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ABSTRACT

Two reflector-type impulse-radiating antennas with focal length to diameter ratios of
0.25 and 0.5 are numerically analyzed. The numerical model is developed using the method
of moments code in the EIGER code suite. The performance of the numerical model is
validated by comparing the radiated field measured on boresight and the reflected voltage
measured in the transmission line with the results from the numerical model. Using the
numerical model, the contribution of each part of the antenna to the radiated field and the
reflected voltage is identified. The reflected voltage waveform in the transmission line and
the electric field waveforms both in the near- and far-zones are presented. The impulse and
prepulse amplitudes, spot sizes, and power budgets are also presented.



I. Introduction

A number of applications require radiation of a short pulse to detect and identify

targets [1–5]. One candidate antenna for such applications is the reflector-type impulse-

radiating antenna (IRA) [6–10]. The reflector-type IRA can radiate a short pulse that is

highly directive. The antenna is also efficient because it can be made to radiate a large

portion of the input energy by matching the characteristic impedance of the transmission

line to that of the transverse electromagnetic (TEM) feed structure and by appropriately

terminating the TEM feed structure at the reflector.

A simple analytical model that gives the radiated fields on boresight has already been

developed by Baum et al. [9–13]. The model has been extended to work off boresight and

in the near zone in [14]. However, neither of these models can predict tail waveforms, power

budgets, etc. These characteristics can easily be obtained by modeling the IRAs numerically.

Two IRAs are numerically modeled and analyzed; one with a focal length to diameter

ratio (F/D) of 0.25 (flat IRA) and one with a F/D of 0.5 (tall IRA). The performance of

the numerical model is validated by a set of measurements. The numerical model enables

one to obtain various characteristics of the IRAs, such as far- and near-field waveforms,

illuminated spot sizes, and power budget. The numerical model has been developed using

the method of moments (MoM) code in the electromagnetic interactions generalized (EIGER)

code suite [15–17].

II. Modeling of Impulse-Radiating Antennas

Let us consider the IRAs shown in Fig. 1. Each IRA has two pairs of conical-coplanar-

plate TEM feed arms, which are placed perpendicular to each other. The TEM feed arms

have a conical geometry within a sphere of radius L centered at the drive point, where a

spherical TEM wave launched at the drive point propagates outwardly without disturbance.

The angles associated with the TEM feed arms are chosen such that the characteristic

impedance of each pair of the arms is 400Ω in the undisturbed section. Outside the spherical

region of radius L, the TEM feed arms are linearly tapered and connected to the reflector
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Fig. 1. Comparison of the two IRA geometries. (a), (b) Top view. (c), (d) Side view. (e), (f) Feed arm
dimensions.

3



TABLE I

Dimensions of the IRAs.

F/D L/D β0 β1 β2

Flat IRA 0.25 0.19 73.87◦ 90◦

Tall IRA 0.5 0.5 53.01◦ 46.88◦ 59.94◦

through 200Ω chip resistors, which are used as low frequency matching circuits.

The IRA is excited at the drive point. Each pair of arms can be excited independently

to radiate two polarizations or excited in parallel to lower the characteristic impedance of

the arm structure [18]. In this paper, the arms in the positive-y half-space are connected

together, and the arms in the negative-y half-space are connected together at the drive point.

The resulting characteristic impedance of the TEM feed structure is 200Ω. The dimensions

are summarized in Table I for the two IRAs.

The IRA has redundancies in the geometry. By eliminating these redundancies, the

efficiency of the numerical model can be significantly improved. Note that one pair of TEM

feed arms is placed in the symmetry plane of the other pair of TEM feed arms, where the

tangential electric field is zero. Thus, the field generated by the first pair is independent of

the existence of the second pair, and the fields generated by the two pairs are simply the

orthogonal versions of each other. Thus, the geometry of the IRA with one pair of TEM feed

arms can produce enough data to predict the response of the IRA with two pairs of TEM

feed arms. The 2-arm IRA still has reflection symmetry. This allows one to replace half of

the 2-arm IRA geometry with a perfect electric conductor (PEC) plane placed orthogonal

to the TEM feed arms. The PEC plane mirrors the remaining geometry. Thus, only half of

the reflector and one TEM feed arm need to be included in the numerical model 1.

A MATLAB r© program was written to generate the mesh for the numerical model.

