Sensor and Simulation Notes

Note 483

August 2003

# Modes of a Double Baffled, Cylindrical, Coaxial Waveguide

Clifton C. Courtney and Donald E. Voss Voss Scientific Albuquerque, NM

#### ABSTRACT

There is considerable interest in antenna and transmission line structures that are conformal to curved and cylindrical surfaces. The double-baffled, coaxial transmission line is defined by inner and outer radii, and an arc length. It is conformal to curved surfaces, particularly structures cylindrical in nature. In this note we derive the TE and TM, axially propagating modes of a double-baffled, coaxial transmission line. First, the characteristic equations that define the cut off frequencies of each mode are derived, then the electric fields are explicitly expressed. Finally, an example double-baffled, coaxial transmission line geometry is defined for which the lowest TE and TM mode cutoff frequencies are computed and graphs of the normalized field components are presented.

Acknowledgement - This work was supported in part by the Air Force Research Laboratory, Directed Energy Directorate, under a Small Business Innovation for Research (SBIR) Phase I program, Contract No. F29601-03-M-0101.

### 1. Introduction

The double-baffled, coaxial transmission line is defined by inner and outer radii, and an arc length, and can be conformal to curved surfaces and cylindrical structures. This note describes the propagating modes of a coaxial waveguide transmission line with two baffles, with propagation assumed in the z-direction. First, the characteristic equations that define the cut off frequencies of each mode are derived, then the electric fields are explicitly expressed. Finally, an example geometry is defined for which the lowest TE and TM mode cutoff frequencies are computed and graphs of the normalized field components are presented.

## 2. Geometry

The geometry of the double baffled, coaxial waveguide transmission line is shown in Figure 1. Note that the arc between the baffles has an angular extension of  $\varphi = \varphi_0$ .





Figure 1. The geometry of the double baffled cylindrical coaxial waveguide: (a) 3-D perspective drawing; (b) plane view o the xy-plane; and (c) plane view of the xz-plane.

## 3. Wave Equation

The natural coordinate system for the coaxial waveguide transmission line with two baffles is the cylindrical coordinate system. The scalar Helmholtz wave equation in cylindrical coordinates is

$$\frac{1}{\rho} \frac{\partial}{\partial \rho} \left( \rho \frac{\partial \psi(\rho, \varphi, z)}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \psi(\rho, \varphi, z)}{\partial \varphi^2} + \frac{\partial^2 \psi(\rho, \varphi, z)}{\partial z^2} + k^2 \psi(\rho, \varphi, z) = 0 \quad (1)$$

Using standard separation of variable techniques the wave equation can be written as

$$\rho \frac{d}{d\rho} \left( \rho \frac{dR(\rho)}{d\rho} \right) + \left[ \left( k_{\rho} \rho \right)^2 - n^2 \right] R(\rho) = 0$$
 (2a)

$$\frac{d^2}{d\varphi^2}\Phi(\varphi) + n^2\Phi(\varphi) = 0$$
 (2b)

$$\frac{d^2}{dz^2}Z(z) + k_z^2 Z(z) = 0$$
 (2c)

where:  $\psi(\rho, \varphi, z) = R(\rho)\Phi(\varphi)Z(z)$ , and  $k_{\rho}^2 + k_z^2 = k^2$ .

### 4. Boundary Conditions

The boundary conditions for the coaxial waveguide transmission line with two baffles are:

$$E_{\rho} = 0$$
 for  $\varphi = 0$ , and  $\varphi = \varphi_0$  (3a)

$$E_{\varphi} = 0$$
 for  $\rho = \rho_1$ , and  $\rho = \rho_2$  (3b)

$$E_z = 0$$
 for  $\rho = \rho_1$ , and  $\rho = \rho_2$ , and  $\varphi = 0$ , and  $\varphi = \varphi_0$ . (3c)

# 5. Solution of the Separated Wave Equation

The  $\Phi(\varphi)$  and Z(z) equations are harmonic equations with harmonic functions as solutions; these will be denoted  $h(n\varphi)$  and  $h(k_z z)$ .

