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Abstract

A finite-length, two-wire-plus-reference, uniform, lossless transmission line can be used as a directional
coupler. In particular it can sample a waveform without distortion for a time window of the two-way transit time on
the transmission line. The fully symmetric case gives results in agreement with the literature. Solutions for more

- general cases are also found.
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1. Introduction

Directional couplers are a well-established microwave subject, various bibliographies and texts being avail-
able [4, 7, 11, 12, 14, 15]. Here our attention is limited to TEM transmission-line couplers for their potential time-
domain application. This is further restricted to uniform two-conductor plus reference transmission lines of finite
length because, as we shall see, the coupler samples the waveform of interest over a time window of twice the transit
time in the coupler without distorting the waveform. This can be compared to another type of directional coupler
which senses the time derivative of the waveform [2]. These kinds of directional couplers have application to vari-
ous measurement situations, including measuring the returning transient signal in a radar antenna which is also used

for transmission of the radar pulse.

The reader may consult some relevant references for related previous results [S, 6, 8, 9, 10, 13]. Our
general derivation covers these with some extension. In particular the principal result is reinterpreted in time

domain. Note that some authors refer to this type of device as a contra-directional coupler [6].




2. Two-Conductor-Plus Reference Uniform Transmission-Line Section

As indicated schematically in Fig. 2.1, we consider a two-wire transmission line with a reference conductor

(often a shield) of length ¢. The wires are labelled 1 and 2 which apply to the voltages and currents propagating on
the transmission line. This is a 4-port network, ports 1 and 2 at the left end (z = 0) and ports 3 and 4 at the right end
(z = £). Our interest lies in the scattering parameters §,,,m(s) for waves entering the mth port and exiting the nth
port. These are initially general source- and termination-impedance matrices (reciprocal). There are source voltages

at the left end (with Vz(s) eventually being set to zero).

Looking ahead, left/right reflection symmetry (z changing to £-z), including identical source and termina-

tion impedances will allow one to interchange port numbers as

13, 24 2.1

in all the .S:n,m , thereby reducing the number of elements in (S"n,m) to be calculated from 16 to 8. Furthermore, by
making the two wires identical with symmetrical positions in the transmission line, and constraining similar sym-
metry in the source and impedance matrices, we will be left with only 4 scattering-matrix elements to compute due

to the interchange

12, 304 (2.2)

associated with this second symmetry. Initially, however, the derivation is more general.

The telegrapher equations for the assumed uniform and lossless transmission line are

d—z(‘;" (Z,S)) = —(Z;z,m (s)) . (in(z,s))
2 ((29)) = ~(Fam (9)) * (% (2.9)

2.3)

Note that sources are not included in this case. Also note that the I, are positive to the right (increasing z). We

also need

(Z~,',’m(s)) = Sﬂ( fgn,m) = impedance-per-unit-length matrix

(17,; m (s)) = se( fgn,m )—l admittance-per-unit-length matrix
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Fig. 2.1 Two-Wire Transmission-Line Directional Coupler
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(Zc,,,,,,) = ZW( fgn,m) = (ch’m )_1 characteristic impedance matrix
(f’c ' ) = }’(ln,m) = propagation matrix

s .
Y = — = propagation constant
v

zZ, = [ﬁ]z = wave impedance of medium containing the conductors
£

1
v=[uel2

propagation speed in this medium
M =medium permeability (uniform, isotropic)
£ = medium permittivity (uniform, isotropic) (2.4)

~ = two-sided Laplace transform over time ¢

[
o)

s + jo = Laplace-transform variable or complex frequency

transit time from one end to the other

<&
]
< |~

e The telegrapher equations can be combined into a single supervector/supermatrix equation as

d (Vn(z,s)) (On,m) (Zrll,m (5)) * (ch,m) (Vn(z,s))

Z(ch,m)-(in(z,s)) - (zc"'m).(}",;,m(s)) (Onm) © (ch’m)-(i,,(z,s))

] o (Vn(z,s))
(Zc,,,,,,) * (in (Z’-‘"))

2.5)
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3. Solution of Transmission-Line Equations
3.1. Matrizant

The solution of (2.5) is via the matrizant differential equation

2 (Eumlail,, 7[((‘1’)) - ))] o ((Ennteas,

(

Here u and v range over 1, 2 (as do n,m for our two-wire case). The solution is obtained via the product integral (a

simple one in this case of a uniform transmission line) as

3.1)