Fig. 2 shows the meshes generated for the two IRAs. The mesh contains one TEM feed arm

1Note that half of the resulting geometry can be replaced with a perfect magnetic conductor (PMC) plane placed
at the TEM feed arms. This would have allowed one to include only one TEM feed arm and a quarter of the reflector
in the model; however, a PMC plane is not supported by EIGER [19].
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Fig. 2. (a), (b) Meshes used for the numerical model of the IRAs. (c) Detail view of the mesh around
the apex of the tall IRA. (d) Detail view of the mesh around the arm termination of the tall IRA. The
locations of the delta-gap elements are marked by dots.
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and half of the reflector for each IRA. The mesh for the IRA with F/D = 0.25 is composed

of 8930 triangle elements and 3 wire elements, and the mesh for the IRA with F/D = 0.5

is composed of 9252 triangle elements and 3 wire elements. The triangle elements are used

to mesh the PEC surfaces, e.g., the TEM feed arm and the reflector, and the wire elements

are used to mesh the lumped elements, e.g., the drive point and the chip resistor. The drive

point is modeled using a delta-gap voltage source. The chip resistor is modeled using a 200Ω

delta-gap lumped impedance model. Note that the mesh density is increased around the

edges of the reflector and the TEM feed arm to represent fast varying currents at the edges

better. The mesh is further refined in the TEM feed arm because the current density is high

in the arm.

The mesh is excited by the delta-gap voltage source. The electric field integral equa-

tion (EFIE) with linear basis functions is used to solve for the mesh currents. The EIGER

physics solver (EIGER Solve) is executed in parallel using the message passing interface

(MPI) protocol to produce the mesh currents. The calculation is conducted at 160 frequency

points from 125MHz (D/λ = 0.128) to 20GHz (D/λ = 20.4) with 125MHz increments on

the Beowulf cluster at the Electromagnetics/Acoustics Laboratory at the Georgia Institute

of Technology.2 The run times for the mesh current calculation were approximately 91.3

hours for the IRA with F/D = 0.25 and 99.2 hours for the IRA with F/D = 0.5 using 32

computer nodes; each node is equipped with an AMD AthlonTM 2200+ processor.

The fields and the input impedance are obtained by running EIGER Analyze, which is

the EIGER physics solver for secondary quantities. The quantities generated by the EIGER

physics solvers are the responses of the IRA with one TEM feed arm and half of the reflector

attached to the PEC ground plane. The responses of the 2-arm IRA with one pair of TEM

feed arm and a full reflector without the PEC ground plane can be obtained through a simple

algebraic manipulation of the quantities generated by the numerical model, e.g., halving the

fields, halving the currents, and doubling the input impedance. The responses of the full

2Note that the upper frequency limit was chosen because of computer run time considerations, not limits on the
IRA. The chosen upper frequency limit gives us reasonable run times while giving us enough frequency content to
see essentially all of the interesting interactions in the antennas. This upper frequency limit sets the minimum pulse
parameters in the later graphs.
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IRA whose geometry is shown in Fig. 1 are then obtained through a simple manipulation of

the responses of the 2-arm IRA. The currents and fields of the full IRA are obtained by first

rotating the 2-arm IRA by −45◦ and +45◦ and then adding the currents and fields of the

rotated 2-arm IRAs vectorially. The input impedance of the full IRA is obtained by halving

the input impedance of the 2-arm IRA [20].

The responses in the frequency domain are transformed into the time domain for a

voltage pulse incident in a transmission line. The input pulses considered in this paper are

step-like, Gaussian, and differentiated Gaussian. These functions are defined as follows:

Step-like: V (t) = V0

{
1

2
+

1

2
erf

(
k1

t

t10-90%

)}
, (1)

k1 = 2 erf−1(0.8) � 1.8124,

Gaussian: V (t) = V0e
− ln 16(t/tF WHM )2 , (2)

Differentiated Gaussian: V (t) = V0
t

tP -P
e0.5−2(t/tP -P )2 . (3)

Here, erf(t) is the error function [21], and the pulse parameters t10-90%, tFWHM , and tP -P are

the 10% – 90% rise time of the step-like pulse, the full-width half-maximum of the Gaussian

pulse, and the peak-to-peak interval of the differentiated Gaussian pulse, respectively. The

time domain waveforms of these pulses and the corresponding frequency spectrums are shown

in Fig. 3, where the half-maximum frequency for the Gaussian pulse is

f1/2 =
ln 4

πtFWHM

, (4)

and the peak frequency for the differentiated Gaussian pulse is

fPK =
1

πtP -P
. (5)