The equation in  $R(\rho)$  is a Bessel equation, and has Bessel function solutions:

 $J_n(k_\rho\rho)$  = the Bessel function of the first kind of order n $N_n(k_\rho\rho)$  = the Bessel function of the second kind of order n $H_n^{(1)}(k_\rho\rho)$  = the Hankel function of the first kind of order n $H_n^{(2)}(k_\rho\rho)$  = the Hankel function of the second kind of order n

Let the function  $B_n(k_\rho\rho)$  represent the linearly independent combination of two of the above. Then, the general solution to the scalar Helmholtz wave equation is:

$$\Psi_{k_{\rho},n,k_{z}} = B_{n}(k_{\rho}\rho)h(n\varphi)h(k_{z}z)$$
(4)

### 6. TE<sub>z</sub> and TM<sub>z</sub> Field Components

The electric and magnetic field components can be written in terms of fields that are  $TE_z$  and  $TM_z.$ 

#### 6.1 TM<sub>z</sub> Field Components

The TM<sub>z</sub> field components are found by letting  $\mathbf{A} = \mathbf{u}_z \psi$ , where  $\mathbf{A} =$  the magnetic vector potential, and  $\mathbf{u}_z =$  unit vector in the z-direction. Then

$$\mathbf{E} = -j\omega\mathbf{A} + \frac{1}{\omega\mu\varepsilon}\nabla(\nabla\cdot\mathbf{A}), \qquad (5a)$$

and 
$$\mathbf{H} = \frac{1}{\mu} \nabla \times \mathbf{A}$$
. (5b)

When expanded in cylindrical coordinates these equations become:

$$E_{\rho} = \frac{1}{j\omega\mu\varepsilon} \frac{\partial^2 \psi}{\partial\rho \partial z}$$
(6a) 
$$H_{\rho} = \frac{1}{\mu} \frac{1}{\rho} \frac{\partial \psi}{\partial \varphi}$$
(6d) 
$$H_{\rho} = \frac{1}{\mu} \frac{1}{\rho} \frac{\partial \psi}{\partial \varphi}$$
(6d)

$$E_{\varphi} = \frac{1}{j\omega\mu\varepsilon} \frac{1}{\rho} \frac{\partial \psi}{\partial \varphi \partial z}$$
(6b) 
$$H_{\varphi} = -\frac{1}{\mu} \frac{\partial \psi}{\partial \rho}$$
(6e) 
$$E_{z} = \frac{1}{j\omega\mu\varepsilon} \left(\frac{\partial^{2}}{\partial z^{2}} + k^{2}\right) \psi$$
(6c) 
$$H_{z} = 0$$
(6f)

The TE<sub>z</sub> field components are found by letting  $\mathbf{F} = \mathbf{u}_z \psi$ , where  $\mathbf{F} =$  the electric vector potential, and  $\mathbf{u}_z =$  unit vector in the z-direction. Then

$$\mathbf{E} = -\frac{1}{\varepsilon} \nabla \times \mathbf{F} \,, \tag{7a}$$

and 
$$\mathbf{H} = -j\omega\mathbf{F} + \frac{1}{j\omega\mu\varepsilon}\nabla(\nabla\cdot\mathbf{F})$$
. (7b)

When expanded in cylindrical coordinates these  $TE_z$  field equations become:

$$E_{\rho} = -\frac{1}{\varepsilon} \frac{1}{\rho} \frac{\partial \psi}{\partial \varphi} \qquad (8a) \qquad \qquad H_{\rho} = \frac{1}{j \omega \mu \varepsilon} \frac{\partial^2 \psi}{\partial \rho \partial z} \qquad (8d)$$

$$E_{\varphi} = \frac{1}{\varepsilon} \frac{\partial \psi}{\partial \rho} \qquad (8b) \qquad \qquad H_{\varphi} = \frac{1}{j\omega\mu\varepsilon} \frac{1}{\rho} \frac{\partial^2 \psi}{\partial \varphi \partial z} \qquad (8e)$$

$$E_z = 0 \tag{8c}$$

$$H_{z} = \frac{1}{j\omega\mu\varepsilon} \left(\frac{\partial^{2}}{\partial z^{2}} + k^{2}\right) \psi \qquad (8f)$$

