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This paper considers the design of TEM-transmission-line antennas as pulse receptors/transmitters. Such
are suitable for mounting on sparse dielectric airfoils. Special results are found for boresight antenna response.
Certain symmetrical cross sections are considered for their characteristic impedances.

This work was sponsored in part by the Air Force Office of Scientific Research, and in part by the Air Force
Research Laboratory, Directed Energy Directorate.



The placing of antennas on aircraft is a complicated matter, depending on frequencies and pulses of interest

[4, 8, 10, 11]. This paper considers another type of antenna for reception/transmission of fast pulses. This utilizes

dielectric airfoils as a suitable place to locate such antennas.

The type of antenna considered is a length l of TEM transmission line. The conductors are mounted on or

inside a sparse dielectric airfoil (sparse so as not to interfere significantly with the antenna performance). With the

response in reception well understood, the reciprocity theorem is used to chamcterize its response in transmission,

leading to an interesting general result. Then specific transmission-line geometries are considered.



Consider adding conductors (wires, strips, etc.) to a mechanical dielectric structure of approximately two-

dimensional shape such as an airfoil. Let this be sparse (for low weight) and let the average dielectric constant be

near to (slightly greater than) 1.0 (free space, &"" &0) with permeability !JO. The added conductors can be quite

light, such as foil, while giving two-dimensional cross sections of transmission line with characteristic impedance of

nearly whatever one may wish.

Consider as in Fig. 2.1 that we have the cross section of an airfoil-like dielectric structure. Somewhere near

the center, or better position of maximum thickness h, place four strip conductors (foil, paint, etc.), two on the upper

surface (inside or outside), and similarly two on the lower surface. To the degree practical try to locate them sym-

metrically with respect to an approximate symmetry plane as indicated. By appropriate connection of these strips in

pairs these can be made to transmit/receive in both vertical and horizontal polarizations. Here the degree to which

symmetry can be achieved will determine the degree to which polarization purity (orthogonality of the two polariza-

tions) can be achieved [12].

Figure 2.2 shows the same configuration from a top view. The airfoil connects to some structure such as a

fuselage at which location the antenna terminals for the four conductors appear for connection to

transmitters/receivers. The two polarizations are ideally operated each in differential mode. The reference conduc-

tor(s) (ground) are on the equipment in the fuselage and include the fuselage itself if conducting. If desired, this

reference can also be extended out in the airfoil, appropriately positioned (e.g., by symmetry) between the four

antenna conductors. This may help reduce common-mode signals.

Since the fuselage and internal equipment will in general scatter fields back toward the antenna(s), one

needs to account for this. In one approach a dielectric fuselage skin may be made to have small scattering, but the

internal conductors will need to be made sparse and/or far enough back from the antenna port(s) (connections to the

port(s) using symmetry like the possible reference conductor in Fig. 2.1). Alternately one may move the antenna

port(s) (connections to the transmission line) farther out on the wing to obtain some transit-time isolation from the

fuselage.

With a length i of the antenna conductors one needs to be concerned with the potentially dispersive

character of the airfoil. Ideally the propagation speed on the transmission lines is nearly

c = [!JO&Or1/2 == speed of light in vacuo

This implies that the dielectrics have low dielectric constants and/or small cross sections compared to h. If on<:

estimates some propagation speed
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as some dispersion time which should be less than characteristic times in pulses of interest. There may also be con-

ductors in the airfoil (e.g., to operate control surfaces). In this case currents on such conductors may need to be

suppressed (e.g., by chokes such as ferrites).

Here we consider the case that the antenna conductors form uniform transmission lines, for simplicity of

response and analysis. In some cases, however, it may be necessary (or even desirable) to taper these transmission

lines.



A previous paper [7] has considered parallel-plane trnnsmission lines in receptions. This begins with the

recognition that, as in Fig. 3.1, an incident electric field parallel to the y axis has no scattering from perfectly con-

ducting sheets on planes of constant y. Defining an open circuit voltage by

h
2

= -JF!JnC)1 dy
x,z = const.

h
2

we have a fundamental property of the antenna response. For convenience we can take the integration path on (x,z)

= (0,0).

At this point we can note that the shapes of the top and bottom plates are arbitrary. They need not even

have the same shapes.

~
Letting the direction of incidence be denoted by 1 i, we have the constraint

~ ~
Ii • ly = 0

~
which still allows 1 i to vary over an angle of 211" (360°), with the same (3.1) result. This defines an effective-

height vector of

~ ~ ~
hV(li) = -h ly

~ ~ ~(inc)
Va.c. = h v( 1i) • E

Appealing to the antenna reciprocity theorem [6] we have the far field radiated by a current source Is on

the same path as



r 1
~inc) ~ (inc)
E = lyEy
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which is a very simple result. Interpreting this, let the incident field be of the form of a step function, producing a

step-function open-circuit voltage. A step--function source current then produces a far field that approximates a delta

function (similar to the discussion in [5]).