III. Validation of the Numerical Models

To validate the performance of the numerical model, the radiated field on boresight

and the reflected voltage in the transmission line are measured and compared with those
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Fig. 3. Input pulses. The graphs in the left column are the time domain waveforms for (a) a step-like
pulse, (c) a Gaussian pulse, (e) a differentiated Gaussian pulse. The graphs in the right column are
the corresponding frequency spectrums for (b) the step-like pulse, (d) the Gaussian pulse, and (f) the
differentiated Gaussian pulse.
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Fig. 4. Measurement setup for the radiated field of the IRA. (a) Measurement of the radiated field,
(b) Measurement of thru, which is used to compensate for the delay and attenuation along the balun
assemblies and coaxial cables. (c) Top view of the dipole probe. (d) Side view of the dipole probe.

calculated from the numerical model. The setup for the radiated field measurement is

schematically shown in Fig. 4. The IRA used in the measurement is a slightly modified

version of the antennas used in [1]. The flat IRA (D = 30.6cm) and a small dipole probe are

connected to a network analyzer through balun assemblies and coaxial cables. The geometry

of the dipole probe is shown in Fig. 4 (c) and (d).

The diagram of the balun assembly is schematically drawn in Fig. 5. The balun

assembly consists of a Picosecond Pulse Labs Model 5315A Balun [22] and a pair of 50Ω

semi-rigid coaxial cables. The coaxial cables are connected to the output ports of the balun,
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Fig. 5. Schematic of the balun assembly. A Picosecond Pulse Labs Model 5315A Balun is connected to two
semi-rigid 50Ω coaxial cables. (LB � 60cm)

which have opposite polarities. The outer conductors of the cables are connected together

to form a 100Ω balanced transmission line. The cable pair is about 60cm long. This length

creates a time window of about 5.8nsec in which no multiple reflections exist between the

antenna and the balun because it takes that amount of time for a signal to make a round

trip inside the cable pair.

The radiated field of the IRA is received by a small dipole probe, which is placed r

away from the IRA. The network analyzer measures the frequency response of the system

(S21) by sweeping frequency points from 63MHz to 10.143GHz with 6.3MHz increments.

This measurement includes the delay and attenuation in the balun assemblies and cables.

To compensate S21 for the delay and attenuation, a simple calibration procedure is applied.

First, the IRA and the dipole probe are removed from the balun assemblies, and then the

balun assemblies are connected back to back. The data measured from this configuration

(S ′
21) contains the same amount of delay and attenuation as S21 does. Thus, by dividing S ′

21

into S21, we can remove the delay and attenuation and obtain the transmission coefficient

(T = S21/S
′
21) from the IRA to the dipole probe. This transmission coefficient is then

transformed into the time domain for an input pulse incident in a 100Ω transmission line

to the IRA. The result is the time-domain waveform of the voltage across the dipole probe,

which is connected to a 100Ω transmission line. The waveform still includes unwanted

signals, such as reflections from the measurement equipment, reflections from the ground,

and multiple reflections between the antenna and the balun. These unwanted signals are
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removed by gating in the time domain.

The transmission coefficient is also obtained from the numerical model. First, the

electric field of the IRA is obtained from the numerical model. Next, the dipole is also

numerically modeled. In the numerical model, the dipole probe is loaded with a 100Ω

lumped resistor at the center to simulate the 100Ω transmission line and illuminated by a

planewave. Then, the effective height of the dipole probe is calculated as:

h̄d(ω) =
IL(ω)R

E0
ŷ, (6)

where IL(ω) is the current through the load (R = 100Ω), E0 is the amplitude of the plane

wave illuminating the dipole. Finally, the electric field of the IRA, the effective height of

the dipole, and the input pulse incident in a 100Ω transmission line are convolved to give a

time-domain waveform of the voltage across the dipole probe.

The resulting waveform obtained from the numerical model is compared with the

measured waveform in Fig. 6. The figure shows the waveforms measured at seven distances

ranging from r/D = 6.97 to r/D = 24.9 for three input pulses: a step-like pulse with

t10-90%/τa = 0.15, a Gaussian pulse with tFWHM/τa = 0.15, and a differentiated pulse with

tP -P /τa = 0.15. For each input pulse, the waveform is plotted as a function of retarded time,

tr = t − r/c, and vertically displaced according to the distance between the IRA and the

dipole probe. The horizontal axis is normalized by τa = D/c, which is the time required by

light to travel across the reflector diameter. As shown, the measured waveforms are in good

agreement with the waveforms obtained from the numerical model. The slight mismatch

in the amplitude is believed to be from the error in the simple calibration procedure. The

measurement for S ′
21 includes a discontinuity at the junction between the two balun assem-

blies. This discontinuity causes a reduction in S ′
21, which in turn leads to an increase in the

transmission coefficient, and therefore results in an increased waveform.

