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GENERALIZED TEM, E, AND H MODES*
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Abstract

Previous papers have considered transient lenses for propagating TEM modes
without dispersion. This paper considers the properties of E and H modes in
such lenses. The presence of longitudinal field components brings in additional
constraints on the allowable coordinate systems, limiting the cases of transient
lenses supporting E and H modes to a subset of those supporting TEM modes.
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1 Introduction

A technique developed by C. E. Baum(l] for the design of EM lenses utilizes the
expression of the constitutive parameters € and ﬁ and Maxwell’s equations in a general
orthogonal curvilinear coordinate system, yielding what we will call the formal quanti-
ties. These are customarily denoted by affixing primes as superscripts. The line element

is
(ds)? = h?(duy)? + h3(dus)® + h2(dusz)? (1.1)

and the coordinates are (41, U2, u3). The scale factors, h;, relate the formal parameters
€. and y! to the real world parameters ¢; and p; in the diagonal case via the equations

hahse, 0 0
(€;) = 0 g . :) (1.2)
0 0 —,1;;263
My, 00
(bij) = 0 ‘Mhayu 0 (1.3)
0 0 ﬁk’?#s

The scale factors also relate the formal fields E! and H; to the real fields E; and H;
via the equations

E = hE;, H.=hH, ' (1.4)
for i = 1,2, 3. Maxwell’s equations for the formal fields are

V' x E’ — —S§'= _szl.l—{’l
AN (1.3)
leHl=le=sel.El
Here we use s = Q2+ jw, the two-sided Laplace-transform variable or complex frequency.
This suppresses the time-derivatives for our convenience in notation, and furthermore
allows the constitutive parameters to be frequency dependent if desired. This last point
is significant only in the case of dispersive media, which need not concern us here. Since
we are not going back and forth between the time and frequency domains, we do not
need to indicate the fact that all fields are Laplace transforms (functions of complex
frequency).
Thus if we assume diagonal forms for the tensors € and ﬂ, Maxwell’s equations in
expanded form become

_ — —a H'
au2 311.3 s,"’lHl
0E; OE; _ P
dus  Oup sppH, (1.6)
OF;, OE; A
u,  Bu, ~ Helhs

~




and

0H; OH, , .,
3u2 8u3 - selEl
oH, OHy _ .,

— = , 1.7
Ouz Ou se B (17)
oH, OH!

()
—2 _ 2L = s FE
6U1 6U2 373

These equations will be the starting point in our search for conditions on the pa-
rameters & and € in the case of E (or TM) and H (or TE) modes.



2 TEM Case (Formal Fields)

In this section we recapitulate the results obtained, in the formal case, for a TEM
wave propagating in the us coordinate direction. These results, which are consistent
with examples described in earlier work [3, 5], will suggest the approach to be taken in
the case of an E-wave or an H-wave. We begin with the assumption that the parameters

<« « .
u' and €’ are in the form

o pp 0 0
p=1 0 p O
0 0 p

2.1

. ¢ 0 0 @1
e€=10 € O
0 0 ¢

We will think of our (u;, uz, u3) coordinates as though they are Cartesian and allow
@, <, . . . .
1’ and €’ to be inhomogeneous and anisotropic. Our TEM plane wave is to propagate
in the us direction and all fields will be assumed to have propagation factors which
account for this. Thus if us is the propagation direction, then uj3 and €; are irrelevant.

2.1 Factored Form of Parameters

At this point we assume a form for the fields and constitutive parameters that
factors the dependence into products of the form a function of u; and u, (transverse
coordinates) times a function us (longitudinal or propagation coordinate). For the
constitutive parameters we have (all terms real and positive), forn =1, 2,

uL =IIS;°)' (u1, uz)gu(ua)

5:1 =f$;°)’ (u2,u2)g€(u3)
o
ﬁ' =4 (u1, u2)gu(us)

o, ©
€' =€ (u1, us)ge(u3)

(2.2)

Note that there are not separate functions of us for each of the 1 and 2 components,
this being an assumption of invariance to transformation (e.g., rotation) of the ui, up
coordinates. '

We then seek TEM solutions of the form

—_

! —’(o)’ o _’(0)'
E = FE (ula u2)ge(u3)’ H = H (u17u2)gh(u3) (23)




with
EY-15=0=EY, H® 1,=0=H
D =€ F =20 (u,u) - E' (u1, uz)ge(us)ge(us)
=D (us, uz)ge(us)ge (us) (24)
B = H =5 (uy, u5) - ' (w1, u)g,(us)gn(us)

-
=B (u1, up)gu(us)gn(us)

2.2 Maxwell Equations and Separation of Variables

Maxwell’s equations then have the form
BE; _

Fus =spy H}

%1% = — su,H, (2.5)
OB, 0B, _,

' 3u1 a'U2 -

and
3

OH] '

—a—usl =sep Fqy (2.6)
o, _oH;

ou; Ouy

These equations may then be rewritten as, using (2.2) and (2.3),

Id ’ ’
0y &g, 0 0
B e o g gn H®

2 dua =Sﬂ1 gﬂ-gh
0y d9e (0 (o
E; dus spy gugnHy (27)
(oy (0)’
6u1 8u2
and
’ dg ! ’
0) Agn 0 0
Hé ) a;a' == ng ) gegeE{ )
’ dg ’ !
o) Agn 0 0
H{ dua =3¢} gege Y (2.8)
(0y 0y
O0H, _BH1 —0.
3u1 a‘UQ



