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Abstract

The time dependence is calculated of the radiated field from a resistive
tubular antenna excited by a step-function voltage across a circumferential
delta gap. The resistive loading along the antenna is taken to be uniform
and independent of frequency. Analytical expressions for the early-time and
late~time behavior of the far field are derived. TFor intermediate time
intervals the field is evaluated numerically. The radiation field of the
tubular antenna differs from that of the previously treated resistive-loaded

antenna mostly for small times and large resistance values.
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I. Introduction

This note is a continuation of previous worksl’z’3 in which the radiated
field is calculated of an infinitely long antenna of circular cross section,
either uniformly resistive-loaded or perfect conducting, excited by a step-
function voltage across a delta gap.

The antenna now considered is tubular, i.e. it consists of an infinitely
thin, circular cylindrical, resistive sheath. The resistance is independent
of frequency and uniform along the antenna. From the mathematical viewpoint
this means that the tangential electric field is continuous across the sheath
whereas the tangential magnetic field is discontinuous.

The reason for studying this problem is that this model resembles more
closely the actual antenna than does the previously treated antenna model,
which is characterized by the boundary condition that the ratio of the
tangential electric field to the tangential magnetic field at the surface
of the antenna is constant. In the present model we assume a delta~generator
feeding. Because of the assumed infinitesimal size of the excitation gap
the radiation field has singularities. The periodic appearance of these
singularities arises from the fact that the wave front is reflected at and
transmitted through the resistive sheath.

In comparison to the previously treated resistive antenna2 the tubular
antenna shows little difference in the late~time behavior of the radiated
field except for the singularities that appear in the radiation field of
the tubular antenna. However, the difference in the radiated field between
the two antenna models is significant for early times. For intermediate
times the relative difference is small when the resistance of the sheath is
small but more pronounced as the resistance per unit length is increased.

If the resistive loading is allowed to be frequency dependent as well
as nonuniform one will have more flexibility in shaping the waveform of the
radiation field. Of course this is a much more difficult problem to analyze
and might be studied later.

In section IT we formulate the problem and by making use of the saddle-
point method we get an expression for the time-harmonic far field. Assuming

that the generator voltage is a step -function in time we calculate in section



III the time dependence of the radiation field by performing an inverse
Laplace transform of the expression deduced in section II. The time behavior
of the radiated fileld is calculated numerically for a wide range of resistance
values and is tabulated as well as graphed. Some limiting values of the
solution for early time and late time are also given. Finally, in section IV

some expressions for the near field are derived.
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1I. The Problem

Consider a conducting circular cylindrical body comsisting of a thin-
walled tube with radius a. The cylinder is fed by an infinitesimal gap at
z = 0 in an ¢-independent way. We divide space into two regions: an internal
region (I) where p < a and an external region (II) where o > a. (See figure
1.)

Assuming harmonic-time dependence (e_iwt) and suppressing the time factor

Ez shall satisfy

AE_ + kZE =0
zZ oz

where

ko = w/c

In order to solve Maxwell's equations in (I) and (II) we will make use

of the Fourier transform of the field components involved. Define

£(p,a) = j £(p,z)e % 4z
with the inverse transform
1 ~ io
fl,z) = o J flo,a)e 2 da

C
where the path of integration C is shown in figure 2. Here f(p,z) denotes
an arbitrary field component.

Using the Fourier transform we get the following solution of Maxwell's

equations
T I,Gy) .
Ez<p,a) = E;-(m Ez(a—,u) s p < a (1
R K (oY) -
II __0
EZ (Q—QQ) = KO(a_Y) Ez(a+,a) s P > a2 (2)



where Io(x) and Ko(x) are modified Bessel functions. This choice of the Bessel
functions is motivated by the fact that Ez must be finite for p = 0 and fulfill

the radiation condition for p + =, Furthermore

Y=a2-k ’

[o N}

and a, denotes the outside of the wall, and a_ the inside of the wall.

For the other non-vanishing field components we have from Maxwell's

equations

- I, (oY) 4

I -ig , "1

EQ (D ,0.) Y IO(aY) Ez(a_,a) s P < a (3)
- . K, (py) .

11 ia 1
E " (pya) = — * =——<E_(a,,a) , 0> a (4)
P Y Ko(aY) z %+

-ik Il(pY) .

°1 1
H¢(p,u) ='E; Ty T_Gay) E (a_,a) , p<a (5)
R ik K, (oy)
I1 U SRR A S
By (0ae) = z, v K (ay) B (ap0) s 0> a 6)

where ZO is the wave impedance of free space: Zo ~ 377 ohms.

Suppose the wall can be characterized by an impedance Z so that we have

Ez(a,Z) = EI(Z) = Zﬂﬂgl(a,Z) - Hi(a,Z)] s 2% 0 (7)

1,-1

For a conducting wall with finite thickness A{A << 2), Z is given by Z = o A
where ¢ is the conductivity of the material of the wall.

We now go on to treat one case characterized by a slice generator at
z = 0 having the out-put voltage V (which can be a function of frequency).
Another case also characterized by a slice generator at z = 0 is treated in
appendix I.

Suppose
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Ez(a+,z) = Ez(a_,z) = - V§(z) + El(z) (8)
the Fourier transform of which is
Ez(a+,a) = Ez(a_;D =~V + El(u) (9

Equations (5), (6), (7), and (9) give

BA(Y)
E @) = 3500 2T Y

where

ik Kl(ay) I (ay) iko

_ o
Al == [Ko(av) I, (aY)]

aYzKo(aY)Io(aY)

and B = Z/Zo. Thus for the H¢-component of the electromagnetic field around

the antenna we have

-1 -1k, I, (o) 1
H¢(p’a) =vzoy Io(ay) BA(y) = 1 V. so0<a (10)
ik K, (o) 1
e Ry mm T 0 e (an

Introducing the current I(z) on the antenna we have
II I
I(z) = ZﬂaEHqb (a,z) - H¢(a,z)]

and

Here Z' can be interpreted as the impedance per unit length of the antenna.
Especially when Z is real we can introduce the resistance per unit length R.
For example the time averaged ohmic loss per unit length of the antenna is

given by R]I|2/2. Moreover in this case we can introduce the real quantity B8:



8 ='2ﬂaR (12)

A
o
Thus, from (10) - (12) we have
k avVv .
I(z) ='%E J EZZ$§I%—T eiazda = ; J 3 1 e %4y
° ¢ o & Bko + iy aKb(ay)Io(ay)

In the far zone where 6 # 0, (r,8,¢) being the spherical coordinates
with origin at the center of the antenna and 8 = 0 being along the positive

z-~axis, we can use the saddle-point method when calculating the field and get

pa sin 9 Io(pa sin 6)e PT

H;:I(r,e) ~ (13)

ZZo[B + pa sin2 6 Ko(pa sin e)Io(pa sin 6)Jr

where p = -iko.
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III. The Far Field for a Step Voltage

Let the voltage of the slice generator at z = 0 be a step—function in
time, i.e. vgen(t) = VOH(t), where H(t) is Heaviside's unit step-functionm.

From (13) the far zone radiation field is

pZOH¢(r,6,t) ) el s sin® Io(pa sin e)e(Ct_r)p
Vo = %ri j 8 + pa inz 8 I (pa sin 68)X (pa sin 8) *
i D S o P fo) P
955
T J 8, + 21 (K (z) ’ o
: 0 0

1
where qe = a_l(ct-r)csc 9, Be = g csc 8, and the path of integration, Ll’ is
shown in figure 3. But, when Re{Be} >0, g(z,8) = 8, +zI_(5)K (c) has no
< 7/2 (see appendix A). Thus, L1 = {C = go + in @

zeros for |arg{z}
Eo = const. = 0, = » < n < m}. Here we are only interested in the case WZen
Be is real and positive. Then, if z satisfies g(z,Be) = 0 so does also z
where Iz*] = lz{, arg{z*} = - arg{z}.

By making use of Cauchy's integration formula and introducing the

normalized time Te

¢t - r + a sin 6

TG = qe +1= a sin 8 (15)
we can see from (14)
P2 H, (r,8,1) 0 » Ty <0
___________VO = (16)
R(TS’SG) + P(Te,ﬁe) R T6 > 0
where
q4% ©
1 Io(;)e —Tex
R(Tgs8s) = 07 J TR (T (D) ¢ T J £(x,8)e dx
1 8 e} fa} 5
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xlg(x)ex

1
f(XsB ) =%
8 2 [Se - on(x)Ko(x)]2 + wzlej(x)
(T.~1)z,
= I (zj)e 6 J
P(T,,B.) = Re| ¥ }

g(cs) g(cs)

and zj are the zeros of g(C,Ba) fulfilling /2 < arg{zj} < . The path of
integration, L2, is shown in figure 3.