The performance of the numerical model is also validated in terms of the reflected

voltage in the transmission line. Fig. 7 (a) shows the setup for the reflected voltage mea-

surement. The network analyzer sees the reflection from the IRA through the cable and

the balun assembly, which can be considered as a two-port network. Thus, the reflection
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Fig. 6. Voltages across the dipole probe as functions of time for (a) a step-like voltage pulse with t10-90%/τa =
0.15, (b) a Gaussian voltage pulse with tFWHM/τa = 0.15, and (c) a differentiated Gaussian voltage pulse
with tP -P /τa = 0.15 incident in a 100Ω transmission line. The solid lines are voltages across the dipole
probe obtained numerically, and the dotted lines are those measured. Each waveform is normalized by
V0 and vertically displaced according the distance between the IRA and the dipole probe.
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Fig. 7. Measurement setup for the reflection from the IRA. (a) Measurement of the reflection through a
two-port network (balun assembly and cable). (b) Measurement of the three standards through the
two-port network.

measured by the network analyzer may be expressed as [23]:

ΓANA = SB
11 +

SB
12S

B
21ΓIRA

1 − SB
22ΓIRA

, (7)

where SB
11, SB

22, and SB
12S

B
21 are the scattering parameters of the two-port network, and ΓIRA

is the reflection from the IRA seen from a 100Ω transmission line. The three S-parameters

can be identified by measuring three known standards, e.g., open, short, and match. Fig. 7

(b) shows the measurement of these three standards. The balun assembly is simply left open

for the open and shorted by a piece of metal wire for the short. The balun is terminated

with a 100Ω chip resistor for the match. Once the S-parameters are obtained, the reflection

from the IRA (ΓIRA) is calculated by inverting Eq. (7). The reflection is measured at 1601

frequency points from 50MHz to 20.05GHz with 12.5MHz increments. Because the TEM feed

structure of the IRA is designed to be connected to a 200Ω transmission line, the reflection

in a 200Ω transmission line is more appropriate. The reflection in the 200Ω transmission
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line can be obtained by a simple conversion:

Γ =
(Z1 − Z0) + (Z1 + Z0)ΓIRA

(Z1 + Z0) + (Z1 − Z0)ΓIRA

, (8)

where Z1 = 100Ω is the characteristic impedance at the output of the balun assembly, and

Z0 = 200Ω is the characteristic impedances of the matched transmission line. The result is

then transformed into the time domain for an input pulse incident in the 200Ω transmission

line.

The reflection from the IRA in a 200Ω transmission line is also obtained from the nu-

merical model. First, the input impedance calculated from the numerical model is converted

to the reflection coefficient seen by the 200Ω transmission line. Then, the reflection coeffi-

cient is convolved with an input pulse incident in the transmission line to give the reflected

voltage waveform in the time domain.

The resulting waveform obtained from the numerical model is compared with the

measured waveform in Fig. 8. The figure shows the reflected voltage in a 200Ω transmission

line as a function of time for three input pulses: a step-like pulse with t10-90%/τa = 0.075,

a Gaussian pulse with tFWHM/τa = 0.075, and a differentiated pulse with tP -P /τa = 0.075.

The solid lines represent the waveforms obtained numerically, and the dotted lines represent

those measured. Note that the amplitudes of the waveforms are small. This means that the

IRA is well matched to the 200Ω transmission line. The largest reflection occurs at t/τa � 0,

which comes from the drive point. The drive point in the experimental model is the junction

between the balun assembly and the TEM feed arms. This junction is not perfect in the

experimental model. The reflection from the junction is simulated in the numerical model

by placing a small parallel capacitance (0.065pF) at the junction.