(9)

## 7. Solution of the Separated Wave Equation Subject to the Boundary Conditions of the Generalized Geometry

Propagating waves in the z-direction in the double baffled coaxial waveguide give rise to  $h(k_z z) = e^{-jk_z z}$ 

The harmonic function  $h(n\varphi)$  can be written as

$$h(n\varphi) = a_n \sin(n\varphi) + b_n \cos(n\varphi)$$
(10)

Note that n is not necessarily an integer. The scalar wave function is then

$$\psi_{k_{\rho},n,k_{z}} = B_{n}(k_{\rho}\rho)h(n\varphi)e^{-j\kappa_{z}z}$$
(11)

subject to the boundary conditions. The solutions for the  $TE_z$  and  $TM_z$  modes in the guide are as follows.

#### 7.1 TM<sub>z</sub> Field Components

The TM<sub>z</sub> electric field components in terms of the wave function are

$$E_{\rho} = \frac{(-jk_z)(k_{\rho})}{j\omega\mu\varepsilon} B'_n(k_{\rho}\rho)h(n\varphi)e^{-jk_z z}$$
(12a)

$$E_{\varphi} = \frac{(-jk_z)(n)}{j\omega\mu\varepsilon} \frac{1}{\rho} B_n(k_{\rho}\rho)h'(n\varphi)e^{-jk_z z}$$
(12b)

$$E_{z} = \frac{1}{j\omega\mu\varepsilon} \left(k^{2} - k_{z}^{2}\right) B_{n}(k_{\rho}\rho) h(n\varphi) e^{-jk_{z}z}$$
(12c)

Since

$$E_z = 0$$
 for  $\rho = \rho_1$ , and  $\rho = \rho_2$ , and  $\varphi = 0$ , and  $\varphi = \varphi_0$ ;

then

$$h(n\varphi)|_{\varphi=0,\varphi_0} = (a_n \sin(n\varphi) + b_n \cos(n\varphi))|_{\varphi=0,\varphi_0} = 0$$

is satisfied if: 
$$a_n = 1$$
,  $b_n = 0$ ,  $n = \frac{m\pi}{\varphi_0}$ , and  $m = 1, 2, 3, ...$  (13)

- 6 -

Note that  $B'_n(k_\rho\rho) = \frac{d}{d(k_\rho\rho)} B_n(k_\rho\rho)$ . The general Bessel function,  $B_n(k_\rho\rho)$ , also satisfies the boundary conditions if

$$B_n(k_\rho\rho)|_{\rho=\rho_1,\rho_2}=0$$

Let  $B_n(k_\rho\rho) = a_n J_n(k_\rho\rho) + b_n N_n(k_\rho\rho)$ , then  $a_n J_n(k_\rho\rho) + b_n N_n(k_\rho\rho) |_{\rho=\rho_1,\rho_2} = 0$ . And,

$$a_n J_n(k_{\rho} \rho_1) + b_n N_n(k_{\rho} \rho_1) = 0$$
  
$$a_n J_n(k_{\rho} \rho_2) + b_n N_n(k_{\rho} \rho_2) = 0$$

Solving the first equation for  $a_n$ :  $a_n = b_n \frac{N_n(k_\rho \rho_1)}{J_n(k_\rho \rho_1)}$  (14)

Substitution into the second equation yields:

$$a_n J_n(k_\rho \rho_2) + b_n N_n(k_\rho \rho_2) = -b_n \frac{N_n(k_\rho \rho_1)}{J_n(k_\rho \rho_1)} J_n(k_\rho \rho_2) + a_n N_n(k_\rho \rho_2) = 0$$

Or,

$$b_n \left( N_n(k_{\rho}\rho_2) - \frac{N_n(k_{\rho}\rho_1)}{J_n(k_{\rho}\rho_1)} J_n(k_{\rho}\rho_2) \right) = 0$$

