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ABSTRACT

An IRA can effectively focus its radiation in the near field by using an ellipsoidal
reflector. In this paper, three IRAs with ellipsoidal reflectors (elliptic IRAs) are numerically
analyzed and compared with an IRA with a typical parabolic reflector (parabolic IRA). The
ellipsoidal reflector is parameterized by the distance between the center of the reflector and
its closest focus (F ), the distance between the two optical foci (Φ), and the diameter of the
reflector (D). The IRAs have the same F/D, i.e., 0.5, but different Φ/D’s, i.e., 0.5, 1.0,
and 1.5. The electric fields in the near-field region and the reflected voltage in the feeding
transmission line are analyzed. The elliptic IRAs have a larger impulse and a smaller beam
in the near-field region than does the parabolic IRA. The maximum impulse amplitude and
the minimum beam width do not occur at the optical focus for the input pulse considered in
this paper. The amplitudes of the tail waveform and the reflected voltage in the transmission
line are increased.



I. Introduction

In a typical reflector-type impulse-radiating antenna (IRA), a spherical transverse

electromagnetic (TEM) wave is guided by TEM feed arms and converted into an equi-phase

aperture by a parabolic reflector [1–4]. The aperture is focused at infinity in the geometrical

optics sense, and the radiated waveform of the aperture at its optical focus is an impulse

when it is driven by a step pulse. Thus, the IRA with a parabolic reflector (parabolic IRA)

is capable of transmitting a temporally short pulse on boresight in the far-field region.

Recently, researchers have been considering IRAs for use in ground penetrating radar

(GPR) systems because of the short pulse radiation capability [5,6]. However, for most GPR

systems, the target is close to the antennas. In this region, the impulse part of the waveform

is not fully developed, so the performance of the IRA is degraded [7, 8].

In order to improve the performance of the IRA for this application, the aperture

must be focused at a distance close to the antenna. This can be achieved by using a portion

of an ellipsoid of revolution as a reflector [9]. An ellipsoid of revolution has two optical foci,

and an optics ray originating at one focus arrives at the other focus with the same amount

of delay after a single bounce at any point on the ellipsoid. Thus, the aperture formed by

the ellipsoidal reflector is focused on the second focus.

The characteristics of an IRA with an ellipsoidal reflector (elliptic IRA) over a wide

bandwidth may be understood by a numerical model. Thus, in this paper, we investigate

the characteristics of the elliptic IRAs by modeling the antennas numerically. The numerical

model is developed using the method of moments code in EIGER [10,11]. The performance

of the numerical model using EIGER has been validated in [8].

II. Modeling of the IRAs

Consider the geometry shown in Fig. 1 (a). The dotted curve represents an ellipsoid

of revolution whose equation may be written as

x2

a2
+

y2

a2
+

z2

b2
= 1, a < b, (1)
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Fig. 1. Geometry of the elliptic IRA. (a) Ellipsoid of revolution and its two foci. (b) Schematic description
of the elliptic IRA.
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TABLE I

Dimensions of the IRAs.

Φ/D F/D L/D LA/D β0 β1 β2 Z0

0.5 0.5 0.5 0.5732 60.72◦ 53.85◦ 68.08◦ 400Ω

1.0 0.5 0.5 0.5918 57.67◦ 51.03◦ 64.82◦ 400Ω

1.5 0.5 0.5 0.6005 56.37◦ 49.85◦ 63.44◦ 400Ω

∞ 0.5 0.5 0.6250 53.13◦ 46.88◦ 59.94◦ 400Ω

where the axis of revolution is the z-axis. The distance between the two foci (Φ) and the

distance between focus fs and its closest vertex (F ) can be written in terms of a and b as:

Φ = 2
√

b2 − a2, F = b−
√

b2 − a2. (2)

The reflector is the circular portion of diameter D around the vertex.