We note that in the first two equations in both (2.7) and (2.8) we have “separability”
in the sense that these equations may be reexpressed in a form where we have a function
of u; and u, equal to a function of uz only. The immediate result is then the fact that
both functions are equal to a constant (i.e., independent of the spatial coordinates). This
same reasoning, it will be recalled, is used in the “separation of variables” technique
in partial differential equations. Thus we define constants K, and Kj, from (2.7) and
(2.8), by

dg.\ ™" EY EY
Ke = -sgpg’l (_—) = - 0) T = Il ' (2'9)
as) T Y W HD
dgn\ " HY HY
PR R R S
° \ dus O O T O g0 )
Thus
dg.\ 7 (dgn\ ™
K.K, =s* —ze hat-ald
effh =5 9ughgeJe (du;;) (d’u,3
= (0)'1 o (0)'1 Ol (”(0)1)2
[ Ky € (211)
= constant
_1 -1
2 = [ugo) ego)] 2 _ [ugo) €(lo)] 2
= propagation speed in u, coordinates.
The formal parameters, €, and u;,, then satisfy
ey = ' & guge = 1" €1 guge = 121 (2.12)
and hence
(' (u3))"2 = iy = ppeh = (V@) g0 (2.13)

where v'(u3) is the formal propagation speed and is a function of u3 only. We also can
form
guan 22
K. _*duy
K, d
h geged—gf
u3

’ ' 2 ( t 2
—650) E{O) 3 €§0) Eéo)
W 8] 7 [

= constant.

(2.14)
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Thus we can define wave impedances

z{ = [’-‘2]2 z¥ = [’-‘ﬁr (2.15)
6&0)' 22 Egoy
Normalize the constants K, and K} for convenience such that
K. =K, = K; (f for field) (2.16)

This is merely a scale on the factors in the above equations (constants being absorbed
as parts of g and/or g, as well as the field components) giving

K; = v©®"  (not a function of any u,) (2.17)
with the plus sign chosen for propagation in the +us direction, and our two constants

K, and K, are now determined.

2.3 Two-Dimensional Vectors/Matrices for Transverse Field
Components

The third equation in each of (2.7) and (2.8) leads to the result that there exist
differentiable functions ®’(u;, u2) and &} (u1,uz) such that )

=
E® =—-V;9,(u,u2)

I-.}m)' VL () (2.18)
because of the Poincaré lemma [8]. The operator V} is the (formal) transverse gradient
\4 =1, —?—+ 1p = (2.19)
ou, Oug
Thus
E' = — V., (u1,u2)ge(us)
S (2.20)

H =- V;‘I’Z(Ul, ug)gh(u?,)

The first pair of equations in each of (2.7) and (2.8) can be written in vector form

as
1y xE@ =y @o" . O = O g’
1—; x O = — @' ¢@" . BO' = g Do’ (2:21)
From these we can conclude
o B0 B0 o7 G =0
(2.22)

- =y =y g T
D(O) .H(°) =E(°) . e® ,H(O) =0.



Furthermore we also have

EY ©y , (Y _ (0 1
H(o)l =v ”2 - Zl - e(o)lv(o)’
2 1
2 (2.23)
5 =@ = 2 = S
HO 0 y(oy

Again note the sign convention (v positive) for propagation in the +us direction.
At this point we may introduce

o_(0 -1 e 1 0\ _ . .
= ( 1 0 ) , L= ( 01 ) = transverse identity (2.24)
using only the transverse (u;,uz) coordinates so that
>
A=7fT=_%, Ti=-1 (2.25)
_-)
and we can replace the crossproduct with 13 by
bad o
13 X =Tt - (226)

This allows us to restate (2.21) in terms of only transverse coordinates as

2 PO O GO’ GO = o0 g
' (2.27)

o 2oy 16y o0 T ov oo
5 oHY =o€ . gO = —@' p©@

This notation will also be useful in later sections.

2.4 Generalized TEM Wave

From (2.22) we see that E‘ and I—} need not be mutually perpendicular for a TEM
- - - =
wave. Instead this property holds between E and B and between D and H. This is
associated with our allowing the medium to be anisotropic.

— -
If we want E and H to be perpendicular, with general transverse orientation (po-
larization), then this leads to the requirement

or 01 g | g o
o = - = e
1=1;1, + 1212 + 1313=1; + 1313 (228)

EO.H® =0
where, of course, it is only the 1 and 2 components that are relevant. Such an isotropic
medium is precisely the case considered in [3].

Whether one considers the uniform formal (prime) medium as anisotropic as in
(2.22) or isotropic as in (2.24), there is still the question of scaling to the real coordinates
and fields. One can then again ask the question of whether the formal permittivity and
permeability can be isotropic or anisotropic.

10




2.5 Constraint of Wave Propagation in +u3 Direction

Consistent with [3] let us now assume that the wave is propagating in the +ug

direction with no reflections. Note that E" and FI' are tangential to every surface
of constant us, and that tangential components of these vectors must be continuous
on passing through such boundaries. In particular, for low frequencies (s — 0) the
potential functions in (2.18) must apply for all u; (i.e. g. and g, — constants) or the
change between uz surfaces will imply E§°)' and H§°" nonzero — a contradiction.

So let us look for solutions of the form (consistent with [3], there expressed in time
domain)

u3 1
g5(u3) =ge = gn = €xp (fs / fius,‘ ) (subscript f for fields)
o V'(u3) (2.29)
.1__8_9£___;9_=_7'(u) .
g5 Ous v'(ug) ’
From (2.9), (2.10), and (2.16) we directly have, as well,
gc(u3) =ge = g, (subscript c for constitutive parameters)
’ us dU’ ’ S (2-30)
- ) 3 o = _5_
w=e (-1 [ 55) A=

Note that only gc(us) (real and positive) is left to be specified here, v©®)' being a positive
real constant. This result applies to the usual TEM wave in isotropic media (Section
2.3), as well as to the generalized form in anisotropic media (with the constraint in
(2.11)) as well.

