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There is considerable interest in transition structures that efficiently transport high power RF
fields from transmission lines to antenna apertures. By efficient, we mean ways that minimize
the amount of reflected power, and the resulting field enhancement of standing waves, that
occurs at the interface of the transmission line and the transition structure. In this note we derive
and examine the modal properties of the Azimuthally Propagating, Truncated, Cylindrical,
Coaxial Waveguide. This guide is defined by an inner and outer radii, and a width. In this note
we derive the governing equations for the electromagnetic fields of the TEz and TMz azimuthally
propagating modes. First, the characteristic equations that define the propagation constants of
each mode are derived; then, the electric and magnetic fields are explicitly expressed. With
these results the mode impedances are formulated, and the impedance of the propagating mode
in the transition section can be calculated. This value of the transition section's impedance can
then be used to impedance match the transition section to a transmission line. Finally, as an
example, a transmission line transition geometry is defined for which the electric and magnetic
fields of the lowest order TE and TM modes are computed and graphed. An Appendix to this
note briefly discusses the selection of the form of the vector potentials used to formulate the TE
and TM modes.
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The double-baffled, coaxial waveguide transmission line, shown in Figure 1, is defined by inner
and outer radii, and an arc length. In conventional applications, the propagating modes are
assumed in the z-direction. The TEz and TMz modes of this geometry, propagation constants,
and guide wavelengths were studied in detail in [Ref. 1]. In this memo, the waveguide is
truncated in the z-direction, and propagation is assumed in the azimuthal direction. Shown in
Figure 2, the Azimuthally Propagating, Truncated, Cylindrical, Coaxial Waveguide is defined
by inner and outer radii, and a depth a in the z-dimension. Weare interested in solving for the
azimuthally, or 4>-directed, propagating modes. First, the characteristic equations that define the
cut off frequencies of each mode are derived, then the electric fields are explicitly expressed.
Finally, an example geometry is defined for which the lowest TE and TM mode cutoff
frequencies are computed and graphs of the normalized field components are presented.

2. Geometry

The geometry of the azimuthally propagating, truncated, coaxial waveguide transmission line is
shown in Figure 2. The transmission line is defined by is defined by inner (Pl) and outer radii
(P2 ), and a depth a in the z-dimension. Propagation is assumed in the azimuthal direction.

3. Wave Equation

The natural coordinate system for the Azimuthally Propagating, Truncated, Cylindrical,
Coaxial Waveguide is the cylindrical coordinate system. The scalar wave equation in cylindrical
coordinates is
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where: If/(p,cp,z) = R(p)<D(cp)Z(z), the q are dimensionless propagation constants, and
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The geometry of the double baffled cylindrical coaxial waveguide: (a) 3-D
perspective drawing; (b) plane view of the xy-plane; and (c) plane view of the
xz-plane.
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The geometry of the azimuthally propagating, truncated, cylindrical coaxial
waveguide: (a) 3-D perspective drawing; (b) plane view of the xy-plane; and
(c) plane view of the xz-plane.



4. Boundary Conditions

E<p = 0 for P = PI , P = P2 Z = 0, and z = a,

5. Solution of the Separated Wave Equation

The <p(ep) and Z(z) equations are harmonic equations with harmonic functions as solutions;
these will be denoted h(qep) and h(nz) .

The equation in R(p) is a Bessel equation, and has Bessel function solutions:
Jq(kpp) = the Bessel function of the first kind of order q

Nq (kpp) = the Bessel function of the second kind of order q

H~I)(kpp) = the Hankel function of the first kind of order q

H~2) (kpp) = the Hankel function of the second kind of order q

Let the function Bq(kpp) represent the linearly independent combination of two of the above.
Then, the general solution to the scalar Helmholtz wave equation is:

6. TEz and TMz Field Components

The electric and magnetic field components can be written in terms of fields that are TEz and
TMz. See Appendix I.

The TMz field components are found by letting A = uz~' where A = the magnetic vector
potential, and Uz = unit vector in the z-direction. Then
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The TEz field components are found by letting F = uzlf/ , where F = the electric vector potential,
and Uz = unit vector in the z-direction. Then
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7. Solution of the Separated Wave Equation Subject to the
Boundary Conditions of the Generalized Geometry

Propagating waves in the ¢-direction in the truncated coaxial waveguide give rise to harmonic
functions

The scalar wave function is then
Ij/ = Bq(kpp)e-jqffJh(nz)

subject to the boundary conditions. The solutions for the TEz and TMz modes in the guide are as
follows.
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Erp = 0 for P = PI' P = P2 Z = 0, and z = a,

is satisfied if: an = 1, bn = 0, n = m1r , and m = 0,1,2, ....
a

Note, then, that the cutoff frequencies are defined in the same way as the cutoff frequencies of
standard rectangular guide, i.e., the cutoff frequencies of the TM modes of the azimuthally
propagating, truncated, cylindrical, coaxial waveguide.

The boundary conditions are also satisfied if
Bq(kpp) Ip=Pl,P2 = 0

aqJq(kpPJ)+ bqNq(kppJ) = 0

aqJq(kpP2)+bqNq(kpP2) = 0

Nq(kpP2) Nq(kppJ)
Jq(kpP2) Jq(kppJ)

Nq(kppJ)
b = 1 and a = ----- Finally, the scalar wave function for the TMz modes is:

q q Jq(kpPl)



Note that just a single solution for q is possible [Ref. 4]. The TMz field components are then
found explicitly as:
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is satisfied if: an = 1, bn = 0, n = m1r , and m = 1,2,3, ....
a

From the boundary condition on the E'P component, the general Bessel function, Bq (k pP ) , also
satisfies the boundary conditions if

d [B (k )J I = 0d( kpp) q pP P;fJl,P2



For specific values of kp' PI and P2' the values of q that solve

N' (k PI)
bq= 1 and aq = -bq ~ p solves the boundary condition for P = PI' and the value of kp

Jq(kpPI)
that satisfies Eqn. 20 solves the boundary condition for P = P2 .