(1

(zo,zo;S))u v) = ((1"’”‘)14 v) = boundary condition

1]

8 =~
® |
—
F
B
N
= 5
s i/

N

((én,m (z,zo;s))u’v)

2((0nm) (ln.m)},, ,
-7 4
=e ‘0{(1""") (Onm) (32
(

Using the direct product ® [1, 3] we have

e ) ee()
~(nm) @ o -0l _ i)e rhesl ] o

(1om) ® I:cosh(}'{z—zo])(:) ?)—sinh(y[z—z(ﬂ)(? (l)ﬂ (3.3)
cosh(T[Z“ZO])(lo ?} —sinh(y[z—zo])(o 1)

e

1 0

—sinh (r[z—zo])((l) :)J cosh(T[Z—Zo])(l o)

01

from which we readily see a determinant of +1 and a trace of 4cosh({z—2zp]) -

~



From (3.4) we have

where zy can be chosen at our convenience. If (2.5) were to include distributed sources then (3.4) is easily modi-

From the matrizant we readily construct the solution of (2.5) as

(‘7,, (z,s))

= (Vn(zo,s))
i = En,m(Z’Z()QS) 0]
(ch,m ) ¢ (In (Z’S)) (( )u,v ) (

3.4)

fied to accommodate such sources. However, the above is adequate for present purposes

3.2 Boundary condition at z

= £: input impedance

At the right end the termination impedance gives

(Vo (£5)) = [‘33(‘)

(Va (£.5))

v, (s)] - [25.51]- (in(e.5)) . (Yu))

(3.5)

v, ) cosh(yf)(V,,(O,s)) s1nh(y£)( Cnm) « (I (0 5))
(Zepm) * (Tn(£5))

(%

(0.9) = 245

for all choices of voltage or current vector

(z‘,(,f',Q s

( )) -(ln,m)cosh(yf) + (z,(,Lm) . (ch’m)sinh(}'f)]—l

Rearranging terms gives

~sinh (7£)(V (0.5))+cosh (£)(

The input impedance (left end) is defined >

nm(s)] - (la(0.5)) . (y",fj;',,)(s)) - [Z(in)

_ (3.6)
ch,m) * (In (O,s))

(i) (s)]~l

3.7

. _(1n,m)sinh(7e) + (Z,(,ﬁ,),) . (ch, )cosh(yl)] ( c”m) (3.8)
- (@]



Note that if (ZS,I;,,] = (ch'm) then ( (‘")) = (ch’m) as expected.

3.3  Voltage vector at z=0

With the source vector at the left end we include the source impedance matrix via

(i. (0.5)) - (v‘é"(s)) - —(z&f,l,) - (n(0.5))

- —(zﬁ,f,l,) - (Y:ﬁf::)(s)) : (v',SS’(o,s)]

noting the current convention as positive out of the source. Rearranging we have

(3.9)

1

(70.) = ) + (20) - (F2 0)]- (# 0]

(2] - (A2) # (7o) - (752 (s))]_1 (e« [2) - (47

)-8 o 42 2]
. [(ch,m) . (Y,SS"), ]sinh(ﬂ) + (zf,’;)l) . (Y,Ssm )cosh(rf)] . (V'Ss) (S))

3.4 Voltage vector at z=/¢

From (3.6) and (3.7) we have

(e e
(Cnm) [s)

_ (1n,m)cosh (7€) —(1n,m )sinh(7¢) o (Va (0.5))
= = (1nm)sinh (7€) (1nm )cosh(re) (ch,m) (Y('" (s )) (V. (0.5))

(3.11)
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With (3.10), and separating out the equation for (‘7,,) , we have

. [(ch,m) . (y,ff )sinh(y[) + (zf,’;,,] . (Y,Ss), ]ﬁosh(}'l)] . (V,Es)(s)] (3.12)



4. Special Cases

In (3.10) and (3.12) we have the general solution from which the various scattering parameters can be

obtained. Looking at these formulac we sec three matrices (ch m), (Z,(,‘f,),,) s (Z,(,f,',),) , and their inverses that

appear in various combinations. While these formulae are complicated by the fact that the various matrices do not
in general commute, and that these matrices are symmetric (reciprocity) but the products are not in general symmet-

ric, special choices can simplify these formulae considerably.