R(Te,se) was evaluated numerically for a wide range of B and Te. The

zeros, z., were calculated numerically for different values of S For large

[z | we can find an asymptotic estimate of z, (see appendix B). This asymptotic

3

expression for zj was used when j = 21.

P(TB’BG) was evaluated in the following way. Put

P(Te,Be) = A(Te,Be) + S(Te,Be) (17)
where
(T.~1)z
20 Io(zj)e o jt
A(Tegﬁe) = RE{jZI gr(zjase) H
(T.-1)z,
® I(_ZJ) 6 3}
S(TG’BG) = Re{jZZI g (z ,8 )

Here A(Te’se) was calculated numerically and S(Te,Be) was evaluated by making

use of the asymptotic expression for zj {see appendix C). S(Te,Be) is dis-
continucus at T8 = Zn where n is a nonnegative integer. An investigation of

the behavior of S(Te,se) around Te = 2n is given in appendix E. The singularities
are due to the infinitesimal size of the excitation gap and their periodic
appearance can be understood as the wave fronts being reflected at and trans—
mitted through the resistive wall. The time at which the different wave fronts

arrive at a distant observation point can easily be determined from figure 4.
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The results of the numerical computation are presented in tables 1 and 2

and in figures 5-7.

Early~time behavior of pZoH¢/Vo

The early time in the far zone is defined by T6 << 1, Then we put

R(T,.8,) = RV (1,80 + P (1,,8.)

where
4 X
R(l)(T sB8.) = J f(x, 8 )e 6 dx
8’8
o
-T.x
2 8
R, ,6,) = f Ex,8)e | dx
A
. We choose A such that we can use asymptotic expansion of f(x,Be) when evaluating
R<2)(T ,8.). Then R(Z)(T yB.) — (w/2T )_l when T, - 0. R<l)(T ,8.) remains
8’786 8’78 ) 8 8’78
finite when T6 + 0. Thus, R(Te,se)'~ 1/m/2 I/VT; when Te - 0.

For P(Te,se) we have:A(Te,Be) remains finite when 'I‘e + 0, and from
appendix E it follows that

S(T,,B,) ~ - 286 S when T, +~ 0
H
8*"8 1+ 286 o /T; 6
Thus,
pZ H
o 9 1 1 1
= R(T,,B,) + P(T.,B,) ~ . : , T, >0 (18)
Vo 6’78 g’"e 1 + 28e .o ST §)

Late~time behavior of pZOH¢/VO

The late time in the far zone is defined by Te >> 1.

In order to estimate R(Te,ee) we make the following consideration. Put



e(x,Be) = f(x,Be) - h(x,Be)

where

1
B

288

Then

9(0386) = e'(osse)

The primes denote partial differentiation with respect to x.

< —Tex
J e(x,Be)e
[»

But

e"'(X,Be)e_ax ELl(O,N)

from which it follows
< -Tex
J e(x,Be)e
o

Thus

< -Tex
R(Te,se)- J h(x,Be)e dx

o}

where

In T

2
1}

h(x,8,) =—2[x--g—xln—-—+x

2] , I = 1.7810...

e"(O,Be) =0

e"'(x,Be)e

o+——18

for o > 0,

dx = O(Tgs) when '1‘e > @

0.5772...

(19)




From the analysis given in appendix F it follows that P(Te,ee) is

negligible compared to R(Te,Be) for T > 1, T686 > 10 and Te # 2n, n being

8
a nonnegative integer. Thus asymptotically we have

pZ H
o %

where R(Te,Be) is given by (19).

Large 88

For Be >> 1 we approximate (19) by

pZ H (r,8,t) q.C
0 ¢ 1 8
v ™ rie J I,(Be = dg
o 8 i
1
" We can here choose the imaginary axils as the path of integration and get
@ 1 1
pZ B (r,8,t) , 0<T <2
1 2 8
. d’v N 53 J J,(7)cos(qyy)dy = " /2Ty - T2 (20)
o 9 8
o) 0 s Te > 2, Te <0

Some Remarks on the Results

The results of the numerical computations are presented in tables 1 and 2
and in figures 5-7. In figure 5 the radiation field of the resistive tubular

antenna is graphed for 12 < T, < 120 and 88 =0, 0.04, 0.1, 0.4, 1, 4, 10,

For comparison purpose the coiresponding curves for the previously treated
resistive antenna are also shown in figure 5., For Bs < 1 the curves for the
two cases are indistinguishable but the difference among them increases as
Be increases.

Because of the unphysical assumption of the delta-gap the far field has

square-root singularities at T, = 2n, n being a nonnegative integer. As

8
mentioned before, these singularities can be understood as being due to the
wave front being reflected at and transmitted through the resistive wall. The
appearance of these singularities is most pronounced for early times (see

figure 6). However, the strength of these singularities is exponentially

11



attenuated with T,, and for T, > 12 they are very weak. In figure 5 we have

made the graph ofethe far fieid a smooth curve, thereby omitting the singular-
itles for Te = 2n. In the curves depicted in figure 6 we have omitted the
time intervals 4n =< Te < 4n + 0.0l and 4n + 2 - 0.01 < Te < 4n + 2 thereby
makigg the quantity, pZOH¢/VO, finite. If we replaced the delta-gap by a
feeding gap of finite width (d) the radiation field would be finite for all
times. However, if d/a << 1 maxima and minima would occur in the radiation
field around T8 = 2n. These extreme values will be more pronounced the
smaller d/a is and the smaller n is.

For Te
expression (18). For T, > 1000 and BeTe > 100 the asymptotic expression (19)

is valid.

< 0.2 the radiation field can be calculated from the asymptotic

12



IV. Some Remarks Concerning the Near Field

As in section III we here assume that the driving function is a step-
function in time, i.e. vgen(t) = VOH(t). By taking an inverse Laplace trans-

form of the time~harmonic expression (ll) we get

z avI_(ay)K, (py)e *?
28 0. 2,6) = £(p,z,t) = = | &P Tdp - ° L do  (21)
Vo ¢ ami 2w 8p + ayzl (ay)X _(ay)

Cp Ca P o) o]

where y = ¢a2 + p2, and the paths of integration, Cp and Cu’ are shown in
figures 2 and 8. From this expression it follows that £(p,z,t) is an even
function of z. Thus there is no loss in generality to consider only the case
z 2 0.

Introduce now the transformation y = Vaz + p2 or a = Vyz - pz. The

function Vyz - p2 is multivalued and can be made single-valued by introducing
branch cuts at vy = £ p.
The path of integration in the y-plane, CY’ which is the image of C&

under the given transformation, must be such that when yscy, i.e. v belongs to

1. o= vyz - p2 is real

C , we have
Y

2. Ref{y} =20
3. Im{y} =0

Introducing the notations: Y, = Re{y} and Yy = Im{y}, and similarly for

p we arrive at the following conditions that determine Cy(p)

Y,Y; = PPy (22)

2 2 2 2
Yr—yi-pr+p120 (23)
er 0 (24)

13



This means that CY(P) must coincide with the part of the hyperbola (22) where
(23) and (24) are satisfied. (See figure 9). But o 1s positive and real on
one part of CY(p) and negative and real on the other part. This can be taken
into account in the following way: introduce a branch—cut for ¢ = ¥y~ - p
starting from the branch-point y = p to infinity along the part of the hyperbola
(22) where (23) and (24) are satisfied. Then o differs only in sign on the two
different sides of the cut. Let one part of CY(P) be above the branch-cut

and the other part below it. (See figure 92). IMoreover introduce a branch-cut
from vy = -p to infinity along the part of the hyperbola (22) fulfilling (23)
and Yo < 0. (See figure 9). We then define our Riemann-sheat for vy as the
—plane with the two branch-cuts described and Im YT - p } > 0. This means

that (VY -p >Y=0 = ip as Re{p } = 0 when pst and in general /§ - p = i#@ - YZ‘

Here we want to point out that y = O is a branch-point for the Bessel-
functions involved. The corresponding branch-cut can be drawn from the origin

to infinity along the negative real axis.