Three elliptic IRAs with F/D = 0.5 are modeled in this paper. Φ/D’s for these

IRAs are 0.5, 1.0, and 1.5. These elliptic IRAs are compared with a typical parabolic IRA

(Φ/D = ∞) whose numerical model has been developed in [8]. In [8], the numerical model

was used to analyze the parabolic IRA with two pairs of TEM feed arms. Here, it is used to

analyze the parabolic IRA with one pair of TEM feed arms. The dimensions of the elliptic

IRAs and the parabolic IRA are summarized and compared in Table I. The differences of

the geometries are seen in Fig. 2, where the diagrams of the IRAs are drawn on top of each

other.

Each IRA has a pair of conical coplanar plates as TEM feed arms. The apex of the

TEM feed arms is placed at fs, and the angles associated with the TEM feed arms (β0, β1,

β2) are such that the characteristic impedance is 400Ω within a spherical region of radius L

centered at fs [12, 13]. Outside the spherical region, each TEM feed arm is linearly tapered

to an electrically-small 200Ω resistor, which connects the TEM feed arm to the reflector.

The series resistance seen at the terminals of one pair of the TEM feed arms is 400Ω at zero

frequency, so these resistors improve the input impedance of the antenna at low frequencies.

The radius of the spherical region is chosen to be L = F for all IRAs. This choice of L allows

the positive reflection from the taper to cancel the negative reflection from the reflector at
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Fig. 2. Diagrams of the IRAs with Φ/D = 0.5, 1.0, 1.5, and ∞. The diagrams are drawn on top of each
other to show the differences in the geometries.

the apex [14]. Thus, the reflected voltage in the transmission line is lowered.

A computer program was written to generate the meshes of the elliptic IRAs for

the numerical model. Because the IRAs have reflection symmetry across the x-z plane,

half of the geometry can be replaced with a perfect electric conductor (PEC) plane placed

perpendicular to the TEM feed arms. This improves the efficiency of the numerical model

significantly.

The efficiency can be further improved by using a different mesh for each frequency,

i.e., using a coarser mesh for a lower frequency and a denser mesh for a higher frequency. In

this paper, two meshes are used for each elliptic IRA to calculate the responses at 150 equally

spaced points within normalized frequency range from D/λ = 0.102 to 15.3, where λ is the

wavelength in freespace.1 The meshes for the lower 75 frequencies contain 5233, 5117, and

4986 triangle elements, and the meshes for the higher 75 frequencies contain 10658, 10425,

10255 triangle elements for the IRAs with Φ/D = 0.5, 1.0, and 1.5, respectively. Fig. 3 shows

the high frequency mesh for the IRA with Φ/D = 0.5 as an example. The approximation

for the apex geometry and the approximation for the electrically small resistor are shown

in Fig. 3 (b) and (c), respectively. The electrically small resistor is modeled using a 200Ω

delta-gap lumped impedance model. A delta-gap voltage source is placed at the apex to
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Fig. 3. The high frequency mesh for the IRA with Φ/D = 0.5. (a) The mesh used for the numerical model
and its image resulting from the PEC reflection symmetry. (b) Apex approximation. (c) TEM feed arm
termination with an electrically small resistor.
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excite the mesh.

The electric field integral equation with linear basis functions is used to solve for the

mesh currents. The EIGER physics solver (EIGER Solve) was executed in parallel on the

Beowulf cluster at the Electromagnetics/Acoustics Laboratory using the message passing

interface (MPI) protocol to produce the mesh currents. The run times were approximately

79.0, 72.3, 66.8 hours for the IRAs with Φ/D = 0.5, 1.0, and 1.5, respectively, using 32

computer nodes; each node is equipped with an AMD AthlonTM 2200+ processor. The

electric fields are obtained by running the EIGER physics solver for secondary quantities

(EIGER Analyze). The numerical results are valid for the half IRAs. The responses of the

full IRAs can be obtained by simple algebraic manipulations of the quantities generated by

the numerical model, i.e., doubling the input impedances and halving the currents and fields.