As seen in the figure, the measured waveforms are in good agreement with the wave-

forms obtained from the numerical model. The results in Fig. 8 (a) are seen to differ over the

time interval 0 < t/τa < 0.5. During this time interval, the reflection comes from the undis-

turbed section of the TEM feed arms. The reason for this reflection is that the numerical

model is not accurately predicting the characteristic impedance of the undisturbed section

of the TEM feed arms. The amplitude of the reflection is approximately 0.025V0, which is

equivalent to the reflection from a 190Ω load. Thus, the numerical model underestimates the
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Fig. 8. Reflected voltages in a 200Ω transmission line as functions of time. The solid lines represent those
obtained numerically and the dotted lines represent those measured. The antenna is excited by (a) a
step-like voltage pulse with t10-90%/τa = 0.075, (b) a Gaussian voltage pulse with tFWHM/τa = 0.075,
and (c) a differentiated Gaussian voltage pulse with tP -P /τa = 0.075 incident in the transmission line.
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characteristic impedance of the undisturbed section by approximately 5%. In Fig. 8 (a) –

(c), the results are seen to differ at t/τa � 1, which are the reflections from the matching

circuit. This is believed to be from the inaccuracy in the model for the matching circuit. As

shown in Fig. 6, these discrepancies do not seem to degrade the performance of the numerical

model in predicting the radiated fields.

IV. Analysis of the Impulse-Radiating Antenna

The numerical model was validated in the previous section. In this section, the IRAs

with F/D = 0.25 and F/D = 0.5 are analyzed using the numerical model. The antenna is

excited by an input voltage pulse incident in a 200Ω transmission line, which is matched to

the characteristic impedance of the TEM feed structure.

In Fig. 9, the radiated fields predicted by the numerical model are compared as func-

tions of time with those predicted by Baum et al.’s analytical model [9,24]. The waveforms

are in good agreement, particularly when the simplicity of the analytical model is considered.

The tail waveforms, which are not included in the simple analytical model, mainly result

from the multiple reflections between the TEM feed arms and the reflector. The prepulse

waveform is distorted near the impulse because of the disturbance from the TEM feed arm

termination.

These deviations from the simple analytical model can be understood more clearly

by conducting a simple wave path analysis. In Fig. 10, the radiated fields on boresight of

the IRAs are plotted as functions of time for a step-like pulse with t10-90%/τa = 0.075 and

a Gaussian pulse with tFWHM/τa = 0.075. The beginning of the direct, spherical radiation

from the TEM feed arms (prepulse) is marked by A. The wave launched at the drive point

is spherically guided by the TEM feed arms. Thus, the waveform is a replica of the signal at

the drive point until the guided wave is disturbed by the linear taper after the radial distance

L. The beginning of the signal from the tapered section is marked by T. The wave guided

toward the reflector is reflected back and forms a planar aperture. Because the reflector is a

part of a paraboloid, and the drive point is located at the focal point of the paraboloid, the
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Fig. 9. Boresight waveforms predicted by the numerical model (solid line) and the simple model (dotted
line) when the input pulse is a step-like pulse with t10-90%/τa = 0.075. The focal length to diameter
ratios (F/D′s) for the antenna are (a) 0.25 and (b) 0.5.

field at each point of the aperture has the same time-dependence. For this type of aperture,

the radiation is a derivative of the aperture field. This radiation (impulse) is marked by D

in the figure. The reflected wave induces currents in the TEM feed arm, which can radiate

again. An example path for this signal is drawn and marked by P. The wave reflected from

the edge of the reflector also radiates. This is marked by E. For the flat IRA, signal E also

includes the signal taking multiple-reflection path, e.g., drive point – reflector – TEM feed

arm – reflector – observer. The signal taking this path appears at tr/τa � 2 for the tall IRA.

The multiple reflection paths are longer so the peaks in the tail waveforms are more spread
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Fig. 10. Analysis of the radiated waveforms. (a), (b) Radiated waveforms when the input pulse is a step-
like with t10-90%/τa = 0.075. (c), (d) Radiated waveforms when the input pulse is a Gaussian with
tFWHM/τa = 0.075. (e), (f) Wave and current paths.
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out for the tall IRA than the flat IRA.

Because the prepulse is a replica of the signal at the drive point, the prepulse ampli-

tude does not depend strongly on the input pulse rise time. However, the impulse amplitude

depends on the pulse rise time because the waveform is a derivative of the drive point sig-

nal. Fig. 11 shows the variation of the radiated waveforms according to the input pulse

parameters. The radiated fields are graphed as functions of time for step-like, Gaussian,

and differentiated Gaussian pulses and vertically shifted according to the pulse parameters.