From the above considerations we change the integration variable o to y
and obtain from (21) .
-z 2 _ .2
ay 21 o (@v)k; (evle P v
f(p, z,t) = L ePe dp -
> 2ni 2ni yf————__—
c c, (p) [8p + ay I (ay)K_(ay)]

P

Let P, be such that all singularities of

s /2 — 2
ay I (av)K, (py)e Y
c, (p) [ep + ay’I o @k, (aY)]V

are to the left of Py Then P. > P, when P sC . From appendix G it then

follows that for B real and p031tive and by choosing P, arbitrarily large
8p + ay I (ay)K (ay) has no zeros for Re{ } > 0. This means that we can
deform CY(p) into PY parallel to the imaginary axis with 0 < Re{y} < Re{p}
when YEPY and peCp (see figure 9). But FY is contrary to Cy(p) independent

14



of p. Interchanging the order of integration we have
1

9 . epcte—zvp2 —
£(o,z,t) = ey J ay Io(ay)Kl(py)dy 5T

dp
r Cp CBp + h(Y)]sz - Y2

¥

(25)

where h(y) = aYZIO(ay)KO(ay). From the well known results8

e 0 s ct < 2z
1 ePCte‘Z PZ"Y2

dp =
2rdi t
-1 2 2 -1
o, [o+8™ m(nI/p -y . f o B h(Y)C(t-T)IO(Y/c?'TZ—zz)dT , ot >z

z/e
(25) reduces for ct > z to
t
-1
£(o,z,t) = —= ayzl (ay)X, (py)dy e-8 h(Y)c(t—T)I (Ychrz—zz)dr
2nip o] 1 o)
r z/e

v

Interchanging the order of integration we get

t

-1
£(0,2,t) =2:15 J dfj <'=w210(ew)Kl(mr)e-B h(Y)c(t-T)IO(Y»’czrz-zzMY (26)

z/c T
¥

The integrand has no singularities in the y-plane except for the branch-cut
from the origin to infinity along the real negative axis. Thus we can choose
FY as the imaginary axis.

For |y| » = and Re{vy} > 0 we have

-1
aYZIO(aY)Kl (oy)e B Bre (t—T)IO(WCZTz-zz) ~

/ v e—y(p—a+0.58_lc(t—r)—chrz—zz) s
8rve t -2

Thus f(p,z,t) = 0 for ct < V(p-a)z + z2 when Re{s} > Q.

15



Partial integration of (26) gives

K. oy
flp,z,t) = L J L IO(Wcztz—zz)dY+

2ri | K (ay)
T
¥
t
2 YK, (oY) -1
o 1 -8 "h{v)e(t-T) T f22 2
5T J KO(aY) dy J e -—E—;———-Il(Y ¢t =2")dt @27

2
r [ A
Y c—lV(p—a)2+z2

The first integral, fo’ represents the field from a perfect conducting cylinder
and has been evaluated earlier3. The second integral, k, can be transformed

into

k(p,z,t)

*
i
1 J YKl(DY)

Ko(a*r) dYJ Il(uv)e
~io p-a

-7 ) (ee=vu®+2?) du

2ri

*
t

do J Jl(cu/a)e

p-a

1 < c[Jl(cp/a)+in(dp/a)]

zTria2 i Jo(d)+iYo(U)

Z(c,u)du

*
t

do [ Jl(cu/a)e

p-a

[>-]

GEJl(cp /a)-1iY, (op/a)]

) 2ﬁia2 l Jo(g)_iYo(c)

*
2 (c,u)du

%
2., (o,u)

olJ ()Y, (oo /a)-Y (013, (oo /2)] 1
do ; Jl(cu/a)e cos[ﬁz(c,u)]du

[
3
O
3]
o 38

2 2
Jo(c)+Y°(c) o-a

%
¢ CRY
do J Jl(cu/a)e sin[zz(c,u)]du , (28)

p—a

cr[Jo ()3, (oo/a)+Y_(0)Y, (cp/a)]

+

=3

i) -
]

QO ~—— 8

Ji(o)+Y§(c)

where

t* = chtz-z2

16



®

2(c,u) = Ql(o,u) + izz(d,u)

2
Lw = = 33 @)Y () et - Va+z%)

[ (c u) = J (@) (et - Vu +z )

%
and the star denotes the complex conjugate value, that is, £ 1is the complex
conjugate of L.

For 8 small we have

£(p,2z,t)

B

/2 2
1 2 1 ePCE™2VP Y
E;-i'j ay"I_(ay)K; (yldy 57

T, ° : i < [8p+h(y)1Vp?
1 J K, (o) 1 [ epcte-szz-Yz .
dy P
2mi p K (ay) 2nd - /p—z-_-;-z-
Ject =a/p =y

P
J K (DY)
- dy [ dp
2 i 21ri
1‘ ay 21 o (@K, (ay) c /pz_Yz

~3

0 , v (p=a) +z

= £ (p,2,t) -
2.2 2)
K, (ey)I, (yve 't~z e
21%1 ct [ 1 L > dy , ct > (p-—a)2+22
/c2t2_22 r aon(ay)Ko(ay)
Thus,

17



K, (ey)I, (Ay)
k(p,z,t) ™ k, (p,z,t) = - =ox SE 1= dy
1 2ri A I ( )KZ( )
rv avl (ay)K (ay
8 ot Kl(oY)Il(M)
Y & (29)

2
o aYIo(aY)Ko (ay)

where A = \/cztz-z2 for A > p=a. The path of integration I'' is the part of FY
where Im{y} < 0 and I'" is the part of FY where Im{y} > 0. We also note that
' and I'" can be arbitrarily close to the imaginary axis.

Using the relationships iﬂIl(w) = = KI(W) - Kleeiﬁ), iﬂIl(W) =
Kl(w) + Kl(we-iﬂ) we get

kl(p,z,t)

i
et K, (0v)Ky Giy) (R oYK (ye™)
—-—'—‘:Z'Tlim{ 5 dy+J 5 dy}

2r e+0 e ayI_(ay)K_ (ay) T ayI_(av)X_(ay)

-im

K, (o)X, (Ay) ¢ K (py)K, (iye 77)
+-—§E-%; lim { 1 12 dy + 1 1 > dy}
25 e~+0 Pg aon(ay)KO(ay) %g aon(ay)Ko(aY)

The paths of integration, Fé and Pg, are shown in figure 10. Next we use

Cauchy's integral theorem on the contours: F; + 22 + R: + R4, Pé + 2: + Ré + R3,
Fg + R1 + (—R:) + 2;, Fg + R2 + Rg + 22 (see figure 10). From the asymptotic

expressions of IO, Ko, Kl it is easy to show that the integrals over the infinite

quarter circles Ry (k = 1,2,3,4) vanish for cztz > (p—a)2 + zz.

im'ﬂ') = e'lmI-lTT

imﬂ)

Using Ku(we Ku(w) - insin(muw)csc(uw)lu(w) and Iu(we

elmuﬂlu(w) we get

kl(ps.zst) = ki(pszst) + k']f(p,Z,t) (30)

Here ki is given by

18



=]

K, (cp/a)X, (or/a)
KI(o,2,t) = Bet 4y [ L : do
r°ax e>0 oI (¢) K (o)
o )
) l‘j EKl(cp/a)-iwll(cp/a)]Kl(ck/a) o1 TEKl(co/a)+iw11(co/a)]Kl(ck/a) o
2 L cIo(c)[Ko(o)+iwIO(o)]2 2 oIo(c)[Ko(c)-inIo(c)]2
™ .
a lnzczr-lee—i¢]ei(2¢+w/2)+1n2[2F-15e1¢]e-1(2¢+w/2)

£ oA |lnE2I‘ ce ]\

o]

and it is easy to show that the integrals together gives a finite contribution
when ¢ tends to zero. This is obvious because the magnitude of the integrand
of equation (29) is asymptotically given by ]Yl-lln-zlyl for ly{ << 1,

We now examine kg in (30).

~in/2 ir/2

)Kl(sjk/a e )

-iﬁ/Z)

get

@ {Kl(ijp/a e
Tai

k' (p,z,t) =
1\Pa%s L —ir/2..2
j=1 Sjll(sje )Ko(ije

in/2 -in/2

Kl(sjp/a e )Kl(ajkla e )

in/2
je

o+

}

ir/2

2
TR ALl ¢ )

Jl(Ejp/a)Yl(EjA/a)-Jl(Ejl/a)Yl(Ejp/a)
)

- 28ct
Taa

) (32)
3=1 5,9, 6,
An evaluation of the sum is given iIn appendix H. From this analysis it follows
that wfp,z,t) has singularities at czt2 = [p+(2n—1)a]2+z2, n nonnegative integer.
These singularities are due to partial transmissions and reflexions of the wave
front at the resistive wall. In general one can show from (25)that f(p,z,t) has

singularities at czt2 = [p+(2n-1)a]2+22'
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Table 1.