11




3 Scaling to Real Medium for TEM Modes

—~
In [3, (Section 5)] an assumption of isotropic 4/, €, p, and € (u3 associated com-
ponents being irrelevant) led to the result that surfaces of constant us could only be
spheres and planes. Let us revisit this question now that we have the possibility of
anisotropic 1’ and €.
Our general scaling relations [11] are
- - = -
E' = (an,m)° E,H = (an,m)' H
« - <
€ = ('Yn,m)' €, ﬁ’ = (7n,m)' Hu
o0 0 i Q0 (31)
(tnm)=| 0 ha O |,(vnm)= 0 M o
0 0 hs 0 0 Mk
3
where the constitutive-parameter dyadics (matrices) are assumed diagonal in the (uy, u, u3)
coordinate system. The scale factors and line element are
B2 = Oz 2+ Oy 2+ 9z 1°
n aun aun a'un
3 (3.2)
[aff? = _ b [dun)’
n=1 ~’
3.1 General Results
Considering only the first and second diagonal terms of the constitutive-parameter
dyadics we have
. hah
e (u1, u2)ge(us) = ;1361
, hsh
" (w1, u)ge(us) == —e2
2
(3.3)
) __hahg
py (u1,u2)gc(us) = By I
, hsh
1 (un, u2)ge(us) ==~ h2
2
~

12



Forming ratios we have functions of u,, u, only as

B (ur,u2)
€ (uy, up) T
B (un,u) _p
&Y (uy, up) T e

(oy 2
(0 B _ [T
27 (w1, u) =7 = [hz} é
¥ (34)
2 0y B 2 )
Zéo)' (11, 12) M _ [_3] Y
T 6(20)' hi] e

i))_(ul,uz) =4[ﬁ3]2€_1
& (u,u) LMl e
™ (u1,up) _ [113]2 o

hi] pe

l‘l'gn)l (ul ’ u2)

3.2 Isotropic Real Medium

At this point we can consider the special case that the real medium is isotropic so
that

€ =€; = € (= €3)

3.5
p=p1 = 2 (= pa) (3:5)

which implies from the third pair in (3.6) (or from the first pair)
| 650) (u19u2) - l“‘gO) (u11u2) (36)

e (u,uz)  p8 (w1, u2)

However, this is nothing more than what we have previously found in (2.11), after cross
multiplying the denominators. On the other hand the first pair in (3.4) implies
0) (o) 0) (o) »
S O @

Multiplying by (v(")')2 from (2.12) implies

0y oy 0y 0y
eg)zeg) !I()ng) 338)
0 ' 0 ] o / 0 ! .
eg ) eg ) “g ) RO
and taking the positive square root gives
o 7 o ! _ ] o ' 0 ’ _ 7

13




and the formal medium is also isotropic. In this case the results of [3] apply and
hl = h2 = ht (310)

and surfaces of constant uz can only be spheres or planes [6 (pp. 114-117, 146-149),
1 (Appendix B), 11 (Section 2.4)]. Further we have

p@ g, =hap, e'g. = hse

oy
'5(6)7 = -leﬁ = function of u,;, u; only
1
Zfo) = Zéo) =720 =2 =2Z= [-’ﬂ * = function of u,,us only
-1
v = [ue]? = hs[p'€]? =hag* [”(0)"6(0)'] 2 (3.11)

=hag v ® = hgv'
= real TEM speed

v' = g7w® = TEM speed in u, coordinates (as in (2.13))
= function of us only

If we do not assume that the real medium is isotropic, then the formal medium need
not be isotropic, and surfaces of constant uz may possibly take more general shapes.

3.3 Isotropic ¢ Medium

Now let the real medium have an isotropic (scalar) u (not necessarily uniform such
as pg) but ‘¢ be allowed to be anisotropic and a function of the spatial coordinates.
Then the first pair of (3.4) give

(0)y (o)

& _ u?wfzo), =1 (3.12)
€2 p &

This assumption then forces ¢ to be isotropic as e. This forces us back into the
isotropic real medium with results as in Section 3.2. '

A similar comment can be made regarding an isotropic (scalar) ¢ medium, not
necessarily €. The condition

(o) (oY
By &
= =1 (3.13)
o Y
WO
forces u§°" = #(10)' and hence i is isotropic as . Thus the medium is again real isotropic
and the results of Section 3.2 are applicable.

14
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3.4 Uniform Real Permeability

Adding the requirement that
g = o (uniform and isotropic) (3.14)

so that the permeability is both uniform and isotropic we have a case of practical
significance. From [3] we have

€
€ =¢(u1, u2) = function of u,,u; only

. 3.15
v =[poe]‘§ = v(u;,u2) = function of u;, uz only (315)
_”(ul,u2) _ v(ug, u2)
hs = o) o gc(u3) factored form
From (3.3) and (3.12) we also have
oy
h_ & _(u,%) = function of u;, u only (3.16)

hy € (uy, us)

15




4 FE-Wave (Formal Fields)

We continue our investigation with the F-wave case (transverse magnetic field), and
so we will take H} = 0 and seek conditions on the formal parameters € and y; which
lead to solutions of the formal Maxwell equations. As usual in the case of waveguides
[2, 10] we seek solutions for the formal-field components in terms of some operator on
E which we will later take as some mode function of u;, and u, (transverse coordinates)
times some propagation function of u. Our starting point once again will be Maxwell’s
equations as they appear in (1.6) and (1.7), which come from V' x E= —sp' - H' and

Vxﬁ'zs?’-l—v':".
4.1 Maxwell’s Equations with H} =0

If we put H; =0 in (1.6) and (1.7) we obtain

0E; OFE; R
6’“2 aus - sp’lHl
OE] OE; _ P
By Guy spoHy (4.1)
0B, _0F;
3u1 6u2 o
and
O0H,
-51;3 = —se, By
OH]

oH; OH} _ .o
3u1 6u2 TR

The consequences of the condition that Hj = 0 will lead to restrictions on the formal
parameters ¢, and u! (except for pj since Hj = 0) as well as solutions for the formal
fields E! and Hj.