The input pulse waveforms are shown in the left column. The prepulse amplitude does not

vary much according to the input pulse. In fact, the prepulse amplitude is constant for fast

rising pulses irrespective of the pulse parameter. However, the impulse amplitude strongly

depends on the input pulse. For fast rising pulses, the impulse is large in amplitude and

short in duration because the impulse waveform is a derivative of the input pulse. For slowly

rising pulses, the impulse is small and long. The long impulse eats into the prepulse. For

an IRA with a small F/D, the impulse eats into the prepulse before the prepulse reaches its

theoretical maximum and therefore lowers the prepulse amplitude. This can be easily seen

in Fig. 11 (b) for t10-90%/τa ≤ 0.2 .

Fig. 12 shows the radiated fields of the two IRAs at a number of observation angles

around the boresight direction. The input pulses for this figure are a step-like pulse with

t10-90%/τa = 0.075 and a Gaussian pulse with tFWHM/τa = 0.075. The angles are measured

in the y-z plane (E-plane) and in the x-z plane (H-plane) from the rotational axis of the

reflector. The impulse is lowered and distorted rapidly with increasing observation angle

because the aperture field is focused at θ = 0. However, the shape and amplitude of the

prepulse vary slowly with respect to the observation angle.

The impulse and prepulse amplitudes are summarized in Fig. 13 as functions of ob-

servation angle for a range of step-like pulses. The lines in the left hand side of each graph

represent the impulse and prepulse amplitudes in the H-plane, and the lines in the right

hand side of each graph represent those in the E-plane. Because the distinction between

the impulse and prepulse is obscure off boresight, simply the maximum and minimum of the

radiated field (rEr/V0) are taken as the impulse and prepulse amplitudes, respectively.
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Fig. 11. Radiated fields (rEr/V0) on boresight as functions of time for a range of input pulse parameters.
(a), (d), (g) Waveforms of step-like, Gaussian, and differentiated Gaussian pulses. (b), (e), (h) Radiated
fields from the flat IRA. (c), (f), (i) Radiated fields from the tall IRA.
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Fig. 12. Radiated fields at a number of observation angles. Input pulses are (a), (b) a step-like pulse with
t10-90%/τa = 0.075 and (c), (d) a Gaussian pulse with tFWHM/τa = 0.075.
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Fig. 13. Amplitudes of the impulse and prepulse as functions of observation angle. (a), (b) Impulse
amplitudes (max rEr/V0). (c), (d) Prepulse amplitudes (min rEr/V0).
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The impulse amplitude at small angles increases rapidly with decreasing pulse rise

time, which is expected from the simple analytical model. For fast rising pulses, the impulse

is large at small angles and decreases rapidly with increasing observation angle. The half-

maximum (θHM ) angle, which is the observation angle where the amplitude drops by half

from its maximum, decreases with decreasing pulse rise time. Thus, the impulse is strong

only in a narrow angle. The figure shows that θHM is smaller in the H-plane than in the

E-plane.

The prepulse amplitude remains constant at small angles and depends strongly on

the pulse rise time at large angles. However, in Fig. 13 (c), the prepulse for the flat IRA at

small angles decreases with increasing pulse rise time for t10-90%/τa ≥ 0.2. The reason for

this is that the prepulse and impulse overlap and lower each other when the input pulse rises

slowly. The decrease in the impulse amplitude on boresight for slowly rising pulses is seen in

Fig. 13 (a). This effect is not seen in Fig. 13 (b), (d) for the tall IRA because its prepulse is

longer in duration. This effect will occur with a pulse rise time larger than t10-90%/τa � 0.4.

Next, Fig. 14 shows the radiated fields (Ey) on the rotational axis of the reflector

at distances close to the antenna. The input pulses for this figure are a step-like with

t10-90%/τa = 0.075, a Gaussian with tFWHM/τa = 0.075, and a differentiated Gaussian with

tP -P /τa = 0.075. In each graph, the radiated field is normalized by V0/r and vertically

displaced according to the observation distance. The figure shows that the prepulse stays

constant because it originates at one point (drive point) and propagates spherically. The

impulse varies according to the observation distance. For a step-like pulse, the impulse

is small in amplitude and long in duration at distances close to the antenna. The impulse

becomes large in amplitude and short in duration as the observer moves farther away because

the impulse is the radiation from the aperture field focused at infinity.