.02

.03

.04

.05

.06

.07

.08

.09

.10

.20

.40

080

1.4
1.9
3.0
4.1
5.0
5.9
7.0
8.1
9.0
2.9
13
17
23
29
35
45
55
65
75
85
95
999

51.5
38.3
29.3
24.2
21.7
18.8
17.2
16.2
15.6
14.9
14.4
14.1
13.8
13.2
12.3
11.6
11.1
10.7
10.4
10.2
9.90
9.75
9.63
9.51
7.20

50.7
37.3
28.3
23.4
22.6
17.2
18.0
15.1
12.8
14.2
11.4
13.0
13.8
11.1
10.9
9.61
8.43
8.46
7.33
6.62
6.36
6.23
5.91
5.39
.369

49.8
36.6
27.8
23.2
23.1
16.5
18.3
14.5
11.5
13.8
10.1
12.4
13.7
10.3
10.2
8.81
7.51
7.55
6.35
5.62
5.31
5.09
4,72
4.26
.137

48.9
36.0
27.4
22.9
23.4
15.8
18.6
13.9
10.4
13.5
9.04
11.9
13.5
9.59
9.62
8.08
6.74
6.64
6.54
4,83
4.47
4.17
3.80
3.39
.064

47.9
35.4
26.9
22.6
23.8
15.2
18.7
13.4
9.47
13.1
8.10
11.4
13.2

8.96

9.03
7.42
6.08
6.02
4.87
4.18
3.79
3.45
3.08
2.73
.036

47.1
34.7
26.5
22.4
24,1
14.6
18.8
12.9
8.60
12.7
7.28
11.0
12.9
8.39
8.47
6.83
5.52
5.39
4.29
3.64
3.23
2.87
2.53
2.22
.022

46.3
34.2
26.0
22.1
24.3
14.0
18.9
12.5
7.81
12.3
6.57
10.5
12.6
7.88
7.94
6.30
5.03
4.83
3.80
3.18
2.76
2.41
2.09
1.82
.015

45.6
33.6
25.7
21.9
24.6
13.5
18.9
12.0
7.11
12.0
5.95
10.1
12.2
7.41
7.44
5.81
4,60
&£.35
3.38
2.78
2.38
2.04
1.75
1.50
.011

44,7
33.0
25.2
21.6
24.8
13.0
18.9
11.6
6.48
1.6
5.40
9.68
11.8
6.99
6.98
5.37
4,22
3.92
3.01
2.45
2.05
1.74
1.47
1.25
.008

44,0
32.4
24.9
21.4
24.9
12.5
18.8
11.2
5.91
11.3
4,93
9.29
11.5
6.60
6.56
4.98
3.88
3.54
2.69
2.16
1.78
1.49
1.25
1.05
.007

37.9
27.9
21.6
19.3
25.6
8.87
17.4
8.26
2.52
8.32
2.36
6.28
7.95
4,01
3.62
2.49
1.84
1.47
1.01
732
.548
420
.329
.263
.001

29.5
21.8
17.1
15.9
24.4
5.12
13.4
5.07
.670
4.78
1.17
3.23
3.86
1.87
1.41
.871
.588
.420
.258
.172
.120
.088
.070
.052

20.5
15.2
12.1
11.7
20.2
2.34
7.83
2.50
. 264
2.01
.683
1.22
1.27
.636
404
.225
<140
.094
.055
.036
.025
.018
014
011
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Table 2. Values of 29 x 10

21179 | 108 |62.3 |44.1 |35.2(29.1 [16.3 |7.23 [4.46]3.34] 2.67|.267] .027
.4 | 132 | 80.2|45.1 32,8 124.9{20.2|11.2 {5.00 |3.28{2.47] 1.97].197| .020
.8 |105 |63.8|36.2 |26.1 |19.2 |15.8 |8.82 |4.62 |2.70 2.03] 1.62 ] .162} .016
1.4 1103 | 64.5|36.7 |25.6 |19.7 | 16.0 [8.26 |4.24 {2.87|2.17| 1.74] .174] .017
1.9 1183 | 123 |73.1|51.8 |40.0|32.6 |16.9 |8.59 |5.76 | 4.33| 3.62 | .362| .036
3.0 117.4 | 6.24 1 2.03 | 1,03 |{.630|.430|.130 {.038 |.019| .011} .007 0 0
4.1 162.025.2}8.36 |4.11 [2.44 {1.61 |.430 {.112 |.050{ .028] .018
5.0 {19.0|7.03{2.22 {1.07 {.628 | .412 |.109 {.028 |.013 | .007| .005
5.9 12,44} 1,76 | .835 | .464 |.292 | .200 | .057 |.015 |.007 | .004| .003
7.0 }14.214.2111.08 |.478 }.266 | .169 |.041 |.010 |.005] .003}| .002
8,1 {5.5112.22{.673|.310|.176 | .113 | .028 |{.007 |.003 | .002| .001
9.0 18.39¢2.32 | .580 | .253 | .140 | .089 | .022 |.005 |.002 | .001] .001
9.9 18.3112.02 .474 | .204 {.112}.071 {.017 |.004 |.002 { .001 ] .001
13 14.23}11.07}.252 |{.108 | .060 | .038 | .009 |.002 |.001 | .001 0
17 12.58 | .603 | .139 | .060 |.033 |.021 |.005 |.001 {.001 0
23 11.40 ) .3144 .072 | .,031 | .017 | .,011 | .003 {.00L 0
29 |.860} .190 | .044 | .019 |.010 | .007 | .002 0
35 }.576 | .127 } .029 | .013 | .007 | .004 | .001
45 1.334 | .074 | .017 | .008 | .004 | .003 | .001
55 |.216 | .048 ] .011 | .005 | .003 { .002 0
65 {.151 | .034| .008 { .004 | .002 | ,001
75 |.111}.025 | .006 | .003 | .001 | .001
85 1.084} .019} .005 { .002 | .001 | .001
95 {.067 | .015} .004 {.002 | .001 | ,001
999 0 0 0 0 0 0
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Figure 1.

The geometry of the problem.
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Figure 2.

The path of integration for the inverse Fourier transform.
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Figure 3.

The path of integration for the inverse Laplace transform.
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Figure 4. Reflection and transmission of the wave fronts.
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Figure 5. Radiation field for a step-function voltage.

The singularities at Te = 2n have been omitted.
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Figure 6. Radiation field for a step-function voltage.

27



{ | | I I LS L
<o —i T <
| ] w J
88
-
l\\ -
<+ < S 8 ~]
3] g
— — h — — ? (R T T
ot [V (42 ¥ wy O [
3 = 'S 'a 's 9 E

11
—

1Q

Figure 7. Radiation field for a step-function veltage.
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Figure 8.

The path of integratlon for the inverse Laplace transform.
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Figure 9. Paths of integration

on the branch of a = r’y?'—p2 where a = ip at y = 0.




1¢

cut

T me e m— e

Figure 10.

Paths of

integration on the branch where jarg{y}| < n.

Re




Appendix A
In this appendix we are going to show that for Re{ﬁ} > 0,
g(z) = 8 + zIO(z)KO(z), has no zeros for |arg{z}| < 7/2.
The function g(z) is analytic in the z-plane except for the branch-
cut from the origin to infinity along the real negative axis. We will
calculate the number of zeros (N) of g in the right half plane by calculating

the change of the argument of g along the contour L:
- +
L=L + L (Al)

where L~ and L+ are respectively the unions of L; and L;, ji=1,2,3,4. L?
are pointed out in figure il and will be described below. Then we will let
"L tend to infinity'".
At P we have: arg{g(P)} = arg{g} = 8., ~m/2 < 8 < /2. Let LI be
a curve with equation: |z| = §, -7/2 < arg{z} < 0. When & + 0 we have:
g(z) ~ 8, zeL; and thus arg{g(R-)} = 60.
Let L; be a line with equation: 2z = yexp(-ir/2), 0< y < Vg Then on
L;: g(z) =g + O.SﬁyJi(y) + O-Siwao(y)Yo(y)- With 8~ the point yoexp(—iW/Z)
and as Re{B} > 0 we have: arg{g(s—)} = el(yo), -r/2 < el(yo) < /2.
Let Q be the point X + yoexp(—iﬁ/Z) and Lg the line z = x + yoexp(—in/Z)

0= x< X - Suppose also that Yo is such that on L3 we can use asymptotic

expressions for the Bessel functions invoilved. Then on L,:

98]

g(z) ~B + 0.5+ O.5exp(—2x+12yo), and thus arg{g(Q-)} = 82 + 63(x0,y0). Here

6, = arg{s + 0.5}, -v/2 < 8, < 7/2 and

2 2

lim 83(xo,yo) =0 .
(7 ) (=)
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Let LZ be the line z = X, + yexp(-im2), 0 Sy < Voo and let X, be such

that on L4 we have g(z) ~ 8 + O.Sexp(-2x0+2iy). Thus with T the point X,
arg{g(T)} =6, +68,(x ) and 1im 6,(x ) = O.
2 4% < o 4 "0
o
Thus
1im A_ arg{g(z)} = 8, =8, (a2)

(Xoayo)'*(“a“’) L
In the same way we have
lim A, arg{g(z)} = -8, +6_ . (A3)

(x,,7,)+(=y) L

Finally
N = (Zv)_l[A+ arg{g(z)} + Ao_ arg{g(z)}1 =0 (A4)
L L

whichmeans that g(z) has no zeros in the right half plane.
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Appendix B

We will here deduce an asymptotic expression for the zeros, z,, of

]
g(z) = g + zIO(z)Ko(z) valid when [zjl >> 1.
Using the asymptotic expression for Io(z), Kb(z) valid when |z| >> 1,

0= arg{z} = 7 we have

28(2) ~ 28 + 1 + =L+ 1(1 - 4+ =2 - —EeTE (B1)
8z Z 3225 1282

As a first approximation of the zeros, z,, fulfilling |z >> 1, 0= arg{zj} =7

3’ jl

we use zg where 25 satisfies

2+ 1+4e =0

and
1 =
zj z, + iTj (B2)
where z == 0.5 1n{l + 28) and Tj = jr - w/4, j integer = 1. We assume that
Tj >> {Zrl’ Tj >> 1. Next we make the expansion
-1 =2 -3
it, + + 1 + b + i B3
zjasrrj zr a'rj Tj crj (B3)

and we assume ]argll << 1, ibrgzl << 1, ‘01;3] << 1., Expanding (Bl) in a
power series with respect to T;l and putting the coefficients for T;u (w=1,2,3)

equal to zeroc we get
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a = 0.125
1 Zr 1
b+ " F " 16 (B4)
8z +28 3 Z
. .3l Zy It
¢ T <38 TE2( £ 28) 16 %
2 2 2
For 8 << 1 we have z, ~ ~ 8 = 87, b 0.1258°, ¢~ - 31/384 - 87/8.

For the zeros, zj, ]zjl >> 1, =1 = arg{zj} < 0 we use the asymptotic

expression for g(z) valid when -7 < arg{z} < 0

2g(2) ~ 28 + 1+ 5 = i(1 = 2= + 2 - ALy (85)
8z 32z 1282
In this case we have the following asymptotic expression for zj:
Z, 88 - ir + z_ - iar-l + bt - ic1-3 (B6)
3 b J 3 3

where Ty z,, &, b, ¢ are given by (B2) and (B4). Note that

1° Re{zj} <0, Re{g} > 0

2° 1im z, = £ i(r, + =i - =21

)
a0 1 3 8y 3841?

and this expression coincides with the asymptotic expression for the zeros of

I_(2) (c.£.% p. 505).
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Appendix C
In this appendix we will derive a method for numerical calculation of

S(Te,se) defined by (17) in section III.

0 < T6 < 20
Introduce
(T,~1)z
' y= T Tot2y)e (c1)
S'(T.,8.,N) = 1 cl
and
S(Ty,8,) = Re{S'(T,,8,,21)} (c2)
But for Izj| large we have
-irj-zr
Io(zj)e Wy 286 i iz
"(z.,8) "I+ 28 =+ }
B V258, 2r 6 /r_J 2rjv’€j'
and
it,+z (T.~1)z,6 ~
e 4 Ty 8 ]
it.T, T.z i(T,-1)  B(T.=1) (T.-1)%  ie(T.-1) 1(T.-1)°
i’ 6°r 8 8 8 8 8
e e {1+ 3 + > - 5 + 3 - 5
B 4 1327 T 30721
i N N k|

Thus,
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T.z

i/z/fsee 5
§' (T, ,84,N) 8 ————— {5_(T,,))
/E(mee) °
. 2
1(42r+Te—l) z. <T6-1)
+ g 5, (T,,1) + Lo - 12 (T,-1) - —T35 45, (Tgs 10
2.(T,-1)% (T~
+ 40 (e + 0.52,0) (Ty=1) - ——g— = 55557155 (Tg, M} (C3)
where
- elTjTe
Sm(Te,N) = Z —5= » ==0,1,2,3
i=N T,
J
But
eiTu - eiTu m—O.Se-Txdx
0.5 (m=0.5) ¢
[o]

and from the proof given in appendix D it follows
1ty % m-0.5 TN
e J X e

sm(Te’N) = (m-0.5)" dx

irTy =-mx
l-e ee

Note that So(Te’N) has singularities at Te = 2n, n nonnegative integer. An
investigation of the behavior of So(Te,N) around the singularities is given
in appendix E.

Finally we get for S(Te,Be)
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fz‘se

1+0.5Te
ﬁ(1+288)

N T T
S(T,,84) = {s:Ln(TZOTe + 4)1_0(1-22,1"9) sin(r, T, + 4)Lo(-EZI,Te)

bz +T -1
r e T i
g Lsin(ry Ty = Py (r,y,T)=sinlr, T, = DLy (r,5,T)]

2
Zp (Te-l) T
L0~ @) (T-1) - —pgy—Flsin(ry Ty + PLy(r)y,T)

A 3
zr(Te-l) (Ts-l)

z b
. i r
- Sln(T21Te +-Z)L2(121,Te)]+ﬂ(c +"§—)(Te‘1) - 764 = 3072

x Csin(ty Ty - %)L3(1:21,Te)-sin('r20’re - %)L3(122,Te)]} (C4)

where

and

- T
Em T (@-0.5)°

CGm-Dit > "=t
We estimate the error of S(TB’BG) by estimating the magnitude of the last

term in S'(Te,se,Zl). Introduce

38



2 3
zr(Te~l) (Te—l)

266 " 3075 4 S3(Tg.N)

AN = [(c+O.Szrb)(Te—1) -

2.l r-%  Jra1)?
1c+o.5zrbglre-11 + T * =553 j o2+ 5,%
8
(o]

[4

0.5T inT 1ol ~rgr=l 4%
8N N
|1-e e |

wl <
/3 (2.5) ! (1) 3 (1428,

But

ST dx < (- P (L.5)!

ineT -ner '

° ]l-e N e

|2, (T,~1)? |14-1]3
037 < 0.3 and

264 (1+28,)  °

and < 2.2 for Te < 20. Moreover

O.STe
3072(1+288>

8 2

ln(l+288)

nax {

for T, =1 +
T 6
8 (1+286>

b= 2
0.5T, e/T728,
and thus,

[2c+zrb{{Te-1[ | 2e+z_b]

=<
0.5T, e/TF28,

2(1+289)

Finally

12c+zrb{

e»/1+2s{9 ¢ g

From this we getIA21] < 10-5.
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Put
S'(TG,BB,N) = Q'(TG,BG,N) + Ut <TS’BG)
where
(T ~1)z
ETGJ Io(zj e © i
t =
Q' (T,,8,,M) jgﬁ E oAy
(T,-1)z
E Io(zj)e 8 3
ur(T 1B.) = N
8°%s [Ty 41 g (zj,se)
and

. z T
12377 g.e ¥ 8LT,] it T 6.7
Q'(Te,Be;N) ~ T 28 ¥ L (1 +'2""'£)e 3 b, 178
% j=x /1? 75
where § 3= 0.12511:;1 + b—r;?‘ + ic-r;3. Moreover
Tezr
WIHTT g e 1G4z, 4T 1)
]
v (Te’Be) N 1+ 236 {So(Te’Ne) * T8 51 (Te’Ne)
z. (1.-1)?
+[(® - 573, (Te-l) - —_ETJSZ (TB’NG)
2b 2 (T,-1)7 (1,-1)
*ille + 4 Tg=1) = S . 3075 153 (Ty,N )}
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where

Ne=[Te:]+1 s Ty <Ny ST +1

From this we get:

=2
bT 1
/2 B4 ETS:] SinC('rj-i-Aj)Te-l-rr/é]e ®]
S(Tys84) = el =
CT.] -2
b T 05732 , PTy7y
-3ty z, sin[(rj+Aj)Te~n/4]e

j=21

+ sin(rMeTe-hr/l;)Lo (= 2 s Ty )—sin(TNeTe'*'rrM)Lo (TNS ,Te)

4zr+Te-l
+—g [s:f.n(rNe Te-rr/l;)Ll (rNe ,Te)—s:f.n(rMeTe--rr/4)L1(1.-1:,e ,Te)]
(1,~1)°
+ [(b—zr/16) (Te-l) - —Ez———]x[sin(TM TS-HT/4)L2(TP ,Te)
¢} 0
2,11 (-1
- sin(TNéTe+w/4)L2(TNé,Té)]+[(c+zrb/2)(Te'l) T T 264~ 3072
X [sin(TN TG—W/A)L3(TN ,Te)-sin(rM Te-ﬂ/4)‘L3(TP ,Te)] (C6)

8 6 8 8
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-3 _ _ _
j Me = Ne 1, Pe = Ne + 1.