We assume that the formal constitutive parameters have the forms similar to those
specified in Section 2.1, namely

ply = ' (w1, u2)gu(us)

6:1 = 65? Y (ul, uz)ge(us)

(4.3)

for n = 1,2, with puj irrelevant since us is the assumed propagation direction. We take

€y = €8 (u1, us) gea(us) (4.4)

16



and try solutions of the form

—)’ —)(0), ‘

Et =Et (uh u2)ge(u3)

—)' _ - (0)1

Ht '-Ht ('U.l, ’U,g)gh(U:;)

E} =E{” (u1,u2)ges(us), Hy =0

< -

BI 2?1 . EI, BI — ‘ﬁr . HI.

(4-5)

Now for physical realizability g, and g, are real, nonzero and frequency independent.
The propagation functions ge, gn and ge3 are in general complex functions of the complex
frequency s (exponential like) and all have ug derivatives nonzero except possibly at
special frequencies like s = 0, or degenerate cases like propagation perpendicular to us
(waveguide cutoff). The functions of u;,u; are taken as independent of the complex

frequency s.
Thus we obtain
aE (0)’ dg 0 ’ 0 ’ 0 1
9e3 652 —E;iEz(» " = —su gugnH{"
vd oE , ,
0) @9, 0 0
E{” du:— e3 331 = —sp” gugnHy”
9By oE{" _
8u1 a'u.g -
and |
/ d ! /
H§0) d_Zh;; = —36(10) gegeE{O)
’ d ’ 1
HOT S o9 0,5
oHyY  oH{™ o (o
- =3 E.
gh I: aul au2 €3 g€3ge~3 3
Moreover, since V' - [?’ . E’] = 0, we have
o B, o’ Y] _ _ 1 dlgagasl o o
Ouy Oua gege Ous 3

and also, from V' - [ﬂ’ . FI’] = 0, we have

v, [B - B =0

17
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4.2 Maxwell’s Equations and Separation of Variables

We may now define some constants since we can separate variables in (4.7) and
(4.8). Thus we can set

dg"]_1 H” H
K, = —s pat-Ald = — .= —— . 4.10
h JeYe [d’u;; ego) E§0) ego) Eéo) ( )
1 [oH® oH{Y
— -1 1 2
VoYe3 = —59e39e39p, = ; ; - 4.11
h ego) E§°) [ Ous Ou, ( )
= 9ede d’us 6;(50)' E:go)r 6u1 au2 . .

Here 7.3 and 74 are included to give a dimension of inverse length (in the u, coordi-
nates) to balance the uy, u; derivatives. Later we will find that these are related to the
propagation constant or wave number. As such, .3 and 74 may be functions of complex
frequency s, while K, is not a function of s. A constant v (dimension velocity) is also
included to make the units work out. This is later identified with v(®'. We note that
~a can be expressed in terms of Kp and 7.3 since we have

d d
Woleagys == 5 g-l9age] (from (4.11) wis)
Yd :%’)’63 (from (410) and (4.12)) .

These constants are in general nonzero and bounded, except perhaps for special values
of s (e.g., s = 0 or cutoff condition in a waveguide). Note now that 4 and .3 have the
same frequency dependence.

4.3 Two-Dimensional Vectors/Matrices for Transverse Field
Components

Using the notation introduced in Section 2.3 the first two equations in (4.6) can be
written in a more compact form as

! 6 =20y L PRV PPN )
93 ViES" — 5Z§E§°’ = —sgugn T¢ U - H® (4.14)

where we can cast the transverse parts of the constitutive-parameter matrices in the
2 x 2 form

, o . oy
‘,’jgo) — (#1 (u1,u2) 0 )’ *g?) - ( & (u1,us) o 0 ) (4.15)
2

0 ﬂg))' (Ul, Uz) 0 (Ul, ’Uz)

18



simplifying some formulae. We also note that there is a function ®! such that
EY = -V.®, (4.16)

The existence of &', follows from the third equation of (4.6) and the Poincaré lemma.
The first two equations of (4.7) may likewise be written in the condensed form

Ty -ﬁ§°" =—Kpe® . E'éo)’
. (4.17)
=— K,D{”
and hence we have the orthogonality relation
DY -HY =0 (4.18)
We can remove the magnetic field from (4.14) via (4.16) as
PR HY =K 72 Y
o’
=~ K. B E (4.19)
i; O gy & By p,g_,o)lego), 0_
=— Tt + Tt € = ’ ’
t K t 0 u§0) egO)
In (4.14) this gives
’ d o =0
geSV;E:gO) dg; E(O) sgnghKh p 'Eio)
1 2(0) 1 dge © | S9ugn ol =y (4.20)
ViEy' =|—-—1:+ KnP|-E;
ges dug ge3

which involves only the electric field.
From (4.9) and (4.19) we have another equation for the transverse electric field as

R

o s (421)
=v;-[7:- P B
Furthermore, (4.8) can be rewritten to give
v [¢ - B = —vae” B (4.22)

which also involves only the electric field. These are in addition to (4.9) which involves
only the magnetic field.

19




4.4 Properties of ;

We would like the E modes to propagate in the same medium as the TEM modes
in Section 2. There we found in (2.11) that

oy (o)
7 o | =0 e
0 Wy € (4.23)

,~2 ’ ’ ’ ’
2O = 0 = OO — constant

We can impose this requirement now, but it is instructive to consider this from an
E-mode viewpoint.

A first observation is that a limiting case of an E-mode is a TEM mode. As s — coin
a typical waveguide with perfectly conducting walls the ratio of the longitudinal electric
field to the transverse electric field tneds to zero for a given mode (with basically a
fixed number of transverse wavelengths) [2, 10]. This leads to the result in the previous
paragraph.

Appendix A shows that this result can be derived by requiring that two or more
independent E modes exist.