4.1 Equal source- and load-impedance matrices

A first simplification occurs if we choose

(Zf.fm) = (2zkm) @1

thereby imposing left/right symmetry (making z =£/2 a reflection symmetry plane). This also corresponds to the
symmetry on interchange of port labels as in (2.1). Then define

(Xn,m) = (Zc,,,m) . (Yrgzt) 4.2)
and we find that only this matrix and the identity are necded.

At the left end (ports 1 and 2) we now have

~1

(Va(0,5)) = [[(X,.,m) + (Xpm )_l]sinh(y[)+ 2(1n,m)cosh(y€)]

* [(Xnm)sinh (72) + (1n,m)cosh(r2)] - (‘7,53)(3))

4.3)

At theright end (ports 3 and 4) we now have

10



(17,, ([,s)) = [(Xn,m)sinh(7€)+ (ln,m)cosh(yl)]_]
-1
. [[(x,,,,,,) + (Xpm )"]sinh(ye)+ 2(1,,,m)cosh(y€):|

(4.4)
. [(Xn,m)sinh(7€)+ (1, ,,,)cosh(rf)] . (V,f‘)(s)_)

= [[(X,,,m) + (X )_l]sinh(yf)+ 2(1,,,,,,)cosh(y€):|_l . (V’SS)(S))

Since only (X, ), its inverse, and the identity matrix are involved, and they all commute, then the above dot prod-

ucts of bracketed terms can be arranged in any order. (All these matrices can also be expanded in terms of the same

eigenvectors.) This allows the reduction of the right-end voltages in (4.4) to a single bracketed matrix combination.

Since our motivation is for a directional coupler, let us try to make ‘73 (¢,5) =0 under the excitation

condition from V;(0,5) with V,(0,5)=0. This gives

0 0

[[(x,,,,,,) + (Xn,m)_l]sinh(7£)+ 2(ln’m)cosh(y£’)] . [‘73("’3)] - (‘71(0’3)] @5)

which implies

0= m [(Xam) + () Jsinn 70+ 2t ooh (1) (3]

_(0). . e
O— (J [(X"’mz ) ] (0] 4.6)
= X1 - mxm
X1z = det((Xpm)) Xoy = det((ch’m ))det((Y,ff,?,)]Xz,]

Now (Xp m) is not in general a symmetric matrix, but it is positive definite as the product of positive-definite
matrices in (4.2) implying det((X, ,;))>0. Provided X;, and X, are of the same sign (4.6) can be satisfied by

scaling (X ,,) (multiplying by a positive constant). This appears to be a more general solution than previously

reported.

11



4.2 Source- and load-impedance matrices as diagonal matrices

~r
Now let the source- and load-admittance matrices be diagonal, corresponding to coaxial cables of
constant resistive characteristic impedances, as
-1
) (y)o (G o) |B O
Yn,m - Yn,m - - (47)
0 G 0 R2-1
Then we have (noting symmetric (Z,, ,,) )
Zy 4 G 0
(Xn m) = .
’ 221 222 0 G
_ (G4 G4z _(G4y Gz 8)
G122 GaZpp G122 G2y
2
det(X,,,m) = Gle det((Z,,’,,, )) = 6162 [21,122,2 —21,2]
Our directional-coupler criterion in (4.6) then becomes
2 2 2 ~
61212616, [21,122,2 - Zl,z] = G212 » G [21,122,2 - Z],z] =1 4.9)
or
det((Z,,,m)) = G2 =R? (4.10)
Note that G, (or R;, the source and load resistance for wire 2) does not enter into the directional-coupler criterion.
(Very interesting!)
Note that this result includes the special case that Rj = R, = R, corresponding to identical cable
impedances R connected to each of the four ports.
4.3 Fully symmetric case
Now we come to the classical case of symmetry in (Z,,,) on interchange of wires 1 and 2. This
symmetry is also a symmetry on interchange of port labels in (2.2). Then we have
—

12



1y =2y

() = (71 5]

Z1n 2y,
det((Zn,m)) = 20 - 2},

Furthermore, make all four cable characteristic impedances be the same, i.e.,
RER1=R2, GEGI=GZ

This now makes
_ _(CZ4y GZ2)_ (X Xi2
(Xnm) = G(Znm) = [G Zy 021,1) - (Xl,z Xl,l]
Our directional-coupler criterion is now
det((Zpm)) = 2% - 20, = R® . det((Xpm)) = X7 - xZ, =1

This is an agreement with previous results cited in Section 1.