In order to get an estimate of the error, AS’ of S(TG’BG) we use:

where Aj = 0.125151 + ¢t

IAS[ = |AQ| + |AUi where A, is an estimate of the error of Q'(TB’BB’Zl)

Q

and &U an estimate of the error of U'(Te,ss). Let §' be the maximum error

of dj. Then

/28T, 8
g8 {JT— - /50 - ‘zr] + rl 1

[as] < T
9 1+0.5T 8
(1+288) 8 ZHVTe 21v20

|2

As an estimate of § we use § = T;?lc{ and one can show that

8] < 0.9733 < 4 x 107°,

Proceeding as on page 39 we have for AU
|2, (7,1 |T8-1[3
] < Be(|2c+zrb|ITe-l] + 135 + 7538 )]

v 170,57
350 1,-1] 2+ (1+28,) °

6 5

and [4,] < 5 x 107°. Thus, [ag] < 10 .
Before concluding this appendix we wish to estimate the error AA of

A (Te,se). Let §' be the error of zj, then

1
408 TGBG

lagl~ 140,57
/5?(1+2ee)

]

and |4,] < 63'. When 6 - 1078, la,] < 6 x 107°.
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Appendix D

In this appendix we will prove that

E eitju eiTNu © xm-O.Se-TNX
S (u,N) = = _ T j
m j=x T?+O.5 (m-0.5)! 1

ity ~mx dx (1)
~-e e

where Sm has appeared in (C3) of appendix C and 7, = jr=r/4.

3

Consider

it,u -1,v itT,u =~t,v =
S (u,v,N,M) = MEN e le I | MEN e e 1 m05Ty" dx
R O @=0.5)1

o

3 =N

it u =T v «

N N iMru_=Mrv_-Mrx, m=0.5 _TNX
e e (l-e e e )x e

- ' - -
(m-0.5)! l_eivrue TV TR

dx

Introduce

1TV TN tMru Mrv © meo.5 ~(TyTMTX
R (u v.M N) = a e [=] (=] X e
m (8 VM, @=0.5)"

dx
itg -mv -mx
l-e e e

o}

For m > 1 we have

N° ~Mnrv =(t, *Mr)x
e e m=~1.5 N
lRm(u,V,M,N)§ 0T j X e

N My
e

m-O.S

dx =
5 w(m-O.S)(TN+Mv)

Thus,

1im 1im Rm(u,v,M,N) = 1im 1lim Rm(u,v,M,N) =0
v>0 Mow Mo v>0
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For m = 0 and when u # 2n (n integer), there exists a § independent of

X,v(x > 0, v > 0) such that ]l—e—iﬂue-ﬂve—ﬂxl > §. Thus,
e—TNve—MT\'V < e-'(TNﬁm)x e-TNVe-MTTV
IRO (u,v,M,N)l < dx = —m———
/r 8 . vz 6/1N+M1r

and
lim lim Ro(u,v,M,N) = 1im 1im Rc(u,v,M,N) =0 , u#%2n

v+ Mo Moo w0

From this it follows

Sm(u,N) = i.igl I,(u,v,N)

where
el’tNue—TNv © xm_o.sé-fo
Im(u,v,N) = (m=-0.5)! ity -1v_-mx%
5 l-e e e
Introduce
Ig(u,N) = (m-0.5)! I iTtu -7x dx (D2)
l-e e
But
L] -1 v
N -T. X
1 e 1 m=0.5 N
[Im(u,v,N)-—Im(u,N)l < — T J - _ ¢ X e dx
(m-0.5)! l_ei'rrue-*rrve-—rrx l-eiﬁue X

0
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Proceeding as before one can show that

lim Im(u,v,N)-Im(u,N) = 0 if (m,u) # (0,2n) , n integer
v->0

Thus,

Sm(u,N) = lim{Im(u,v,N)} = I,(u,N) (D3)

-0

which proves the statement (Dl).
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Appendix E
In this appendix we will investigate S(TG’BG)’ defined by (17) in
section III, in the neighborhood of its singularities.

Consider

I =T = 2005 TN
[~] X a

 — ’ — -
(m=0.5)! 1_einue TV ~TX

e
Im<u’V’N) = dx
where u > 0, v > 0 and = Nr-r/4, N being a positive integer and m a non~
negative integer. Introducing complex notation we have
m=0.5 "N?
e

zZ
h(z) 1 iru -nrv w2z
- e e

and h(z) is multi-valued, but can be made single-valued by introducing a
branch~cut from the origin to infinity. Here we choose the cut along the
negative real axis (see figure 12). We can then represent Im(u,v,N) by the

following complex integral

it u -t v T.,2
m N m-0.5 N
I (u,v,N) = (-1)"e e J z e
n 1

dz

2R T 2{ m~0.5) ! itu -mv nz
- e e

where the path of integration, Fl, is around the cut (see figure 12).

By contour deformation we have

e

dz

and T2 is parallel to the imaginary axis and Re{z} <'v, st2 (see figure 12).
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But

Im(u,v,N) = Im(u,v,l) - Bm(u,N)

where
it,u
3

mt0.5
]

Nil
B (u,N) =
n j=1 =

e

and Bm(u,N) is finite for all u. Im(u,v,l) can also be evaluated by the

method of residues. Thus,

I (uv,1) = ] aém>(u,V)

where

(-1)%
o™ (u,v) = TooooyT [v=tutatio 0 5 /2 Loy oy ym=0.5 1kn /2

and

‘1,k=0

akslz,kzl

In the Riemann sheet under consideration we have
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14
vv-iut2ik = [v-iu+2ik|0'5e 1 s mmlh < gy < /4

— 0.5 %2
v—iu-2ik = |v-iu-2ik] "“e s —m/h <, <0

Introduce
A= ] oMW (E1)
o k=0

Where

m
@ (-1)"¢

2 (u) = grpay Clumak P02 712 (=i (@0.5) (n/2) sgn (u=2k)

+ 1u+2k|m—0.5eikﬂ/2e—i(er.S)ﬂ/ZJ

From the mean value theorem it follows that there exists an Vk such that

o o 3a@
yGv 4@ = I 12 @, v)-a™ @] = v I K )| 5 e,

But
o 5al®)
ro (v )] =0
lim v —_ (u,v =
w0 k=0 Y k
except when m = 0 and u = 2n. Thus,
Sm(u,l) = lim Im(u,v,l) = Am(u) (E2)

v+0
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when m # 0 or u # 2n. We notice here that Sm(u,l) is finite for all u if
m= 1.
In order to investigate So (u,1) in the neighborhood of 2n we will
use Ao(u). For |u-2n| < 1 we have
A =alw + 4@y
) )
where

(n) (o)
AN (u) = a, ' (u)
o} kgn k

and Agn)(u) is finite for |u-2n| < 1. Thus,

) 0 s n=20
5, (u,1) = e-IHW/zei(W/z)sgn(u—zn> + Aén)(Zn)+ (E3)
Wlu- nl /iTin eiﬂ'n/Z o=l
where
1, x>0
sgn(x) =
-1, x<0

Thus for [Te—2n[ < 1 we have
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iVZi/vSe

F(T,,8,,N) = s (T.,N) =
86’78 1+0.5T o "8? 1+n
(1+266) 8 ﬁ(l+286) /[T8—2n|

in+l/§88ei(w/2)H(u—2n)

iJEZBe
+

[Aén)(Zn)—Bo(Zn,N) + ]
w{l+286)

v¥i/4n eirm/2 , nx1

I4n

and
-cos nmn/2 , u-2n > 0
Be

VZI}TG—Zn]-
w(1+286)

Re{F(T,,8,,0} = =

sin nm/2 , w-2n < O
+ Re{B (20, 0)-A" (20)} +In{B (20, M- (20}
Q o] Q Q

0 s n=20
(Zn)-%cos ar/2 , n=1

Thus,

1im S(Te,se) and lim S(TG’SG)
Te+4n—0 Te+4n+2+0
exist but

lim S(Te,se) and lim S(T

85
Te+4n+0 Te+4n+2—0

g

do not. Moreover, for [Te-4n| << 1, Te—an >0

(E4)

-(-1)"v28 ’
es m(1+28,) o /|T8—4n|
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and for [Te—4n-2[ << 1, Ty~4n=2 > 0

, ) (—1)“»/2"86 ) =)
S(T.,8. ) ~
8770 n(1+zse)2+2n /|Tg=bn=2]
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Appendix F

In this appendix we will make an asymptotic estimate for large TB of
P(Te,se) = A(TG,SG)+S(T6,BG) defined by (17) in section III.

