | -0.83
100 1.423 x 107 1.415 x 1076 -0.56 ;
1000 | 8.737 x 1077 | 8.366 x 107/ 425 |

The agreement 1is satisfactory, although there is agaln reason
to believe that the number of zones was too small in the

computations for h/a = 1000.

Further checks can be made at the optical limit, x/h << a/h,
when the computations are extended to wavelengths shorter than

for the first resonance.

4.,2.2 The Case c/we) >> 1, The effect of a conducting

medium surrounding the post is to atfenuate the scatftered wave
rapidly, with the attenuation rate greatest for the smaller

values of &6/h. For 8/h > 5 for the electric field or &/h 2z 20
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for the magnetic field the fileld ratiocs are approximately the
same as those for the same values of x/h 1n the quasi-static
limit of the non-conducting case. This is not particularly
surprising, because the propagation constant (2m/x) is
essentially equal to the skin depth (8) for plane-wave
propagation in a conducting medium. The detalls have not been
investigated due to the limited usefulness of these data. The
posltions of the rather broad resonances do not occur within a
narrow range of »/h values, independent of R/h, as for the
non-conducting case. In fact the value of §/h for which
resonance occurs shifts to higher wvalues about as R/h, with

28/h = R/h at the peak, for the range of values plotted.
4,3 COMPARISON WITH EXPERIMENT

Sevick has measured the backscattering cross sections of silver-

2

plated steel rods having a = 3.5 x 10 “cm at a fixed wavelength

of 3 = 10.0 cm6. He varied »/h by varying the length h, soc a, h
was not constant. Therefore, comparison with our data provides
only a rough check, but the agreement 1ls encouraging, as shown
in Figure 38. Equation 12 was used for converting values of

GE/xe to equivalent field ratios, E/EO.
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SECTION 5.0
COMPUTER PROGRAMS

Antenna currents were computed with DIPOLE, and electric and
magnetlc fields with FIELD. A practical necessity for use of
DIPOLE is an efficient matrix inversion routine. We have used
MLRT , which, in the COMPASS version for the CDC 3600 machine
Wwill invert well-condltioned matrices up to 1000 x 1000 in
slze. The ASCENT version has not been written, so a FORTRAN-IV
version was used for computations on the CDC 6600 machine, with
a resultant limltation to matrlces smaller than about 256 x 256.
Aboﬁt 90 seconds of central-processor time were required for a
typical N = 256 problem on the CDC 6600, and this time varies
approxiﬁately as N3. Additional peripheral-processor time is,
of course, requlred. Although not discussed above, the current
distributions are also available, as are the phase angles for

the FIELD output. Arbitrary scattering angles may be assumed.

Related programs havé also been written although they are not

yet operational: FOREST will solve the scattering problem for

an array of perfectly conducting dipoles of various lengths, all
dipoles assumed normal to the same symmetry plane. This 1s
equivalent to an array of dipoles normal to a common perfectly
conducting plane. MAZE will solve the scattering problem for

an array of perfectly conducting dipoles of various lengths, with

the dipoles at random positions and orilentations.

* MLRT 1s a Northrop Corporation proprietary program. All the
other named programs were developed wilth Air Force funds.
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With the avallability of an efflclent FOURIER inversion
program, btransient scattering problems may be solved for a
wlde variety of practical geometries. Loaded scatters, as
well as geometries more complex than the cylinder can be dealt
with by these techniques although the practical difficultiles
are generally formldable. In fact other investigators have
successfully solved speclallzed problems involving rotational

symmetry.
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