Fig. 15 shows the normalized impulse amplitude (max rEy/V0) on boresight as a

function of the observation distance for a range of step-like pulses. The figure shows that

the normalized amplitude increases rapidly with increasing observation distance at distances

close to the antenna and converges slowly to the far-field amplitude at distances far from

the antenna. Also note that the impulse amplitude is larger for a smaller pulse rise time at
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Fig. 14. Graphs of the normalized electric field (rEy/V0) on boresight as a function of time at a number
of observation distances. The input pulses are (a), (b) a step-like with t10-90%/τa = 0.075, (c), (d) a
Gaussian with tFWHM/τa = 0.075, and (e), (f) a differentiated Gaussian with tP -P /τa = 0.075.
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Fig. 15. Impulse amplitudes (rEy/V0) for (a) the flat IRA and (b) the tall IRA as functions of observation
distance for a number of step-like pulses.

all points.

Fig. 13 showed that the impulse in the far-field is strong only in a narrow angle for

a fast rising step-like pulse. This can be shown in terms of the spot size at distances close

to the antenna. To determine a spot size, an imaginary observation plane that is normal

to the rotational axis of the reflector is placed at a distance, where the impulse amplitude

(maximum of Ey) distribution is recorded. Then the half-maximum width of the distribution

is taken as the spot size. Fig. 16 compares the spot sizes of the flat IRA and the tall IRA

as functions of observation distance for a number of step-like pulses. The lines above the

horizontal axis represent the spot sizes measured in the E-plane, and the lines below the

horizontal axis represent those measured in the H-plane. The figure shows that the spot size

decreases with decreasing pulse rise time, and therefore the impulse beam width decreases

with decreasing pulse rise time. Note that the spot size is smaller in the H-plane than in

the E-plane for both antennas. Also, the spot size is smaller for the flat IRA than for the

tall IRA.

Next, we will analyze the reflected voltage in the transmission line when the antenna

is radiating in free space. In Fig. 17, the reflected voltages in the transmission line are plotted

for a step-like pulse with t10-90%/τa = 0.075 and a Gaussian pulse with tFWHM/τa = 0.075.

For each antenna, the first signal A centered at t/τa � 0 is the reflection from the drive point.
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Fig. 16. Spot sizes of the flat IRA (solid lines) and the tall IRA (dotted lines) for a number of step-like
pulses. The lines above the horizontal axis represent half spot sizes (∆W/2) in the E-plane, and the
lines below the horizontal axis represent those in the H-plane. The spot sizes are normalized by the
reflector diameter (D).

The beginning of the signal from the tapered section of the TEM feed arms is marked by

T. Because the amount of metal gradually decreases along the taper, the impedance of the

TEM feed arms gradually increases, and therefore the wave is continuously and positively

reflected until the wave reaches the resistor. When the wave reaches the resistor, the wave

experiences a sudden drop in the impedance (200Ω resistor and metal reflector), and is

reflected negatively (E). Meanwhile, the wave propagating toward the reflector is negatively

reflected at the reflector surface. The reflected wave induces currents along the arms. D

and P show two of these wave paths. Note that D is observed earlier than P because of the

difference in the wave path lengths. Note also that the waveform for the flat IRA is more

complicated than that for the tall IRA because the signals (T, D, P, and E) for the flat

IRA are more spread out in time than those for the tall IRA.

Fig. 18 shows the variation in the reflected voltage waveforms caused by the change

in the input pulse parameter. Note the interesting behavior of the waveforms of the tall

IRA at t/τa � 1.3. In Fig. 18 (c), the amplitude of the waveform increases with decreasing
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Fig. 17. Analysis of the reflected voltages in the transmission line. (a), (b) Reflected voltages when the
input pulse is a step-like with t10-90%/τa = 0.075. (c), (d) Reflected voltages when the input pulse is a
Gaussian with tFWHM/τa = 0.075. (e), (f) Wave and current paths.
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Fig. 18. Reflected voltages in the transmission line as functions of time for a range of pulse parameters. (a),
(d), (g) Waveforms of step-like, Gaussian, and differentiated Gaussian pulses. (b), (e), (h) Reflected
voltages (Vrefl/V0) from the flat IRA for the input pulses. (c), (f), (i) Reflected voltages from the tall
IRA for the input pulses. Note that the vertical scale for the input pulse waveforms is 1.0, and the
vertical scale for the reflected voltages is 0.1.
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pulse parameter, t10-90%, but in Fig. 18 (f), (i), the amplitude of the waveform decreases with

decreasing pulse parameters in the ranges of tFWHM/τa < 0.3 and tP -P /τa < 0.3. The reason

for this behavior is that, in the low frequency range, the reflection coefficient of the tall IRA

results in the maximum response in the time domain for the pulses with tFWHM/τa � 0.3

and tP -P /τa � 0.3.