For specific values of n,  $\rho_1$  and  $\rho_2$ , the values of  $k_\rho$  that solve

$$\frac{N_n(k_\rho \rho_2)}{J_n(k_\rho \rho_2)} = \frac{N_n(k_\rho \rho_1)}{J_n(k_\rho \rho_1)}$$
(15)

are the sought after mode numbers that are true for any non-zero value of  $b_n$ . Hence,

 $b_n = 1$  and  $a_n = -\frac{N_n(k_\rho \rho_1)}{J_n(k_\rho \rho_1)}$ . Finally, the scalar wave function for the TM<sub>z</sub> modes is:

$$\psi_{k_{\rho},n,k_{z}} = \left[ N_{n}(k_{\rho}\rho) - \frac{N_{n}(k_{\rho}\rho_{1})}{J_{n}(k_{\rho}\rho_{1})} J_{n}(k_{\rho}\rho) \right] \sin(n\varphi) e^{-jk_{z}z}, \text{ for } n = \frac{m\pi}{\varphi_{0}}, m = 1, 2, 3, \dots, \text{ and}$$
$$k_{\rho}^{2} + k_{z}^{2} = k^{2}.$$

The convention for the zeros of the Characteristic Equation is  $p = p_1, p_2, p_3, ...$ , where the  $p_1$  is the first zero solution,  $p_2$  is the second solution (with increasing numerical value, and so forth). The TM<sub>z</sub> field components are then found explicitly as:

$$E_{\rho} = \frac{-k_{\rho}k_{z}}{\omega\mu\varepsilon}\sin(n\varphi)\left[N_{n}'(k_{\rho}\rho) - \frac{N_{n}(k_{\rho}\rho_{1})}{J_{n}(k_{\rho}\rho_{1})}J_{n}'(k_{\rho}\rho)\right]e^{-jk_{z}z}$$
(16a)

$$E_{\varphi} = -\frac{k_z n}{\omega \mu \varepsilon} \frac{1}{\rho} \left[ N_n(k_\rho \rho) - \frac{N_n(k_\rho \rho_1)}{J_n(k_\rho \rho_1)} J_n(k_\rho \rho) \right] \cos(n\varphi) e^{-jk_z z}$$
(16b)

$$E_{z} = \frac{k^{2} - k_{z}^{2}}{j\omega\mu\varepsilon} \left[ N_{n}(k_{\rho}\rho) - \frac{N_{n}(k_{\rho}\rho_{1})}{J_{n}(k_{\rho}\rho_{1})} J_{n}(k_{\rho}\rho) \right] \sin(n\varphi) e^{-jk_{z}z}$$
(16c)

$$H_{\rho} = \frac{1}{\mu} \frac{n}{\rho} \left[ N_n(k_{\rho}\rho) - \frac{N_n(k_{\rho}\rho_1)}{J_n(k_{\rho}\rho_1)} J_n(k_{\rho}\rho) \right] \cos(n\varphi) e^{-jk_z z}$$
(16d)

$$H_{\varphi} = -\frac{k_{\rho}}{\mu} \left[ N'_{n}(k_{\rho}\rho) - \frac{N_{n}(k_{\rho}\rho_{1})}{J_{n}(k_{\rho}\rho_{1})} J'_{n}(k_{\rho}\rho) \right] \sin(n\varphi) e^{-jk_{z}z}$$
(16e)

$$H_z = 0 \tag{16f}$$

# 7.2 TE<sub>z</sub> Field Components

The  $TE_z$  electric field components in terms of the wave function are:

$$E_{\rho} = -\frac{1}{\varepsilon} \frac{1}{\rho} B_n(k_{\rho}\rho) \frac{d}{d\varphi} h(n\varphi) e^{-jk_z z}$$
(17a)

$$E_{\varphi} = \frac{1}{\varepsilon} \frac{d}{d\rho} B_n(k_{\rho}\rho) h(n\varphi) e^{-jk_z z}$$
(17b)