13
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(4.12)

(4.13)

(4.14)



5. Diagonalization of Symmetric (X, ,,)

For the fully symmetric case in (4.13) we have equations for eigenvalues 2, as

det((Xn’m)) =l=nxn . tr((X,,,m)) =2Xpy=0+n

1 5.1)

2’% -2X 4 +1=0 , n =X, % [X12J - 1]2 = X1 £ Xp2
2
For eigenvectors we have
(Xn,m) * (xn)ﬁ = xﬂ(xn)ﬂ
X118 + X12 %8 = [Xl,l * Xl,z]xl,ﬂ
X2 x;8 + X131 %8 = [Xl,l t Xl,z]xz;ﬂ
X2 ;.8 = +X12 1,8
(5.2)

X12 ;8 = £X)2 0,8
X8 = ixl;ﬂ

1 (1 1 (1
(xn)l = 7{[1) ’(xn)z = T{(__J
(x,,,)[).l . (x,,)ﬁ2 = 1p,,p, (biorthornormal)

This is in agreement with previous results with symmetric and antisymmetric modes (eigenvectors) (or called even

and odd in some literature). We then have the dyadic forms for the symmetric matrices as

2
(Xn,m) = Zlﬂ(xn)ﬂ(xn)ﬂ
B=1

o)) - 1)

-1 X1 X2 |
(Xnm) _(—Xl,z Xu] (5.3)

P T4

o) =l = (3 %)) 22

The reader should note that these results are readily extendable to the more general cases previously dis-
cussed (Section 4). The eigenvectors and eigenvectors (left and right side for nonsymmetric matrices) are of more

complicated, but still analytically computable, forms.

14



6. Scattering-Matrix Elements

From (3.10) and (3.12) we have the general solution for the port voltages. With equal and diagonal source

and load impedances (4.7) we can determine incident voltages at the ports from which the scattering-matrix ele-

ments can be determined. Further restricting to the fully symmetric case (although more general cases can also be

computed from the foregoing) we have for our computations

~(3 1
R (s) = SV (s) = 0

Vi) (5) = ’v“)(s) =0

The factor of 1/2 accounts for a reflection of the incident voltage of +1 if the port is open circuited.

We already have from zero voltage at port 3, including symmetry
$31(s) = $13(s) = S24(s) = Sa2(s) =

From Section 5 and (4.3) we have
(‘7,, (O,s))
— 1Y1
= |:|:[X1’1 + X2 +[X1’1 + X1,2:| ]smh(}'l.’)+2cosh (7¢) ( llJ

s toene sl
. {[[Xu +X1,2 |sinh (7£)+cosh (ye)]%GI:J
+ [[Xl,l — X1,2 Jsinh (7£)+ cosh(y!)]—;-[_lll_i}] .
m 11+ Xpo+ [X L+ X1,2]_1] sinh(¥£)+2 cosh(ﬂ)]—l
[

[ X1+ X12 Jsnn( 7‘)+°°Sh(rf)]2(i)[:)
+[[X1 =X+ X -X2] l]sinh(yl)+2co5h(y£)]—l

[*1s —X1’2]sinh(7l)+cosh(yl)]%(_iI_iJ] . (:)]2‘71(:'::& (s)

[y

2‘71(1110) (S)
0

15
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= [ [2X1,l sinh (y!)+2wsh(yg)]"l [[Xl,l + Xl,z]sinh (7¢)+cosh (y!)](i

+[2Xy, sinh (7€) + 2co§h(yZ)]_1 [[xL1 - X1,2 Jsinh (7€) + cosh(y[)](—ll )] ‘71(""6) (s)

(6.3)
= [2Xy sinh(7£) + 2cosh (7) |
. 1 . 1 )| (inc)
[ X1+ X1.2 ]sinh (7€) +cosh(7¢) N [ X11 = X12]sinh (7€)-+cosh(r¢) )
Here we have used (from the determinant (4.14))
-1
[Xl,l * X1,2] = X1 F Xj2 (6.4)
From this we have
. " - . Vi,
S1.1(5) =82,2(s) =833(s) =S44(s) = Tl(%{l)- -1=0 (6.5)
1 (s

which is a simple and pleasing result. There is no reflection back toward the source. By symmetry, this applies to
signals in any port. We also have

= [ Xy sinh(re) + cosh(yl)]—l Xy 2 sinh(yf) (6.6)
Observe for the case of small coupling (small X5 )

- 1 _]

$21(s) = [1+ xﬁz]5 sinh(7£)+cosh(y2)| Xy sinh(72)

L

-1
- L[l-i-%xlz’z+O(Xﬁ2)]sinh(y£)+cosh(7£)] Xy 2 sinh(7¢)

= | &7 +sinh (7£)O( X2 )2]xl,2 sinh (7¢)

.