--. --.Note that the shape of the two plates does not affect the result. This is limited to 1 i and 1 0 transverse to
-+

the 1 y direction Ideally the far-field observer is on or near the y = 0 plane. In any event for a fixed y, as the
-+

observer goes to infinity the direction of propagation asymptotically approaches a perpendicular to 1 y .

An alternate approach to this results notes that in transmission, no matter what are the currents on the two
-+ -+

sheets, they are perpendicular everywhere to 1 y. The currents parallel to 1 0 do not contribute to the far-field
-+

integrals. The currents perpendicular to 1 0 must also give zero far-field integrals to satisfy reciprocity.

Now whence comes the more complicated properties of such a radiating antenna? These appear through

the antenna impedance

i (s) = ~a (s) = voltage at antenna port in transmission
a Ia (s) current into antenna port in transmission

when coupled to a source impedance and some associated voltage or current source. Here is where shape of the

conducting sheets is important.

If we now choose the top and bottom plates in the form of a transmission line of characteristic impedance

Zc, we then have



1 + e-2str
Za (8) = Zc ---

I - e-2str

f .. f "lintr == - == transIt time 0 transnnSSlon e
v

There are also special things one can do near the antenna port to improve the high-frequency (short-time)

performance [7].

In an early-time sense, before reflections from the open end reach the antenna port at t = 2tr, we can

think of Za as a constant Zc. This gives a particularly simple antenna response provided that the source imped-

ance is also a constant R (say the characteristic impedance of a transmission line such as a coaxial cable). There is a

simple voltage-divider relationship for the antenna response in both transmission and reception.

In Section 2 we assumed that the transmission-line conductors were flat plates petpendicular to the incident

electric field. Here we may observe that more general transmission-line cross sections (e.g., two wires, tubes,

coplanar sheets, etc.) can also be used. While the analysis is not as simple one can compute an effective plate sepa-

-+
ration h eq related to the electric dipole moment per unit length in transmission There is also the question of

response characteristics for wavelengths of the order of h or less. Furthennore, one need not be limited to two con-

ductors, but multiple ones, such as in Fig. 2.1 are also possible.



There are various cross-section shapes that such a transmission-line antenna can take. Noting the desire of

symmetry for polarization decomposition one can look at various symmetrical configurations. In Section 2 axial

symmetry planes have been considered. For completeness one can consider two-dimensional rotational symmetry

CN. This consists of stroctures which on rotation by 27r1N replicate themselves. For a discussion of the group

Figure 4.1 shows a particularly simple form such symmetry might take. Simply space N wires, each of

radius a, around a circle of radius h. These wires may be "fat", i.e., approximately perfectly conducting tubes

(circular cylinders). As such there are also N axial symmetry planes giving CNa symmetry (2N group elements).

Such a system of conductors has a characteristic impedance matrix which is bicirculant, giving a simple analytic

form to the eigenvectors due to reciprocity [16].

In Fig. 4.1A (C2a symmetry) we have the simple example of a single-polarization antenna (polarization in
--+

the 1 x direction) with, say, Von conductor 1 and -V on conductor 2. Here we consider only differential modes for

which the sums of the voltages, currents and charges per unit length are all zero. One might have a reference con-

ductor (zero volts) on the z axis presetVing the rotation symmetry.

A simple dual-polarization configuration is given in Fig. 4.1C (C4a symmetry). In this case one might
--+

have Von conductor 2, -V on conductor 4, and 0 on conductors 1 and 3, giving polarization in the 1 x direction.

Rotating the potentials by 7rl2 with Von conductor 3, -V on conductor 1, and zero on the others, gives a polarization
--+

in the 1 y direction. This is not the only way to achieve two orthogonal polarizations. For example, one can have
--+ --+

Von conductors 2 and 3 with -V on conductors 1 and 4, giving polarization in the [ 1 x + 1 y]/ -J2 direction. The

orthogonal polarization has V on conductors 1 and 2 with -V on conductors 3 and 4 giving polarization in the
--+ --+

[ 1 x-I y] / -J2 direction.

For N ::::4 and an integer power of 2 we have various similar ways to construct two orthogonal polarizations

by a rotation of the potentials by 7rl2. There is another interesting way of constmcting two independent polarizations

when N ~ 3 and an integer multiple of 3. In this case we can construct three polarizations by rotation of the poten-

tials through successive angles of 27r13. by taking a linear combination of two of these polarizations we can con-

struct a polarization which is orthogonal to the remaining (third) polarization.