$$E_z = 0 \tag{17c}$$

Since

$$E_{\rho} = 0$$
 for  $\varphi = 0$ , and  $\varphi = \varphi_0$ 

$$E_{\varphi} = 0$$
 for  $\rho = \rho_1$ , and  $\rho = \rho_2$ 

then

$$\frac{d}{d\varphi}h(n\varphi)|_{\varphi=0,\varphi_0} = \frac{d}{d\varphi}(a_n\sin(n\varphi) + b_n\cos(n\varphi))|_{\varphi=0,\varphi_0}$$
$$= n(a_n\cos(n\varphi) - b_n\sin(n\varphi))|_{\varphi=0,\varphi_0} = 0$$

is satisfied if: 
$$a_n = 0$$
,  $b_n = 1$ ,  $n = \frac{m\pi}{\varphi_0}$ , and  $m = 1, 2, 3, ...$  (18)

The general Bessel function,  $B_n(k_\rho\rho)$ , also satisfies the boundary conditions if

$$\frac{d}{d\rho}B_n(k_\rho\rho)\big|_{\rho=\rho_1,\rho_2}=0$$

Let  $B_n(k_{\rho}\rho) = a_n J_n(k_{\rho}\rho) + b_n N_n(k_{\rho}\rho)$ , then  $\frac{d}{d\rho} \{a_n J_n(k_{\rho}\rho) + b_n N_n(k_{\rho}\rho)\}|_{\rho=\rho_1,\rho_2} = 0$ . And,

$$a_n J'_n(k_\rho \rho_1) + b_n N'_n(k_\rho \rho_1) = 0$$
  
$$a_n J'_n(k_\rho \rho_2) + b_n N'_n(k_\rho \rho_2) = 0$$

Solving the first equation for  $a_n$ :  $a_n = -b_n \frac{N'_n(k_\rho \rho_1)}{J'_n(k_\rho \rho_1)}$  (19)

Substitution into the second equation yields:

$$a_{n}J_{n}'(k_{\rho}\rho_{2}) + b_{n}N_{n}'(k_{\rho}\rho_{2}) = -b_{n}\frac{N_{n}'(k_{\rho}\rho_{1})}{J_{n}'(k_{\rho}\rho_{1})}J_{n}'(k_{\rho}\rho_{2}) + b_{n}N_{n}'(k_{\rho}\rho_{2}) = 0$$

Or,

a.,

$$b_n \left( N'_n(k_{\rho}\rho_2) - \frac{N'_n(k_{\rho}\rho_1)}{J'_n(k_{\rho}\rho_1)} J'_n(k_{\rho}\rho_2) \right) = 0$$

For specific values of n,  $\rho_1$  and  $\rho_2$ , the values of  $k_{\rho}$  that solve

$$\frac{N'_{n}(k_{\rho}\rho_{2})}{J'_{n}(k_{\rho}\rho_{2})} = \frac{N'_{n}(k_{\rho}\rho_{1})}{J'_{n}(k_{\rho}\rho_{1})}$$
(20)

are the sought after mode numbers that are true for any non-zero value of  $b_n$ . Hence,

$$b_n = 1$$
 and  $a_n = -\frac{N'_n(k_\rho \rho_1)}{J'_n(k_\rho \rho_1)}$ .

Finally, the scalar wave function for the  $TE_z$  modes is:

$$\psi_{k_{\rho},n,k_{z}} = \left[ N_{n}(k_{\rho}\rho) - \frac{N_{n}'(k_{\rho}\rho_{1})}{J_{n}'(k_{\rho}\rho_{1})} J_{n}(k_{\rho}\rho) \right] \cos(n\varphi) e^{-jk_{z}z}, \text{ for } n = \frac{m\pi}{\varphi_{0}}, m = 1, 2, 3, \dots, \text{ and}$$
$$k_{\rho}^{2} + k_{z}^{2} = k^{2}.$$