First, we notice that as long as Re{zj} < 0 and A(TB’BG) is a finite
sum, A(TG’BS) is exponentially attenuated and hence negligible compared to
R(TG,BG) for Te >> 1, where R(TG’BB) is defined in (16) of section III.

To get an asymptotic estimate of S(Te,se) for Te >> 1 and Tese > 10

we consider

4
8(Ty,8,) = kzl Gy (T, 8,) (F1)

where

z..T
1/iTmse 0 = %o

G,(T,,B8,) = ,
tene 28y g /T

z T
re[T.] s6.T it,T
1/217Heee 8 (e i e_l)e ie

G,(T.,B,) =
2 76 g l+236 ym21 /_g
z.T 5.7 it,T
1/2ijm8.e * o ie 5%
8 (e =1)e
G4(TgsBg) = 1+28
8 [Te]+1 /rj

/TG Bz_ o eije
Gy (TgaBg) = 1+28, ) 3/2
h |

i=21 <

Here, as before, [Te] = Ny-1, N, being an integer.
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But

z Te
iVZi/wBee r
61028 = iz, S0 (Tee2V) (F2)

where so(TG’N) has been defined in appendix C. The properties of SO(TG’N)
have been investigated in appendices C and E, and So(Te’21) is bounded except
at ’I‘e = 2n, n being a nonnegative integer. Thus, for Te >> 1, Tese > 10

and Te # 2n, Gl(Te,Be) is exponentially decreasing and negligible compared

to R(Te,se).

Moreover,
/28 eere R 35T
16, (T,,8,)] < —— 1tle 3 7]
27879 1-}-28e S
j=21 Tj
Let § = max[Re{Gj}]. Then
3
§T z T T 8T z T
/589(1+e e)e v o ar 2/586(1+e e)e re
|Gy (Tg58) | < T+78, f = T+78, (T,~19.75)  (¥3)

18.75

From appendix A it follows that 'z, < 0, z,+§ < O; hence, for Te >> 1 and

TeBe > 10, GZ(TS’BG) is small compared to R(Te,Be).

When estimating Gs(Te’Be) we use §, = :i.(8"cj)“l and

k|
z..T z..T
~/2i78 e LR eiTjTe ~/21778 e B
G,(T,,B,) ~ = S.(T.,[T,.1+1) (F4)
3{Tg0 89 §(1428,) o T?/2 8(1+25,) 1%goLT,

where Sl(Te,N) has been introduced in appendix C. We recall that Sl(Te,[Te]+1)

is bounded for all Te > 0, and thus when Te

>> 1 and Teee > 10, G3(Te,se)

53



is small compared to R(Te,ae).

Finally, we go on to estimate GA:

T T

079 %078
Bylz le = 2/27798, |z, |e

377 T (1+28.)
P 8

(F5)

lc,(T,,8.) ] ~
hrete /7w (1428,) j=221 .

where z = max[Re{zj}] < 0. Thus, for Ty >> 1 and TGBS > 10, G4 ig small
h

compared to R(TG’BB)'
From the above consideration it follows that P(Te,se) is negligible

compared to R(TG’BB) for T,.>>1, Tese > 1 and Te # 2n.

8
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dppendix G
Here we will show that there exists a p, = Re{p} > 0 such that k(z),
where k(z) = p + zzIo(z)KO(z), has no zeros for larg{z}l < /2.
It is easy to show that for any given P, > 0 there exists a R such
that k(z) has no zeros for [z] < R, larg{z}l < /2, and R -~ = as P, > .

Now choose P, such that we can write with arbitrary accuracy

k(z) = p+0.52+0.5ize—zz s |zl >R , |arg{z}| = n/2
Moreover, for R >> 1 there exists an €(R) such that

k(z) = p+z/2 , z = Rei¢, beI(e) = (-7/2 + &, 7/2 ~¢)
and € * 0 as R >~ », TFrom these expressions it follows that k(z) has.no

zeros for argizleI(e); thus, by choosing 1 arbitrarily large k(z) has no

zeros for |arglz}| < 7/2.
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Appendix H

The sum defined by (32) of section IV will be studied in the following.

Consider the funection

ch:}") = Z f(gjsst) s x>0

s ¥ > 0. (H1)
j=1

where

I, (x8)Y, (y&) - J. (vE)Y, (x2)
f(ng’Y) = 1 L L L

2
E7, ()YS ()

and Ej's are the positive zeros of JO(S). Let F(x,y) be spiit into two parts

N-1

Z £E,5%,7) + Z £(g5%,y)
j=N

F(XSY)

= F (x,y,N0) + Fz(x,y,N) (H2)

We now choose N so that we can use asymptotic expressions for the Ressel

functions when calculating Fz(x,y,N). Also note that Fl(x,y,N) is finite

for all x,y considered. TFor £ > EN we have

2
£(2,%,5) = /77 (OyE) £1+3/<16x6 Y143/ (16y%e2)]
[1+1/ (165 Ylsin[g-n/4+3/(82)]

N sin[(x-y)£—3(Xfy)/(8xy€)3 0e™7/2)
sin [g-w/4 -1/(85)]
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With Ej = Tj+1/(8Tj)+O(Tg3) and Tj = jr-n/4 we have

% (-l)j+l
Fz(x,y;N) ~ v/ (2xy) z — gin(x~y)T

3=N Tj 3

® ESEat
/77 (2xy) ] D __ {sin(x—y)1.+[2—6(x—y)/(XY)]COS(X-Y)Tj}
§=N 16Tj/;; J

4

i

-~% Vv/(xy)(Re{So(x-y+l,N)}+Im{So(x-y+l,N)}]

/;(xy—2x+2y)
32 (xy) > 2

/1 (6%-6y-%7)
32(xy)3/2

Re{Sl(x-y+l,N)}+ 2 Im{Sl(x—y+l,N)}

where

it,u
Sm(u,N) = )
j=N Tj

which has been introduced in appendix C. From the analysis given there it

follows that Fz(x,y,N) has singularities at x-y+l = 2n, n being a nonnegative

integer.
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Appendix I

In the text we have calculated the radiation field of a resistive
tubular antenna excited by a slice generator at both inside and outside
wall of the antenna. In this appendix we shall consider the same problem
except that the slice generator is located only at the antenna's outside
wall, this case being referred to as the nonsymmetric excitation. Different
excitations giving rise to the same radiation field as this nonsymmetric
case are discussed in Reference 5.

Suppose
Ez(a+,z) = - Vé(z) + El(z) (I1)
E (a_,z) = E (2) (12)

Following the same procedure as in section II we have

s _ _ B
B @) = Tt

where
B0 - ikc Kl(ay)
Y y K (ay)
and

o) = - ik, I1GY) gpey)
60 Zy I (ay) gA(y)-1

VvV , p<a (I3)
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~TT ik K, (ey) 1-8C (y)

By (0y0) = Z,y X (ay) Ba(y)-1 V., p>a (14)
where
iko Il(ay)
Cly) = Aly) -~ B(y) = _§_'T;TEVT
Moreover
k a2y K, (ay)I_(ay)
I(z) = & j B dazg, 0 J TL o T e1%%4q
zo e Ba(y)-1 Zo c 8k°+iy2aK0(ay)Io(ay)

By the saddle-point method the far field can easily be shown to be

palsin 6 Io(pa sin e)+BIl(pa sin §)Je PF

quIcr,e> ~ (1s)

220[6+pa sin® Ko(pa sin G)Io(pa sin 6)Jr

Proceeding in the same way as in section III where the voltage of the
glice generator is assumed to be a step-function in time, we get the following

expression for the far field

(16)

0 T. <0
ZOH¢(r,e,t) 3{ ’ )

\
o

where

z —Tex
R(TG’BG) = J f(x,Se)e dx
o

39



I xCI (x)~8 Il(x)jx (x)e*

f(x, B ) =3
Es -xK_ ()T (x)]2+w2x214(x)
(Te—l)zj
w I (z,)+8.I.(z,)e
= 0] 87174

Here R(Te,se) was evaluated numerically for a wide range of BB and Te.