4.5 Identification df Some Constants

At this point with the result of (4.23), like (2.11) and (2.15) for TEM modes we
have for the transverse field components

1
o) 0y]z
EY ) |*_ A S—— O O
HO T || T T 0y
2 1 1
) . (4.24)
0y 0]z
B _ (w0 gL or,0r
H{O)I Eg))' 6gO)' v oy
This allows us to identify one of the separation constants from (4.10) as
K, = v = —sg.g dgn B (4.25)
eJe du3 )
and also have
——y . — S . GesGe3s 1 d
V8 =WZ 00 g gege dus [9cs9es) (4.26)

vo =v®" (allowed choice of vp)

The two “independent“ constants have been reduced to one.
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Next, noting that <4 is a separation constant with units of s/ v©®' we can set

s
Yes = Td = gy (4.27)
implying
1= 9e39e3 , S 1 d [ge3ge3] (428)

g v T geg.dus

Referring to (4.7) and (4.8) whence these separation constants come, the above choice

is merely establishing a scaling relationship between E§°)' and the other (transverse)
field components, these having been related for their u;,us parts by (4.24). All three
separation constants have now been determined.

4.6 Continuation of Separation of Variables

Substituting our result for P in (4.23) into (4.20) gives

, 1 dg 59,9n | 20y
V' EY = | === 4 = | B 4.2
e ge3 du3 T 9o Ee ' (4:29)

Now separation of variables gives

1dge 5 gugn

gezdus v ges (4.30)
+ (0) pat 1 7/

ViB3' =—"YE: =7YV:2

Yo =

where v, has dimensions of length~! (in u, coordinates). This allows us to set
EY =1,%, (4.31)

with the integration constant taken as zero. Note that v, # 0, co without one of the

vectors in (4.30) vanishing.
Combining (4.31) with (4.22) we find

o =EY L Le.[e B
Y9 YdVg €
L 3 (4.32)

— ——_FV’ . [?(o)' . V,‘bl} )

Yoy € P LT
This is a differental equation for ®,. For appropriate bounday conditions (e.g. ®, =0
on some closed contour in the u;,u; plane) one can in principle solve a waveguide

problem for @r,.
From (4.19) with (4.23) we also find

=, < ’ o S =g
(1] () 0
BY =i . HY =Ku7,- P -E

oy-! & —)ol

(4.33)
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from which we have

EY B =0 (4.34)
which complements the orthogonality relation (4.18), namely

DO Y =0. (4.35)

These results compare directly to (2.22) for TEM modes.

4.7 Constraint of wave propagation in +u3 direction

In Section 2.5 we have found that for a TEM mode to propagate in a single direction
(+uz only or —u3 only) without reflection we need the constitutive parameters to be
related as

0c(us) = ge(us) = gulua). (4.36)

Constraining this here as well the u; variation of the medium is then reduced to the
two parameters g, and g.,. Note again that a limiting case of an E mode is a TEM

mode with E{ — 0.
Now change variables from u3 to Uz such that

- gedus = dUs. (4.37)

This makes our separation constants in (4.25) through (4.28) become

dUs;
s
Ve3s = Vd = oy (4.38)
__ 9e3ges s _ 1 d
1= o ) 'U(o)’ - E;dUS [ge3ge3] .
Returning to (4.32) we have
3 = BY _ L 1y, [*gm' -Z?“”']
v L 49
1 1o [‘Z@)' -V’@'] . .
Yarg e f L
Defining
1
dUn = Wdu,, forn = 1, 2 (440)
n
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we have the alternate form

, 1 1 8%, 1 8%,
. = o7 oY Uz T 0.0 oU2 |
YdYq eg € oU? €3 € oU,

(4.41)

Thus 747, is an eigenvalue giving a transverse wavenumber (propagation constant)
which can be computed from (4.39) or (4.41). This applies to waveguide solutions with
@' = 0 on some closed contour Cjp in the uy, u, plane. Note that if e§°"e§°" = ego)' e§°" =
constant then this reduces to an equation of the usual waveguide variety. In any event
we have real-valued solutions for &/ with negative eigenvalues as

S

__g2__5_
"% = —Ko = oy (4.42)

K2 = positive numbers of same dimension as [s/ @',

This parameter is related to the usual waveguide cutoff frequencies for the various
modes. If we do not impose a boundary condition on C, we can have transversely
propagating solutions (complex) and cutoff corresponds to no propagation in the u;
direction.

The eigenvalues take the form

2 _ S 9393 [_9gc dge S 9eGn
Ko = =% = Jay 9h [ ge3dUs v ge3]

_ 5 gesgc dge 5 12
= s et g~ [gw) e (4.43)

1 d‘zgh s 12
= ge39c [EZELT:? - [W] ]

with a substitution from the first of (4.36). Rearranging we have

s 12 K? d*gn
[[v(o),] + geagc] =35 (4.44)
For a specified ge3gc as a function of u3, and hence of U; we have a wave equation for
gn, and various forms of g.g. can be chosen which lead to various special functions to
describe g,. Having g5 then (4.38) leads to g. and ges.

Suppose we want the mode propagation of gx to be the same at each U; (translation
invariance). This constraint means that the cutoff frequency is the same everywhere
along a waveguide defined by the contour Co. Cutoff in (4.22) is defined by

T - ) -
v T L] T gage
’U(O)IKO

[ge3gc]1/2
= cutoff (radian) frequency

wo = —JSo = (4.45)

(a set of same, real valued)
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If these frequencies are to be independent of U; (and hence of u3) then we require that
ge3ge be a constant, which we take without loss of generality as '

9e39c = 1 (446)
With this choice then we have

. us3
gn =€ " =exp (-7 / gchS)
0

1/2

i [[”_:”_]2 * Kg] (4.47)

s ‘U(o), Ko 2 1/2
= 1+ S } (appropriate form for

" frequencies far above cutoff)

where the sign for 7y has been chosen to give propagation in the +us direction. From
(4.38) we then have

o g (oy (oy
= -—v Gh = v = ?-———- -1Us
9e SdU = s =T
() ug
= ——7exp (—7 / gcdu's) (4.48)
o ‘

u3
9e3 = gegn = g€ "U® = g exp (—'y / gcdug) .
0

Returning to (4.5) we have all three propation functions for the fields. The transverse
field components are related in (4.24), and related to E§°" by Y4 = 7Ye3 in (4.11), (4.12),
and (4.27). The factors in the constitutive parameters are related in (4.23), (4.36}, and
(4.46). The Maxwell equations in (4.6) and (4.7) have been satisfied by construction.
Together with (4.39) or (4.41) for computing the eigenvalues (giving cutoff frequencies