Again, the convention for the zeros of the TE Characteristic Equation is  $p = p_1, p_2, p_3, ...$ , where the  $p_1$  is the first solution,  $p_2$  is the second solution (with increasing numerical value, and so forth. The TE<sub>z</sub> field components are then found explicitly as:

$$E_{\rho} = \frac{n}{\varepsilon} \frac{1}{\rho} \left[ N_n(k_{\rho}\rho) - \frac{N'_n(k_{\rho}\rho_1)}{J'_n(k_{\rho}\rho_1)} J_n(k_{\rho}\rho) \right] \sin(n\varphi) e^{-jk_z z}$$
(21a)

$$E_{\varphi} = \frac{k_{\rho}}{\varepsilon} \left[ N'_n(k_{\rho}\rho) - \frac{N'_n(k_{\rho}\rho_1)}{J'_n(k_{\rho}\rho_1)} J'_n(k_{\rho}\rho) \right] \cos(n\varphi) e^{-jk_z z}$$
(21b)

$$E_z = 0 \tag{21c}$$

$$H_{\rho} = \frac{-k_z k_{\rho}}{\omega \mu \varepsilon} \left[ N'_n(k_{\rho}\rho) - \frac{N'_n(k_{\rho}\rho_1)}{J'_n(k_{\rho}\rho_1)} J'_n(k_{\rho}\rho) \right] \cos(n\varphi) e^{-jk_z z}$$
(21d)

$$H_{\varphi} = \frac{k_z}{\omega\mu\varepsilon} \frac{n}{\rho} \left[ N_n(k_\rho\rho) - \frac{N'_n(k_\rho\rho_1)}{J'_n(k_\rho\rho_1)} J_n(k_\rho\rho) \right] \sin(n\varphi) e^{-jk_z z}$$
(21e)

$$H_{z} = \frac{k_{\rho}^{2}}{j\omega\mu\varepsilon} \left[ N_{n}(k_{\rho}\rho) - \frac{N_{n}'(k_{\rho}\rho_{1})}{J_{n}'(k_{\rho}\rho_{1})} J_{n}(k_{\rho}\rho) \right] \cos(n\varphi) e^{-jk_{z}z}$$
(21f)

Note that the Characteristic Equations for the TE and TM mode are similar, but not exact, to the forms given in [Ref. 2]. The reason for the differences is at this time unknown.

### 8. EXAMPLE

Determine the first few cutoff frequencies of the TE and TM modes of a Double Baffled, Cylindrical, Coaxial Waveguide defined by the parameters:  $\rho_1 = 5 in = 0.127 m$ ,  $\rho_2 = 6 in = 0.1524 m$  and  $\varphi_0 = 2\pi/3$ . The cutoff frequencies for the first few the TE and TM modes have been computed and are presented in Table 1 and Table 2 below.

| I able 1. | Cutoff frequencies (GHZ) of the LE modes of a double baffled, coaxial                          |  |  |
|-----------|------------------------------------------------------------------------------------------------|--|--|
|           | waveguide ( $\rho_1 = 5 in = 0.127 m$ , $\rho_2 = 6 in = 0.1524 m$ and $\varphi_0 = 2\pi/3$ ). |  |  |
|           |                                                                                                |  |  |

| m / p | 1        | 2       | 3       |
|-------|----------|---------|---------|
| 1     | 0.513006 | 5.93146 | 11.8179 |
| 2     | 1.02589  | 5.99859 | 11.8516 |
| 3     | 1.53851  | 6.10889 | 11.9074 |

Table 2. Cutoff frequencies (GHz) of the TM modes of a double baffled, coaxial waveguide ( $\rho_1 = 5 in = 0.127 m$ ,  $\rho_2 = 6 in = 0.1524 m$  and  $\varphi_0 = 2\pi/3$ ).

| m / p | 1       | 2       | 3       |
|-------|---------|---------|---------|
| 1     | 5.92129 | 11.8129 | 17.7111 |
| 2     | 5.98762 | 11.8464 | 17.7335 |
| 3     | 6.09656 | 11.9021 | 17.7707 |