III. Analysis

In this paper, each antenna is fed by a transmission line, which has the same char-

acteristic impedance as the TEM feed arms. The responses in the frequency domain are

transformed into the time domain for input voltage pulses incident in the transmission line.

The input pulses considered in this paper are step-like and Gaussian pulses, which are defined

as follows:

Step-like: V (t) = V0

{
1

2
+

1

2
erf

(
k1

t

t10-90%

)}
, (3)

k1 = 2 erf−1(0.8) ' 1.8124,

Gaussian: V (t) = V0e
− ln 16(t/tFWHM )2 , (4)

where erf(t) is the error function, V0 is the maximum amplitude of the pulse, and the pulse

parameters t10-90% and tFWHM are the 10% – 90% rise time of the step-like pulse and the

1Note that the upper frequency limit was chosen because of computer run time considerations, not limits on the
IRA. The chosen upper frequency limit gives us reasonable run times while giving us enough frequency content to
see essentially all of the interesting interactions in the antennas. This upper frequency limit sets the minimum pulse
parameters in the later graphs.
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full-width half-maximum of the Gaussian pulse, respectively [15]. The waveforms and their

frequency spectrums are shown in [8].

Fig. 4 shows electric fields of the antennas in the near-field region. In each graph, the

electric fields (Ey/V0) on the z-axis are plotted as a function of time for a step-like pulse

with t10-90%/τa = 0.075 and vertically displaced according to the observation distance. Here,

the parameter τa = D/c is the time required by light to travel the length of the reflector

diameter. For antennas with a finite Φ, the electric field at focus ff is plotted with a dotted

line.

The figure shows that the impulse is stronger for a smaller Φ in the near-field region.

The impulse of the antenna with a smaller Φ grows faster and also decays faster. These

are the expected results by focusing the aperture at distances close to the antenna. Note,

however, that the maximum impulse amplitude does not occur at focus ff because the

electrical size of the aperture is small compared to the ratio Φ/D. It has been empirically

found that for a square aperture of side length a, a/λ ≥ 25Φ/a is required to result in

the maximum amplitude close to focus ff [16]. For a circular aperture, this requirement is

approximately
D

λ
≥ 100

π

Φ

D
. (5)

The minimum requirement corresponds to D/λ ≥ 15.9, 31.8, and 47.7 for the IRAs with

Φ/D = 0.5, 1.0, and 1.5, respectively. These requirements are all higher than the frequency

range we used in the numerical model (max D/λ = 15.3). The maximum impulse amplitude

will occur close to focus ff by using pulses with a faster rise time.

In Fig. 5, the envelope of the impulse amplitude (max Ey/V0) is plotted for each IRA

for step-like pulses with t10-90%/τa = 0.075 and 0.2. The envelopes with larger amplitudes

are those for t10-90%/τa = 0.075, and the envelopes with smaller amplitudes are those for

t10-90%/τa = 0.2. As noted in Fig. 4, the impulse envelope for the IRA with a smaller Φ

grows faster than the impulse envelope for the IRA with a larger Φ. It also decays faster

after it reaches its maximum. For example, for t10-90%/τa = 0.075, the impulse envelope for

the IRA with Φ/D = 0.5 grows faster and remains larger than those for other IRAs until

r/D ' 0.8. After it reaches its maximum at r/D ' 0.4, it decays faster and becomes smaller
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Fig. 4. Waterfall graphs of the electric fields (Ey/V0) for the IRAs with Φ/D = (a) 0.5, (b) 1.0, (c) 1.5, and
(d) ∞. The numbers on the lines are the normalized distance (r/D) for the lines.

than those for other IRAs after r/D ' 1.8.

For the case with t10-90%/τa = 0.2, the amplitude of the impulse is only weakly de-

pendent on Φ/D; this is due to the predominantly low-frequency content of the input pulse.

Thus, one has to use a fast rising pulse to utilize the close-in range focusing characteristic

of the ellipsoidal reflector.