It

e X, sinh(yt’)[l+0(XL2 )]

1-e~27% 6.7

X1’2[1+0(X1’2)] as Xj3—0

16
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This shows a separation of the initial response of X;,/2, followed at a time of 2t; by the first reflection. More

precisely the early-time response is given by writing

¥ —yL
$2.1(s [1+X11:}——+[1 x“]—— X2 = (6.8)
from which we find
X2
Sr1(t) = =5 (t for t<2t 6.9
2,1(2) X, (r) for 7 (6.9)

Here the delta function is used showing that S, replicates the incident voltage for a time 2f, with an amplitude

coefficient Xj 5 /[1+ X1 17!, Said another way

X . .
V2(0.1) = l—+%(’—21—lvl("”)(:) for t<2f, with Vl('"c) () for t<0 (6.10)

For low frequencies we have

52,1(3) = X1’27£[1+0(7L’)] as s >0 (6.11)

These are the directional-coupler properties as they also represent 5‘4,3 which gives the signal out of port 4 from

that into port 3.

From Section 5 and (4.4) we have
(Vn (f,s))

= |:|:[X1,1+X1,2 +[ X+ X1 1]smh ¥€)+2cosh(7£)

Ml-—

B
+[[X1,1-x1,2+[x1,,-x1‘2] l]smh 7£)+2cosh 7¢) [ 1)( 11)] l {2"('"6)( )]

= I:[2X1,1 sinh(yl.’)+2cosh(7£)]% :Il)

1

+ [2Xq sinh (7£) + 2cosh(y¢)] %( )( II ! ((l))zvl(mc) (s)

17



= [2xy sinh(yf)+2cosh(ye)]~1 [-]2-[:)(:) + %(-11)[—11}] . ((1)]2@(""0)@)
= [2Xy sinh (7£) + 2cosh (7¢)| ! [C) + (_llﬂ v (5) (6.12)
= [ Xy sinh (7£) + cosh (76) ]! (;J‘ﬁ(m) (s)

One of the results (53,1) has already been exhibited in (5.2). The other has

- - - _ ‘71(£,s)

= lne), L [ X4,1sinh (7€) +cosh(y)] " (6.13)
Vi (s)

This is the direct signal through the coupler. Writing this as

] 7t - T
S3’1 = |:[1+X1’1]i2—- + [1+X1’l]e—2—-—:|

6.14)
_7[ -1
=2 [1+[1—x11:|2 e‘m]
1+X1’1 ’
we then find
S21(1) = 2 8(t—1p) for t<3t
1+X1,l
2 1" 1 -1
- 2 |2 _ 2 4
TS 1+[1+x1,2} = 2[2+5x1’2+o(x1,2)] 6.15)

1
1-2 X7 + O(X) as Xi2<0<1
<1

So the direct signal on wire 1 is reduced at early times ty < t < 3ty. For late time we have the low-frequency

form as

~ (4
S3,1 (s) =1- Xu% + 0((73)2) as -0 (6.16)

which goes to 1 showing no attenuation of “slow” pulses.

18
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7. Concluding Remarks

It is then clear that a traditional type of transmission-line directional coupler can be made to operate for

temporal waveforms as well. There is a time-window of width 2ty during which the coupled waveform is the same

as the incident waveform times a constant. This requires that, in the simplest operation, 2t, be longer than the time

duration of the pulse of interest. One can extend this to longer times by appropriate data processing, noting the more

complete description of the coupler scattering-matrix elements.

Our general approach to the theory has revealed various cases of potential interest. The fully symmetric
case (symmetry between wires 1 and 2 as well as source and load impedances) with identical resistive impedances
(cable characteristic impedances) on all four ports gives rather simple final answers. There are, however, more gen-
eral cases that still lead to zero transmission from port 1 to port 4 (the directional-coupler criterion) as discussed in

Section 4. These may deserve further consideration.

Noting that a transmission-line model is used for the coupler, there are some errors in modelling a real such
device. In particular, at frequencies high enough that radian wavelengths are not large compared to the cross-section
dimensions, a full wave analysis may be required. Near the ports the abrupt changes in the cross-section geometry

may make evanescent modes significant there. (Details, details!)
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