The characteristic equations for the  $TE_{11}$  and  $TM_{11}$  cases are plotted in Figure 2a and c. The characteristic equation for the  $TE_{1p}$  mode is plotted in Figure 2b showing the first 3 roots that characterize the first 3 modes. Note that the radial gap between the conductors is 1-inch, about  $\frac{1}{2}$  of the freespace wavelength of the 1<sup>st</sup> TM cutoff frequency. And the median arc length between the inner and outer radii is 11.52 inches, about  $\frac{1}{2}$  of the freespace wavelength of the 1<sup>st</sup> TE cutoff frequency.





Figure 2. Plots of the Characteristic Equation for the double baffled, coaxial waveguide transmission line (n = 1): (a) TE<sub>11</sub> mode; (b) TE<sub>1p</sub>, for p = 1, 2, 3 modes; and (c) TM<sub>11</sub> mode.

Plot the electric field components over a cross section of the guide at a frequency that is 1.2 times the cutoff frequency of the lowest mode.

For 
$$m = 1$$
,  $n = \frac{m\pi}{\varphi_0} = \frac{\pi}{2\pi/3} = 1.5$ . For the TM<sub>11</sub> mode:  $f_c = 5.921$  GHz.

For 
$$m = 1$$
,  $n = \frac{m\pi}{\varphi_0} = \frac{\pi}{2\pi/3} = 1.5$ . For the TE<sub>11</sub> mode:  $f_c = 513.00$  MHz.

Then, compute the field distributions at  $f = 1.2 \times f_c = 1.2 \times 513.00 = 615.6$  MHz and  $f = 1.2 \times f_c = 1.2 \times 5.921 = 7.105$  GHz.

The wavelength at the operating frequency of the guide for the TE<sub>11</sub> mode, f = 615.6 MHz, in the axial direction of the guide,  $\lambda_g$ , is defined as  $\lambda_g = \frac{2\pi}{k_z} = \frac{2\pi}{7.13159} = 0.881036$  meters, where  $k_z = \sqrt{k^2 - k_\rho^2}$ . The wavelength at the operating frequency of the guide for the TM<sub>11</sub> mode, f = 7.105 GHz, in the axial direction of the guide,  $\lambda_g$ , is  $\lambda_g = \frac{2\pi}{k_z} = \frac{2\pi}{82.2978} = 0.076347$  meters.

Normalized distributions of the electric field components of the TE<sub>11</sub> mode of the double baffled coaxial waveguide for  $\rho_1 = 5in = 0.127 m$ ,  $\rho_2 = 6.0in = 0.1524 m$ ,  $\varphi_0 = 2\pi/3$ , and f = 615.6 MHz are shown in Figure 3(a)  $E_{\rho}((\rho_1 + \rho_2)/2, \varphi)$ ; (b)  $E_{\varphi}((\rho_1 + \rho_2)/2, \varphi)$ , and  $E_z = 0$ . Normalized distributions of the magnetic field components are shown in Figure 4. Since  $\mathbf{J}_s = \hat{\mathbf{n}} \times \mathbf{H}$ , we can plot the current density on the interior surfaces of the waveguide. Shown in Figure 5 is a vector plot of the current density of the TE<sub>11</sub> mode at f = 615.6 MHz on the  $\rho = \rho_2$ ,  $0 < \varphi < \varphi_0 = 2\pi/3$  surface.

Normalized distributions of the electric field components of the TM<sub>11</sub> mode of the double baffled coaxial waveguide for  $\rho_1 = 5in = 0.127 m$ ,  $\rho_2 = 6.0in = 0.1524 m$ ,  $\varphi_0 = 2\pi/3$ , and f = 7.105 GHz are shown in Figure 6(a)  $E_{\rho}((\rho_1 + \rho_2)/2, \varphi)$ ; (b)  $E_{\varphi}((\rho_1 + \rho_2)/2, \varphi)$ ; and (c)  $E_z((\rho_1 + \rho_2)/2, \varphi)$ .