In Figs. 6 – 9, the electric fields of the IRAs are compared on the rotational axis of

the reflector at r/D = 0.5, 1.0, 1.5, and ∞, which are the points ff of the four IRAs. Here,
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Fig. 5. Impulse envelopes (max Ey/V0) for step-like pulses with t10-90%/τa = 0.075 and 0.2.

the graphs are plotted for a step-like pulse with t10-90%/τa = 0.1 as functions of retarded

time tr = t− r/c, where r is the distance from the apex (fs) to the observer. In each figure,

the impulses are magnified in (b), and the prepulses and postpulses are magnified in (c).

At each observation distance, the impulse centered at tr/τa = 1.0 is the one from the

IRA with Φ equal to the observation distance (Φ = r). The impulse appears earlier than

tr/τa = 1.0 for the IRAs with Φ > r and later than tr/τa = 1.0 for the IRAs with Φ < r.

Because the IRA is focused at ff , the signal from any point on the reflector arrives at ff with

the same amount of time delay. At a point other than ff , the signals from different points

on the reflector arrive with different time delays. For example, for the IRA with Φ/D = 0.5,

the signal from each point on the reflector arrives at r/D = 0.5 at tr/τa = 1.0. Thus, the

peak occurs exactly at tr/τa = 1.0. However at r/D = 1.0, the signal from the center of

the reflector arrives at tr/τa = 1.0 while the signal from the edge of the reflector arrives at

tr/τa = 0.948. Thus, the peak occurs between tr/τa = 0.948 and tr/τa = 1.0.

One would think the amplitude of the impulse for the IRA with Φ = r should be

larger at r = Φ than those for the other IRAs because of the focusing; this is correct in
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Fig. 6. Comparison of the electric fields at r/D = 0.5 for a step-like pulse with t10-90%/τa = 0.1. Magnifi-
cations of the waveforms are shown in (b) and (c).

Figs. 6, 7, and 9. However, it is not correct in Fig. 8, where the impulse for Φ/D = 1.0

is the largest. The reason for this was explained earlier and is due to the electrical size of

the aperture. If the pulse rise time is much shorter than the time it takes by light to travel

across the aperture (t10-90% << τa), the impulse for the IRA with Φ = r will be the largest

at r = Φ.

For each antenna, the prepulse amplitudes are the same irrespective of the observation

distance. The reason for this is that the prepulse originates at one point (apex) and has
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Fig. 7. Comparison of the electric fields at r/D = 1.0 for a step-like pulse with t10-90%/τa = 0.1. Magnifi-
cations of the waveforms are shown in (b) and (c).

a 1/r dependence. Thus, the amplitude becomes constant when it is normalized by V0/r.

However, at any observation point, the prepulse for the IRA with a smaller Φ is larger than

that for the IRA with a larger Φ because the TEM feed arms are more inclined toward the

boresight direction guiding more energy toward the boresight direction.

The waveform at tr/τa ' 1.2 is due to the re-radiation of the signal taking the apex –

resistor – apex path. The waveform at tr/τa ' 2.0 is due to a number of internally reflected

signals, and it dominates the tail waveform. This waveform is larger for the IRA with a
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Fig. 8. Comparison of the electric fields at r/D = 1.5 for a step-like pulse with t10-90%/τa = 0.1. Magnifi-
cations of the waveforms are shown in (b) and (c).

smaller Φ. This can be a drawback of the elliptic IRA for use in a remote sensing application

because the signal from the target can be obscured by a large tail.

Fig. 10 shows the spot sizes of the IRAs for a step-like pulse with t10-90%/τa = 0.075.

To determine a spot size, an imaginary observation plane that is normal to the z-axis is

placed at a distance, where the distribution of the impulse amplitude (max Ey) is recorded.

Then, the full-width half-maximum of the impulse amplitude distribution on the plane is

taken as the spot size. In Fig. 10, half-maximum points are plotted in the E- and H-planes.
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Fig. 9. Comparison of the electric fields at r/D = ∞ for a step-like pulse with t10-90%/τa = 0.1. Magnifica-
tions of the waveforms are shown in (b) and (c).