>0y ’
for waveguides) and @', from which we can determine E{” . When specified, € (uy, up)

appears in the eigenvalue equation and Ego)' can be found from 7,®,. Our E modes
are now determined. :

Thus we can have E modes in the same media as the TEM modes in Section 2,
provided we have an additional constraint on the u3 part of the permittivity. Specifically
ges varies reciprocally with respect to g. (previously specified) for the special case of
K, independent of uz. However, the medium can now be both inhomogeneous and
anisotropic.
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5 H-Wave (Formal Fields)

In this section the H-wave case (transverse electric field) is studied. We will impose
the condition that the formal field component, E}, vanishes and then look for conditions
on the formal parameters, € and g, which lead to solutions of the formal Maxwell
equations. The analysis is dual to that of section 4, in which the E-wave case was
studied, and the results will be dual. (Duality is the symmetry on interchange of
electric and magnetic parameters.) Thus solutions will be sought for the formal field
components in terms of an operator on H3 which will eventually be taken as some mode
function of the transverse coordinates, u; and u,, multiplied by a propagation function
of uz. Our analysis thus begins with Maxwell’s curl equations, (1.6) and (1.7) which

result from V'’ x E" = —sp'- FI’ and V' x I_}’ = s€’- Z}’.
5.1 Maxwell’s Equations with E; =0

We take E} = 0 in (1.6) and (1.7) and obtain the duals of (4.1) and (4.2)

O, 1y
us s H,
E!
—1 = —suyH, 5.1
au3 SHolly ( )
OF;, _OE; g
— e = - H
aul 6u2 SHalls
and
8H, OH, ..
— = FE
6U2 3u3 sat
OH] OH; _ .,

- = 5.2
au3 aul S€qy Lo ( )
oHy _9H; _
aul 3’11-2 o

From our assumption that Ej = 0 we once again will obtain restrictions on the param-
eters, ¢} and p (except for €} since E3 = 0) as well as solutions for the formal fields E;
and H].
The assumptions made in Section 2.1 on the form of the formal parameters remain
in effect and thus we take '
py = p (w1, o) gu(us)
€n = fg) Y (u1, uz)ge(us)
for n = 1, 2. The parameter €j is irrelevant since we take u3 as the propagation direction,
while

(5.3)

p3 = u$ (u1, u2) gua (). (5.4)
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We try solutions of the form

—)I -)(0)1

E; = E;” (w1, u2)ge(ua)

—)’ —)(0)1

Hy=H; (w, uz)gn(ua)

Hy = H:E.O)I(ul, Ug)ghs , B3 =0

- o

D=¢.F,B=0hH

(5.5)

Just as in Section 4, g, and g. are real, nonzero, and frequency independent. Simi-
larly the propagation functions g., ga, and g3 are in general complex functions of the

complex frequency s (of exponential type).

Thus we obtain the H-wave duals of (4.6) through (4.9) as

g 9% _ oy (oy

2 dus = Spy gugnH;
rd ' ,
E{" d—gi = sl gugnHy”
U3
OEY oE® oy oY
A

and

dH(O), dgh oy 0) ()4

Gh3

dgn ,.(oy oH oy (o)
a3 - . = 3 eE
dus H, 9n3 9 S€3 " GeGe Ll
oy _oHY _ .
6u1 6u2 -
In addition, from V' - [ﬁ' . I.{)'] = 0, we have
0 oy oy, 9 (0 g 1 9o (o)
aul (”‘1 1 ) + au2 (p’Z 2 ) gpgh 6U3 (9#39h3)p'3

Moreover from V' - [?’ . ]_:':"] = 0, we have
v [ee B =0

5.2 Summary of Results for H-Wave Case

(5.6)

(5.7)

(5.8)

(5.9)

In Section 4.2 constants K, vo, 7es, and g were obtained by separating variables
in Maxwell’s equation. Similarly, a dual collection of constants arise in the present case
with the interchange of media parameters and electric and magnetic field components.
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Summarizing, we have a first set of relations

2@ 7 = OO = O = constant

= o o =2 o0 =
(0) (0) 0 0
DY -HY =0, E -B"” =0

[

oy [, (0]
E{ ) = ug)) =70 = .__l__ = ’U(o)'/l,(o)' (5.10)
Héo)' i 6(10)’ - egoyv(o), 2
1
()4 -0y 2
_Ei)_ =— “_g(i)_ 2 = Zéo)' - — 1 _ —v(°)'p(°)'
H§O) I Gg)), | 6%0)'10(0)1 1

Analogous to (4.32) there is a differential equation for Héo)l as

, HY 1 1

- = v [ﬁ§°" : VQ@;,] (5.11)

Ye - YdYg pgo)'

For appropriate boundary conditions for the magnetic field (normal derivative of @}, zero
on some closed contour (perfectly conducting boundary) in the uy, u, plane) we have a
waveguide problem for @}, with 747, assuming the role of an eigenvalue (a transverse
wave number or propagation constant). Again we set

S
Yave = —KE = =7,
Yo

K2 = positive numbers of same (5.12)
dimension as [s/v®]?
As before various separation constants are determined, including
’ S
Ke=v", ms=m= O (5.13)
Making the wave propagate in a single direction without reflection (say +us) gives
gc(us) = gu(us) = ge(us) (5.14)
Like (4.44) we have the basic propagation equation
s 12 K3 d? gh
[[ o) + o]g"z—iﬂ_ ’
v Ju3ge dUs; (5.15)
gcduz = dU3
The cutoff frequency being independent of Us leads to
X v K,
Wog = —78 = T ’
[gu39c] 2
= cutoff (radian) frequency (5.16)
(a set of same, real valued)
9u3lc = 1
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Then we have

us
ge =€ "3 =exp (—7 f gcdufv,)
0
1
O K,112
_ S v 0
1 [+ [57)
o ) (5.17)
v 3 ,
gn = —"7eXP (—7 / gcdus)
0

ug
gh3 = g €Xp (—7 f gcdu’a)
0

Thus H modes can propagate in the same media as the TEM modes provided g,3(u3)
is constrained to vary inversely with respect to gc(us) (previously specified).
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6 Scaling to Real Medium for E-Modes

As in Section 3 for the TEM case let us now consider the scaling of the u, coordinates
to something other than Cartesian coordinates (for which the results in Section 4 are
directly applicable). The scaling relations are given in (3.1) and (3.2).