Similarly, as in section IIIL, we put

P(TG’BG) = A(TS’BG) + S(TB’BS) an
where
(Te—l)z.
, ) %? [I (z Y+8 Il(zj)]e J
A(T_,B = Re
8°%e 351 g'(zy,8¢)
and
(Te—l)zj

" [1 (z Y+8 Il(z Ve

S(Tease) = Re{jZZl g "(z ’Be)

A(TG’BG) was evaluated numerically. To obtain S(TG’BS) we follow the procedure

described in appendix C to get
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2
-2 B

$(Tg»8g) = I+T,/2
dAH+NmmV

mmMuAamo m+ﬂ\bvﬁ Aamm.e VlmHnAaww o+a\bvh AHNH.HQV

+ (b2 #T,=5)8 Tsin(r, T, =1 /4)Ly (1, Ty)=sin(t, Ty =1/4)L, (x

21 m 21° NN. u

+ mAw-ANﬂwHV\HmvAem-pvuﬁemlwvm\Humummwuﬁawoeo+a\pvwmAHNN,HQV

s1n (T T+ /)Ly (1 T, ) T (e¥b (2,710 /2) (T,=1)=(2,~1) (T, -1)*/ 264

(Ty=1)2/3072]0s1n (x Ty =1/4)Ly (11 s T, ) =810(T 5 T =1 /)Ly (750, Te) T}
(18)

for 0 < Hm < 20, and
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V2 32 [Ty

2
- e (bT )/,
S(T,,8g) Tezs, )1+T /2 L. Tj s:.n[(‘tj-i-é\j)T +r/4]e 787" ]
Ct,]
¥ -3/2 /2(—r “Dsinl (t +A )T, -m/ble <bT )/T
jRa1 3 ]
- sin(‘rMeTe-HrM)Lo('rPe,Te)+sin(1' eT -Hr/l{»)L ('c e, e)
- 8-1 (4zr+Te—5)[sin(TNa Te-rr/ln-)Ll (rNe ,']?e)—sin("rMeTe-frr/l;)Ll('rPe ,Te)]
- [{b=(z,~1)/16} (Te—l)—(Te-1)2/132]Esin(TMeTe+rr/4)L2 s 1)
- sin(ry To+r/4)Ly (1 Ty 0= [{ b (2 ,~1)/2} (T, -1)= (2-1) (Ty-1) 2264
8 Ny
- (Te—1)3/3072][sinCrN Ty -1 /4)Ly (T ,Te)-sin(TMeTe—n/A)Lsch RN
0 6 8
x°))
for T, » 20.
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[P WS

The quantities appearing in (I8) and (I9) have been defined in appendices
B and C.
Following the procedure as described in appendix E we see that for

n being a nonnegative integer, lim S(Te,Be) and lim S(Te,se)

T694n-0 Te+4n+2+0
exist but lim S(Te,se) and lim S(Te,ee) do not. Moreover, for
Te+4n+0 Te+&n+2-0
|Ty=4n| << 1, Tg=4n > 0
-1™3 8} .
S(T B )~ (IlO)
P w2 TR VT S
and for |T ,-4n-2| << 1, Ty=4n-2 < 0
--1)™7 &7 . (
S(T s B )~ Ill)
°e 1r(1+2ise)2+2n /[T,~4n=2]
. 2.-%
For Ty << 1 we have [see (18)] R(Te,se)- (l-Be)(ZTew ) *. Thus,
pZ H 1+8
20 J L. when T, > 0 (112)
) mff(m_se) ﬁ:‘e‘
Using the method described on page 10 when estimating R(Te,Be) for
Tese >> 1 we get
8 2T
1 8 2 4 8 2n
R(T,,8,) ~—=—=[1 = ==+ =+— + in - ] (113)
8°"8 ZBSTg Te Te BSTG T BGTG

Moreover, for Te >> 1, BeTe > 10 and Te # 2n, P(Te,Be) is small compared to

R(Te,se)(see appendix F for the proof). Thus, asymptotically we have
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pzoﬂé

— R(Te,Be)
o

where R(Te,se) is given by (I13).
For Be >> 1 we have asymptotically

DZOH¢ (p ,Z,t)

-1 -2
7 ~ by (T,) + 85 Thy(Tg) + hy(T) 1+ 0BT (114)

i
Where .

. q.z
hy(Te) = 31 J I, (g)e’e ds

L
o (1-Te)/<2n/2Te-T§), 0<T, <2
1
= -5 J I, (v)sin(qyy)dy =
] 0 s T. > 2

8

l/(Zﬂ/ZTe-Tg), 0<T <2

1 8

= 9Gbdr =
hZ(TB) Gri J Io(:)e 6-dg

L]. 0 3 T9>2
and
1 q,.z
hy(T) = = 41 J I, )T (5)K (g)e’e dz
Ly
1
;5 J xIO(x)Kl(x)Ko(x)cosh[(Te-l)xjdx . 0 < Te < 2
[a] co @
) [k e @D v 2 [ a1 o1 ok e TePax, 2 < 1y < 4
2n2 o 2ﬂ2 1 o fo! 5
(o] Q

_1 2 -(T,~1)x
5 xIO(x)Il(x)e ] dx

O e 8
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Equation (I8) is graphed in figure 13 for Te < 12. Comparing this

figure with figure 6 we see that, for Te < 10, there is a significant
difference in the radiation field between the symmetric and the nonsymmetric

case. However, for T, > 15 and Be < 1 the radiation field of the two cases

8

= 2n; for T, > 15

is largely the same except near the singularities at T 5

6
and 86 > 1 the radiation field of the nonsymmetric case is slightly weaker

*

than that of the symmetric case.

Following the procedure in section IV we obtain for the near field

z
v:- H¢(o,z,t) = fl(p,z,t)

pcte-szz-v2

1 j oYyl [vI, (ay)+8pI, (av)]e

= 35— | arK,(py)dy J dp

2rd 1 2ri ) /—2—2'

T C_ [Bptay“I_(ay)K _(ay)] Vp =y
Y P o o
1
= 26,20 + 5 | asv GonT G0y
T
v
1 pet —zv’pz—z2
x pe__2 (115)

dp
2ri

2 /2 2

cp [8p+ay I (ay)K (av)] pz-v

For B small we expand this expression in power series of B8 and keep

terms up to order R. Thus,

fl(p ,Z,t)' ~ fo(p 9Z,t)+kl (p,Z,t)+k2(p,Z,t) (116)
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where fo and kl have beed defined in section IV, and

0 A < p-a

2

kz(p ’z’t) =

get 1 j Kl(pY)Il(aY)Il(M)

x 2wi Io(aY)Ko(aY)

r
Y

dy » A > p-a

For A > p—a the integral can be deformed as follows:

Bet f K, ()1, (ay)K,; (hy) Y'J R, GY)I; (ay)K; Giy)

k,(pyz,t) = dy
2 anl ! Io(ay)Kb(ay) L Io(ay)Ko(ay)

in

+j Kl(oY)Il(aY)Kl(kvei“) o 'j Kl(DY)Il(aY)K]_(lYe— )

Tt IO (aY ) KO (aY) i IO (aY)KO (aY) dY }

et T K, (02 /)T, (0)L1, (op/a)K_()+K, (op/a)I_(a)]

RS K_ (@)K o)+ 712 (0)]

do

et & Jl(ajp/a)Jl(Ejk/a)-Yl(Ejp/a)Yl(EjA/a)

+
mak o Y, &)

(117)

From the above expressions it is easy to show that k1+k2 is finite for A > p-a.
Thus, up to order of 8 fl ig finite except at ct = V(o-a)2+z2, It is not
suprising that fl is finite in this approximation because the singularities

in the exact form of fl appear only in terms of order 82 and higher in the

power series expansion (I16).
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Figure 1l. The path L in appendix A.
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Figure 12. The paths of integration in appendix E.
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Figure 13. Radiation field for a step-function voltage from the nonsymmetrically
excited antenna in appendix I.
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