N'(k )
B (k ) - N (k ) - J (k ) q pPIq pP - q pP q pP J' (k )

q pPI

Note that again, just a single solution for q is possible [Ref. 4]. The TEz field components are
then found explicitly as:
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The characteristic wave impedances for the Azimuthally Propagating, Truncated, Cylindrical,
Coaxial Waveguide are defined in terms of the dominant field components for the TE and TM
modes. The wave impedance for the TE mode is given by

ZTE =E 1H
p z; ~2~

while wave impedance for the TM mode is given by
ZTM =Ez 1Hp•

Determine the fundamental mode and that mode's cutoff frequency of the Azimuthally
Propagating, Truncated, Cylindrical, Coaxial Waveguide defined by the parameters:
PI = 5 in = 0.127 m, pz = 6 in = 0.1524 m and a = 6.5 inches. Plot the distributions of all field
components at f = 1.3 GHz, determine the guide wavelength in the propagating direction.

The fundamental mode is the TEz11 mode (m = 1 and q = 1). The cutoff frequency is determined

by the standard rectangular guide cutoff frequency Ie =s-., where Co = speed of light and
2a

a = broad wall dimension. For this case: Ie = 2.998 xl 08/(2 X 0.1651) = 0.9079 GHz. Shown in
Figure 3 is a plot of the numerically determined values of q as a function of frequency for the
TEzll mode.
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The values of q for the TEzll mode as a function of frequency for an
Azimuthally Propagating, Truncated, Cylindrical, Coaxial Waveguide defined
by the parameters: PI =5in=O.l27m, P2 =6in=0.1524m and a=6.5
inches.

To compute the field distributions of the TEzll mode at f = 1.3 GHz, the value of q must first
be determined. Shown in Figure 4 is a graph of the characteristic equation of the TEz11 mode
for an Azimuthally Propagating, Truncated, Cylindrical, Coaxial Waveguide defined by the
parameters: PI = 5in = 0.127 m, P2 = 6in = 0.1524m and a = 6.5 inches. The point at which the
curve crosses zero defines the required value of q , in this case q = 2.72 .
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The characteristic equation of the TEz11 mode for an Azimuthally
Propagating, Truncated, Cylindrical, Coaxial Waveguide defined by the
parameters: PI =5in=0.127m, P2 =6in=0.1524m and a=6.5 inches.



The field components can now be determined using Equations 21. Shown in Figure 5 are the
normalized electromagnetic field distributions of the various field components for the TEzll
mode. One notes that Ep and Hz are the dominate field components (as expected), since they
closely resemble the fundamental mode field distributions in standard rectangular guide. The
guide wavelength can be determined numerically by plotting the real component of the phasor
Ep component ofthe electric field of the TEzll mode as a function of azimuthal position as
shown in Figure 6. The guide wavelength is found to be

p + P 5+6 132 .A = 1 2 xrp=--x-XJr=12.67 mches
g 2 2 180

which is just bigger than the free space wavelength at f = 1.3 GHz of 9.08 inches, but less than
the rectangular guide wavelength of A;ectangular = 12.687 inches. The TE mode impedance can be

calculated as ZTE = E
p

/ Hz, and in this case is found to be ZTE = 181 D.

As the frequency increases, additional propagating modes become possible. For example, at
f = 2 GHz, the TEz21 mode will propagate. The value of q = 2.9515 is found numerically, and
the electric field components are shown in Figure 7.

As the frequency further increases, the first TM mode can propagate. For example, at f = 2.2
GHz, the TMzll mode will propagate. Note that the cutoff frequencies for the TM modes are not
defined by the standard simple rectangular waveguide relations (as was found for the TE modes).
Rather, they are determined through Bessel function relations that are solved numerically. The
value of q = 2.998 is found numerically, and the electric and magnetic field components are
shown in Figure 8. The TM mode impedance can be calculated as ZTM = Ez / Hp' and in this

case is found to be ZTM = 1140 D.
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The electromagnetic field distribution of the various field components in an
Azimuthally Propagating, Truncated, Cylindrical, Coaxial Waveguide defined
by the parameters: PI =5in=O.127m, pz =6in=O.1524m and a=6.5 inches
for the TEzll mode: (a) normalized electric field; and (b) normalized
magnetic field.
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The value of the Ep component of the electric field of the TEzll mode as a
function of azimuthal position.
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The electric field distribution of the various field components in an
Azimuthally Propagating, Truncated, Cylindrical, Coaxial Waveguide defined
by the parameters: PI =5in=O.127m, P2 =6in=O.1524m and a=6.5 inches
for the TEz21 mode.
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The electromagnetic field distribution of the various field components for the
TMzll mode: (a) normalized electric field; and (b) normalized magnetic field.
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APPENDIX I - About the Wave Equation in Cylindrical
Coordinates 1

The natural coordinate system for the Azimuthally Propagating, Truncated, Cylindrical,
Coaxial Waveguide is the cylindrical coordinate system. And one might be tempted to propose
solutions that TE¢ and TM¢. This would not be wise.

where the vector operator y-20=V(V·O)-VxVO. Now this equation reduces to the scalar
wave equation for Cartesian coordinates, since the unit vectors are constants. This is not so in
cylindrical coordinates, except for the unit vector in the z -direction. When written out,
Equation No. I becomes

Only Equation 3c is a scalar wave equation. In forming the solutions for the potentials, it is
important that we propose solutions that are TEz and TMz, so that solutions to the scalar wave
equation can be postulated.