Finally, in Fig. 19, the power budgets for the two IRAs are shown. The power reflected

back in the transmission line (Prefl), the power dissipated in the matching circuits (Pdiss),

and the power radiated in free space (Prad) are shown as functions of normalized frequency.

The powers are normalized by the incident power in the transmission line (Pin). For both

IRAs, the reflected power is small over the entire frequency range, and therefore the IRA

is well matched to the 200Ω transmission line. At low frequencies, the power dissipated

in the matching circuits is larger than the power radiated. However, at high frequencies,

the radiated power is larger than the dissipated power. The radiated power increases with

increasing frequency and reaches almost unity at the highest frequency. This indicates that

the radiation efficiency of the IRA increases with increasing frequency. Note the frequency

where the radiated power begins to exceed the dissipated power. This frequency is lower

for the tall IRA than the flat IRA, and therefore the radiation efficiency of the tall IRA is

higher than that of the flat IRA at low frequencies. The reason for this is that the tall IRA

has a longer focal length than the flat IRA. This allows both the impulse and the prepulse

to radiate better for a slowly rising pulse, whose frequency content is low.

V. Conclusion

A numerical model using EIGER was developed for the IRA. The model was made ef-

ficient by eliminating geometrical redundancies. Only half of the reflector and one TEM feed

arm were meshed. The performance of the numerical model was validated by comparing the

radiated field measured on boresight and the reflected voltage measured in the transmission

line with the results from the numerical model.

The IRAs with F/D = 0.25 and 0.5 were analyzed. The radiated waveform predicted
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Fig. 19. Power budgets of (a) the flat IRA and (b) the tall IRA as functions of normalized frequency (D/λ).
The powers are normalized by the power incident in the transmission line.
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by the numerical model was compared with the one predicted by the simple analytical model.

They were different mostly in the prepulse and tail waveforms. By conducting a simple wave

path analysis, the causes of the differences were identified. The prepulse was distorted near

the impulse because of the disturbance in the TEM feed arm taper. The postpulses were

due to the multiple reflections inside the antenna, and therefore they were more spread out

for the IRA with a larger F/D.

The radiated waveform on boresight was plotted for step-like, Gaussian, and differ-

entiated Gaussian pulses for a range of pulse-parameters. The impulse amplitude depended

strongly on the input pulse parameter because the impulse was a derivative of the input

pulse. The prepulse amplitude did not depend strongly on the input pulse parameter for

fast rising pulses. However for slowly rising pulses, the prepulse was seen to be lowered

because the prepulse and the impulse overlap and lower each other. Because the prepulse

of the flat IRA is shorter than that of the tall IRA, the flat IRA suffers more from this

phenomenon.

The radiated waveform was also plotted for a number of observation angles for a

step-like and a Gaussian pulses. The amplitude and shape of the prepulse did not depend

strongly on the observation angle. However, the shape of the impulse was distorted rapidly

with increasing observation angle. The summary graph was drawn for the impulse and

prepulse amplitudes for a range of step-like pulses at a number of observation angles. The

graph showed that the impulse was directive in the far-zone. This directive property was

also shown at distances close to the antenna by plotting the illuminated spot sizes.

The normalized electric fields at distances close to the antenna were plotted for the

three types of input pulses. The prepulse stayed constant because it originated at one point

(drive point) and propagated spherically. The impulse was small in amplitude and long in

duration at distances close to the antenna. The impulse became large in amplitude and

short in duration as the observer moves farther away because the impulse is the radiation

from the aperture field focused at infinity. The summary graph for the impulse amplitude

was presented as a function of observation distance for a range of step-like pulses.

A simple wave path analysis was conducted for the signals in the reflected voltage in
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the transmission line, and the origins of the signals were identified. Also, the reflected voltage

in the transmission line was plotted for step-like, Gaussian, and differentiated Gaussian pulses

for a range of pulse-parameters. The voltage waveform for the flat IRA was complicated.

However, the voltage waveform for the tall IRA was simple because the signals were spaced

closely so they were not independently distinguishable.

Finally, the power budget analysis was conducted, and it showed that the radiation

efficiency at low frequency was higher for the IRA with a larger F/D than for the IRA with

a smaller F/D because the prepulse and postpulses overlap less for the IRAs with a larger

F/D.
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