The spot sizes for the elliptic IRAs are significantly smaller compared to the spot size

for the parabolic IRA at a distance closer than r/D ' 1.0. As the observer moves out, the

spot size for the elliptic IRA diverges more rapidly than that for the parabolic IRA. Note

that the minimum waist does not occur at ff because of the finite aperture size. Note also

that the spot size is smaller in the E-plane and larger in the H-plane.

In Fig. 11 (a), (b), the reflected voltages in the feeding transmission line are compared

as functions of time for a step-like pulse with t10-90%/τa = 0.1 and a Gaussian pulse with
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Fig. 10. Illuminated impulse spot sizes as functions of normalized distance. The lines in the upper half of
each graph are those in the H-plane and the lines in the lower half are those in the E-plane. The input
pulses are step-like pulses with (a) t10-90%/τa = 0.075 and (b) t10-90%/τa = 0.2.
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tFWHM/τa = 0.1. The magnifications of the waveforms surrounded by the boxes are shown

in Fig. 11 (c), (d). In Fig. 11 (a), (b), the first pulse around t/τa = 0 is the reflection from the

junction between the feeding transmission line and the antenna (fs). This reflection is due

to the approximation made to the apex geometry (Fig. 3 (b)). The first possible disturbance

after this reflection is the superposition of the positive signal from the TEM feed arm and

negative signal from the reflector; both signals begin at t/τa = 1.0. In Fig. 11 (a), the

waveform is not exactly zero over the time interval 0 < t/τa < 1.0 because of a small error

in the characteristic impedance of the TEM feed arms predicted by the numerical model

(∼ 1%).

The waveforms have the maximum amplitudes around t/τa = 1.2. The maximum

amplitude increases with decreasing Φ. Because the reflector with a smaller Φ focuses the

wave at a distance closer to the apex, more negative current is induced on the TEM feed arms

at the apex. In addition, the maximum amplitude occurs earlier in time with decreasing Φ.

The reason for this is that the diffracted signal from the reflector edge arrives earlier as Φ

decreases, and this signal contributes to the waveform positively. Because the path length of

the diffracted signal to the apex (LA) is shorter for the IRA with smaller Φ, the cancellation

begins earlier.

IV. Conclusion

The IRAs with ellipsoidal reflectors were numerically analyzed and compared with

the IRA with a parabolic reflector. The focal length to diameter ratios of the reflectors were

all F/D = 0.5. The shape of an ellipsoidal reflector was determined by the parameter Φ,

which was the distance between the two optical foci of the ellipsoid.

The elliptic IRAs produced stronger impulses and narrower spot sizes in the near-field

region than does the parabolic IRA. This feature of the elliptic IRA may be useful in close-in

sensing applications. However, the maximum impulse amplitude and the minimum spot size

did not occur at ff of the ellipsoidal reflector for pulses used in this paper. To have the

maximum impulse amplitude at ff , one has to use a pulse with a faster rise time.
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Fig. 11. Voltage reflected into the feeding transmission line for (a) a step-like pulse and (b) a Gaussian pulse
with t10-90%/τa = tFWHM/τa = 0.1. The waveforms surrounded by the boxes in (a), (b) are magnified
in (c), (d).
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The elliptic IRAs had larger tail waveforms than the parabolic IRA. The tail waveform

can be lowered by using an offset geometry [17]. The elliptic IRA also had larger reflected

voltages in the transmission line. The reason for this is that the negative signal from the

reflector was stronger with decreasing Φ. The reflected voltage can be lowered by refining the

shape of the TEM feed arm taper so that the positive signal from the taper is increased [18].

This increase in the positive signal will cancel the reflector signal, and therefore the reflected

voltage will be lowered. Another possibility is to use distributed impedance at the TEM

feed arm termination as shown in [19] for a parabolic reflector. In [19], the time domain

reflectometry measurement data was seen to be quite flat, and therefore the reflected voltage

in the transmission line is low.
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