6.1 General Results

The transverse components (1 and 2 subscripts) are related as in (3.3) and (3.4)
apply here as well. These are supplemented by

' _ hih
‘-:(so) (u1, u2) 97 ' (ua) = ;32 €3
6(10) (w1, u2) ego) (u1,u2) =h3e1€3 (6.1)
ego)' (u1, u2) e§°" (w2, uz) =hieses
6.2 Isotropic Real Medium
If the real medium is constrained to be isotropic we have
€=€ =€ =€
1 =€ =¢€ 6.2)

H=m = #2(= Ma)

so that we have five relevant constitutive-parameter components to consider, one more
than in the TEM case. The results of Section 3.2 all follow. In particular we have

& = = =

? I’l‘ = u? (6.3)
hl =h2 = ht
with surfaces of constant us limited to spheres and planes (Appendix B).
Now (6.1) reduces to
2
0 -1 hi
€ u, w Uz} =— €
3 (u1,u2)g; (u3) ha (6.4)
e£0) (u1, u2)6§°) (uy, ug) =h? €
giving
ego)' (w1, u2)gc(us) = hs €. (6.5)
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Furthermore we have

Y (uy, u) ge(us) =hs p

u(o)'(uhuz)
(ot), = = = function of uy, us only
@ (uu) | (6.6)
v' = gc(u3)v@ = TEM speed in u, coordinates
= function of u3 only
v= [;ze]'% = h3v' = real TEM speed
6.3 Uniform Real Permeability
Add the requirement that
p=po (uniform and isotropic) (6.7)

while € is only isotropic and use (6.3) for isotropic transverse components e§°)' and ugo)'.

This brings in the results of Section 3.4, specifically

1
_[#o]2
z=[7]
€ =€(uy, uz)
-1 (6.8)
v = [po€] "2 = v(uy, us)
v(uy, u
hs3 =—“;}‘2W2)‘ 9e(us)
From (6.4) we then have
[ég ) (1, u2) ffv.) (u1, uz)]
h, = L = function of u;,u; only (6.9)

e(ul, 'U.2)

From Appendix B we have that he(uy, u2) implies that surfaces of constant uz can only

be planes. It is interesting to note that such a case of a bending lens with constant-¢

surfaces being planes is considered in [3]. :
At this point we can note that it is possible to have a simpler form for h3 as

hs = ha(uy, u2) = 11(_}:}_(1_6;12) = function of u,, u, only (6.10)
by setting
1
g=1=—. (6.11)
ge3

This corresponds to choosing the formal medium to be uniform with respect to the u3
coordinate, a somewhat simpler form for the formal medium.
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6.4 Isotropic Real and Formal Media

If one in addition were to force the formal permittivity to be isotropic, then

¢, =V g7t = Vg =€ =¢
oy (6.12)

gf =€—:(”0)—, # function of us.
€

Then as a matter of convention we set
9gc =1
"=he , u' = hp.
This gives the case in [11, (Appendix C)] which admits of only two types of solutions:
Cartesian coordinates and the inversion of Cartesian coordinates.

This is a very restrictive case, so the constraint in (6.6) is not very significant, and
we can allow the formal permittivity to be anisotropic.
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7 Scaling to Real Medium for H-Modes

In Sections 3 and 6 the introduction of a scaling of the u, coordinates to general
orthogonal curvilinear coordinates was considered, for the cases of real TEM fields and
real E-modes. The basic scaling relations appear in (3.1) and (3.2). We now consider
the results of Section 5, which relate to the formal fields in the H-wave case.

7.1 General Results

Analogous to the E-wave case, the transverse components (corresponding to the
subscripts 1 and 2) are related as in (3.3) and (3.4). In addition we have

, a,. hih
”go) (ul,uz)gc l(us) = ,1132#3

/1'(10)’ (ul,u2)u§°)' (w1, u2) =h3p1ps (7.1)
#go)l (u1, Uz)#go)' (w1, u2) =hipaps
7.2 Isotropic' Real Medium
If the real medium is constrained to be isotropic we have
cTa=a (7.2)

B =p1 = H2 = H3-

Hence we have five constitutive parameters to consider as in the case of an E-wave.
The results of Section 3.2 all follow. In particular we will have

O = 6;o)' O

h1 =h2 = ht

oy 0y __ (o)
O = = 0

7 T

(7.3)

and surfaces of constant us are spheres or planes. The results of (6.4) also directly
apply. :

7.3 Uniform Real Permeability

Now instead of constraining uniform real permittivity (leading to the same results
as in Section 6.3), let us constrain the practical case of uniform real permeability as

K= Ho (7.4)
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while € (3 being irrelevant) is isotropic and from (6.3) the transverse components ¢

and p£°" are isotropic. Section 3.4 still applies giving

~
7 = [ﬂ] :
€
€ =€(U1, u2)
-1
v = [uo€] 2 = v(u1, u2)
v(uy, Up)
hs =— @y 9c(us)
From (7.1) we have
(o (0 12
[/J't (uh u2)”’3 ) (ula 'u'2)]
h = - ! _ — function of u;, us only
Ho
Again hy(u;, up) implies that surfaces of constant ug can only be planes.
—_
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8 Concluding Remarks

We now have a significant set of results for TEM, E, and H modes. The basic form
for those is found by separating out the us (propagation) coordinate from the uy, uz
(transverse) coordinates, and requiring propagation in one direction without reflection.
Various assumptions (constraints) on the constitutive parameters lead to constraints
on the allowable coordinate systems. We can note that these results apply only to such
modes, and not to all possible solutions of the Maxwell equations which may include
additional contributions (e.g., hybrid HE modes).