Figure 3. Normalized distributions of the electric field components of the TE<sub>11</sub> mode of the double baffled coaxial waveguide ( $\rho_1 = 5in = 0.127 m$ ,  $\rho_2 = 6.0 in = 0.1524 m$ ,  $\varphi_0 = 2\pi/3$ , and f = 615.6 MHz): (a)  $E_{\rho}((\rho_1 + \rho_2)/2, \varphi)$ ; and (b)  $E_{\varphi}((\rho_1 + \rho_2)/2, \varphi)$ .  $E_z = 0$ .



Figure 4. Normalized distributions of the magnetic field components of the TE<sub>11</sub> mode of the double baffled coaxial waveguide ( $\rho_1 = 5in$ ,  $\rho_2 = 6.0in$ ,  $\phi_0 = 2\pi/3$ , and f = 615.6 MHz): (a)  $H_{\rho}$ ; (b)  $H_{\varphi}$ ; and (c)  $H_z$ .



Figure 5. Vector plot of the current density of the TE<sub>11</sub> mode at f = 615.6 MHz on the  $\rho = \rho_2$ ,  $0 < \varphi < \varphi_0 = 2\pi/3$  surface.



Figure 6. Normalized distributions of the electric field components of the TM<sub>11</sub> mode of the double baffled coaxial waveguide ( $\rho_1 = 5in$ ,  $\rho_2 = 6in$ ,  $\varphi_0 = 2\pi/3$ , and f = 7.105 GHz): (a)  $E_{\rho}$ ; (b)  $E_{\varphi}$ ; and (c)  $E_z$ .

Contour and 3D projection graphs of the normalized distributions of the electric field components of the TM11 modes of the double baffled coaxial waveguide for  $\rho_1 = 5 in = 0.127 m$ ,  $\rho_2 = 6.0 in = 0.1524 m$ ,  $\varphi_0 = 2\pi/3$ , and f = 7.105 GHz) are shown in Figure 7. Likewise, plots of the normalized distributions of the electric field components of the TE<sub>11</sub> mode of the double baffled coaxial waveguide are shown in Figure 8 for f = 615.6 MHz



Figure 7. Normalized distributions of electric field components of TM<sub>11</sub> mode of double baffled coaxial waveguide ( $\rho_1 = 5in = 0.127m$ ,  $\rho_2 = 6.0in = 0.1524m$ ,  $\varphi_0 = 2\pi/3$ , and f = 7.105 GHz): (a)  $E_{\rho}$ ; (b)  $E_{\varphi}$ ; and (c)  $E_z$ .



Figure 8. Normalized distributions of electric field components of TE<sub>11</sub> mode of double baffled coaxial waveguide  $(\rho_1 = 5in = 0.127m, \rho_2 = 6.0in = 0.1524m, \phi_0 = 2\pi/3, \text{ and } f = 0.6156 \text{ GHz})$ : (a)  $E_{\rho}$ ; (b)  $E_{\phi}$ ; and (c)  $E_z$ .

Finally, the form of the next higher order mode is of interest. Referring to Table 1, the next propagating mode is the TE<sub>21</sub> mode, with a cutoff frequency of  $f_c = 1.02589$  GHz. The non-zero electric fields at  $\rho = \frac{\rho_1 + \rho_2}{2}$ , as a function of  $\varphi$  are plotted in Figure 9.



Figure 9. Normalized distributions of the electric field components of the TE<sub>21</sub> mode of the double baffled coaxial waveguide ( $\rho_1 = 5in$ ,  $\rho_2 = 6.0in$ ,  $\varphi_0 = 2\pi/3$ , and f = 1.3 MHz): (a)  $E_{\rho}$ ; and (b)  $E_{\varphi}$ .  $E_z = 0$ .

### REFERENCES

- 1. <u>Time Harmonic Electromagnetic Fields</u>, R. Harrington, pg. 199, McGraw-Hill, NY, 1961.
- 2. Encyclopedia of Physics, ed. S. Flugge, pg. 345, Springer-Verlag, Berlin, 1958.