In Fig. 4.1B (C3a symmetry) we can place charge per unit length q/2 on conductors 1 and 2 with -q on
--+

conductor 3, giving polarization in the 1 x direction. By placing q on conductor 2, -q on conductor 1, and zero on
--+

conductor 3 we have polarization in the 1 y direction.
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Fig. 4.1 Examples of Two-Dimentional Rotation Symmetry with Axial Symmetry
Planes (CNa) Using Perfectly Conducting Circular Cylinders.



A more sophisticated version appears in Fig. 4.ID. In this case begin with q on each of conductors 4 and 5,
~

-q on each of conductors I and 2, and zero on each of conductors 3 and 6, giving polarization in the I y direction.

To construct an orthogonal polarization rotate twice by 21C/3, adding the charges per unit length. This has q on con-
~

ductors 2 and 4, 2q on 3, -q on I and 5, and -2 on 6, giving a polarization in the I x direction. This geometry has
~

other interesting aspects. The case above for I y polarization also gives a highly uniform field on the z axis (the

two-dimensional analog of a Helmholtz coil) [I, 2, 9].



Concepts of symmetry in two dimensions can be extended yet further. As discussed in [13, 16] our struc-

tures can be self complementary. In this context, self complementarity is based on the interchange of electric and

magnetic potentials in the complex potential

This requires an interchange of electric and magnetic boundaries, which in the present context leaves the geometry

unchanged except for a rotation by

¢c = A = !!.-
2 N

CN = {(CN )ll£ = 1,2, ... , N}

(CN)l = (CN)~ = rotation by ¢l

¢l = £¢l , ¢l = 2n
N

Another symmetry of interest is reciprocation symmetry with respect to a circle on 'P =b in complex

cylindrical coordinates ('P, ¢) with

( = 'Pej¢
x = 'Pcos(¢) , Y = 'Psin(¢)

(} = Xl + jYl = 'P}ej¢!.

b2
'P} = - , ¢l = -¢

(



'2 + jY2 = '¥2ej¢J2 b2
= x2 = -,.

(5.6)

'¥2 b2 ~ =,- ,'¥

One consequence of this symmetry is that the chamcteristic impedance of such a transmission line has an equal con-

tribution from '¥ > b and '¥ < b. So if we know the impedance from some Au I Av for the inside domain, one

merely multiplies by 1/2 to account for the external domain.

[ ]

112

Zo = Yo-1 =: (e.g., for free space)

one can calculate the impedance parameters for various self complementary reciprocal configurations. The configu-

ration in Fig. 5.IA with only two conductors has the well-known differential-mode characteristic impedance [3]

I
Zc = fg Zo ' fg = -

2

Considering only differential modes (sum of all charges and all currents on the N conductors equal to zero)

one can constIUct a characteristic admittance matrix (bicircu1ant)

Yi Y2 Y3 YN

Y2 Yi Y2 YN

Y3 Y2 Yl YN

: : "'YN

YN ·········YN

Sin(" )4Yo 2

Yl = N COS([I-I],.)-COS( ~)



jY jY

~
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From this the characteristic impedance of various connections of conductors to give a single differential mode may

be computed.

Considering N ~ 3 there are various possible conductor connections and resulting characteristic imped-

ances. One can consult [14] for a table of these for N from 2 through 6. We can list some of the interesting cases.

For N = 3 we have

conductor, I, +}
conductor 2, - fg = JJ :::.0.5774
conductor 3, 0

conductor, I and 2, +} /, = Jj :::.0.4330
conductor 3 , - g 4

conductor, I, + }
conductor 3, - fg = ~ :::.0.7071
conductor 2 and 4, 0

conductor, 2 and 2, +} r I
J, = r;;:::' 0.3536

conductor 3 and 4, - g 2",2

conductor, I and 2, +}
conductor 4 and 5, - fg
conductor 3 and 6, 0

I= - = 0.5
2



This paper now generalizes some previous results concerning TEM-transmission-line antennas. Using the

reciprocity relationship a particularly simple form of the far field is found for the response to a current source driv-

ing two arbitrarily shaped parallel plates (perfectly conducting) on a plane (mathematical. infinite) parallel to and

between the two conducting plates. Specializing to TEM transmission lines (two-dimensional structures) the char-

acteristic impedances are treated for certain symmetrical cases. Together with the length of the line and the imped-

ance(s) at the antenna port(s) this characterizes the antenna(s) on boresight in both transmission and reception.
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