A related problem is treated by Friedman[7]. Those results have some similarities
to and differences from the present results. There only p = po was considered. His
results are based on those of Bromwich[12]. The results had the decomposition of the
fields into unique E- and H-mode parts. There h; was found to be a function of us
only, but our present results allow for more general hs, specifically as a function of u,;
and u, as well.

In order to understand the differences in these results, it is instructive to quote from
Bromwich:

“The proof given below refers specially to spherical polar coordinates, and
to problems in which the whole of angular space is used. The earlier part of
the proof is arranged so that it can be applied to other types of orthogonal
coordinates; but the details of the final reasoning need modification, and
must be adapted in other cases so as to suit the problem in hand.”

The reader will note that spherical polar coordinates are assumed by Bromwich
(and, hence, Friedman). Furthermore, they use the whole of angular (0, ¢) space. This
would logically lead to the usual spherical modal decomposition. In our case, however,
we allow for the introduction of perfectly conducting boundaries such as encountered
in waveguide (including open TEM) problems. As Bromwich recognized (above) other
types of solutions might be possible (e.g., ours).

Nevertheless, there are some remarkable similarities in the results. In particular
hi/h, is independent of uz. Constraining the practical case of p = po we all have
€, = € with some freedom for €3. In our case, however ¢; can be a function of u#, and
uy. This leads to a nontrivial example of a bending lens in which surfaces of constant
ug are nonparallel planes.

The present results also allow for more general anisotropic real and/or formal me-
dia to be considered, including for the case of TEM modes. This may lead to other
interesting cases for transient lens design.

- -
Note the fundamental assumption of E and H each having both u; and u2 com-
ponents. This could be relaxed by allowing the fields to have only one transverse
component (e.g., E; and Ha). So there are various possible other cases to consider.
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Appendix A. Multiplicity of E-Modes

Another approach to the constraints on i (Section 4.4) is found by setting

(0y (o)
H= al(u11u2) 0 _ B’ € 0
P= ( 0 0(u1, u2) ) B ( 0 ”goy oy (A.1)

Then consider a set of potentials ®™ corresponding to @, in (4.16) and requiring the
various equations to hold for all of those.
Expansion of (A.1) yields

N oo,
— Q2 ! /
. au __ 0 0, ) 0 3<I>
0 Vt a ? - au ( 8u2 + 3u2 6u1
! 3u
1
! ! / ]
__ Dy 0¥, OF, 0oy 0% 5 (A2)
6u1 Bug Bu16U2 BUQ 6’U.1 3u26u1
8a1 62
_— ’ (I>'
= _3& VL + (o1 — o) 5 Tudun
Oou,

Next, let V,®(®) and V, ®® be nonzero, noncollinear vectors at an arbitrary point
(u1,u2). These vectors span a two dlmensmnal space. Hence we may take

Vi, = §,Vid®) + 6,33 £ 0 (A.3)
with &; and &, chosen at our convenience. Hence, we choose 4; and 4 so that
aal ?ﬂ
3532 otV @, = | % |- [aVEW +5VEP] =0 (A4)
ouy ouy

At least one of these dot products must be nonzero since, by hypothesis, V;®(® and
v, ®@ are not collinear. We note that one of §;, &, may be zero if one of the dot
products

O 9o
_6?2_1922 V&M | or _35022 . V@ (A.5)
ouy Oou,

vanishes. Thus, from (A.3) and (A.4) we have

PO 23O
(a1 — ) [61 Ou,0uq +o aulauz] =0

(A.6)
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Since we have the freedom to choose &™) we can assume one of the two terms in
(A.6) is nonzero. Hence

a,—oay =0 (A.7)
and thus we take
a=a =0 (A.8)
which yields [9]
0%,
0=V, |a —3%22 A
a?pzl 53! (A-9)
0=aV'- _3?1,22 +(Via) - —a%‘?
ou; ouy
and hence
0%,
(V'a) - —3%22 =0. (A.10)
Ouy

Again, because of the freedom to choose @, let us choose ®® and ®* as before so
that V.®® and V/,®“ span another 2-dimensional space at the point u1, uz, which is
arbitrary. We then conclude that

. ,
Thus we have
a = constant (neither a function of u; nor Up). (A.12)

While there may be isolated points where this does not apply, due to singularities in
V' & this is of no consequence here. Hence the form in (4.23) results. This constraint
need not be applicable in some special cases. For example, in the case of unipolarized
transverse fields only one of p§°)'e‘1°" or y&“"egm' need be considered [4].
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Appendix B. Characteristics of Coordinates for the
Case of Equal Transverse Scale Factors

In [6, (pp. 114-117, 146-149), 1(Appendix B), 11(Section 2.4)] there is the result
that surfaces of constant us for the case of

can only be planes or spheres. Here we carry the considerations a little further.
For the second fundamental form for a constant uz surface we have the coefficients

hy ohy . no__ ha Oha

Dy=—-—— —, =—— — 2
5= Thy Bus * 0 hs Oug (B2)
for an orthogonal curvilinear system (Dj = 0). Following Eisenhart we have
D "
s _ 1 Oh D5 __ (B.3)

" hsh Bus B3

so that the first (h?) and second fundamental coefficients are in proportion. Such a
surface satisfies

D+ +PDy+af+Pz+af =1 (B.4)

which is the general equation of a sphere with the special case of A = 0 giving a plane.
Applying these results to the case of E modes in Section 6.3, we have the result for
isotropic real media that

he = hy(uy,up) = function of u;, uz only. (B.5)

Placing this form in (B.3) we have

Ok, _
=0 A=0 (B.6)

and surfaces of constant uz can only be planes.
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