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Abstract

A consideration of the magnetic lines of a semi-infinite line of static

nagr.eticpoint dipoles parallel to a uniform external magnetic field leads

to a profile of a

to exzct analysis

problem my yield

field by a rocket

sem-i-infinite~perfectly conducting body $Thichlends itself

of the scattering problem. The solution of this scattering

sone information concerning the distortion of the magnetic

platform or a boom t.7hichapproximates this specific shape.

ihe flux through a coaxizl loop is calculated and plo:ced againsz the distance

from the end of the scatterer for several values of the loop’s radius. The”

plot of the magnetic field lines outside the body is also given. The

corresponding electrostatic problem, where the incident electric field vector

is perpendicular to the axis of the body, is discuss=d.
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=%!: The field distortion by a perfectly conducting, solid cylinder (which.—. c-’&.>
could be a rocket platform or a boom) and a method of reducing it have been ;

discussed previously.
1,2

The present note is concerend with a detailed cal-

culation of the magnetic-field distortion near the end of such a cylinder
1

,.
where an EMP sensor is likely to be placed. Since only the field near the

cylinders end concerns us here, we nay assume the cylinder to be semi-infinite

and then treat the problem as a magnetostatic one provided that k’eare only

interested in frequencies of the incident energy smaller than the lowest

resonance frequency of the cylinder. One might first think of a semi~infinite

‘1solid circular cylinder exposed to a uniform magnetic field and try to solve

\
the magnetostatic boundary-value problem with the normal component of the ‘.
magnetic field vanishing on the cylindrical surface as well as on the end. ‘

3
Although this problem can be formulated by the Wiener-Hopf technique, it ,

\

becomes too complicated to obtain any quick numerical solution for the field

near the cylinders end. Other shapes like a semi-infinite cylinder with a

sphzrical or conical end cap are at least equally difficult. Thus, inste~d

of solving a bou~dary-value problem for a given shape of a body we shall

employ an indirect approach.in which we seek the shape of a body that would..
correspond to the known field of a given distribution of magnetic sources

(e.g., nagnetic multiples) and yet would resemble a rocket platform or a boom.

In section II, we shall consider the magnetic field of a semi-infinite

line of magnetic point dipoles and calculate the total magnetic field lines

when the field of such a dipole distribution is superimposed on a cniform

magnetic field parallel to the dipoles. This consideration leads to an

axisyrmetric body whose profile follows the field lines. The fractional

flux, namely the ratio of the scattered to the incident flux, through a loop

coaxial h’ithEhe body is calculated in section 111. A similar approach has

been tried in the transverse case, where the incident magnetic field is per-

pendicular to the axis of a rocket platform, but these attempts have not yet

met with success. In section Itr,the corresponding electrostatic problem,

where the external electric field is perpendicular to the axis of the body,

is briefly discussed. It is sho’wnhow the solution of this electrostatic

2

problem can be directly deduced from t_hatof the corresponding magnetostatic

problez.
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II. Lines of Force
.-,,~=;-..=’,-,“<>.’,...:.

Consider the situation as.depicted in Fig. 1 where a line of .

magnetic point dipoles, each having dipole moment mdz and pointing in the

negative z direction, is immersed in a uniform magnetic field&o. We wish

to find the magnetic lines of force in this situation. The magnetic field

dgs due to a magnetic point dipole situated at z = z’ and pointing in the

negative z direction (Fig. 1) is given by4
‘/’-

mdz’ mdz’
d&=~V~=~Q

t

r2 “ [(z - :?;2Z+ ~2]3/2

The total magnetic field due to a line of magnetic point dipoles extending

fromz=Oto z=- is obtained by integrating this expression. Thus,

m

&s(cl,z) =~v I z-z’
23/2dzr=-~v~

o [(z --2?)2 + p ]
r

Writing (2) out in component form we have

.. .

(1)

(2)

(3)

The equation of the total

by solving

inzgnet<c-field

dp dz—=

H: Ho + H:

(i.e.& +,Ho) lines is obtained

(4)

Setting m = naLHo, where a has the diaension of length, and substituting

(3) into (4) we get

dp
2

—=
dz 4(P2 + &!2 + a2z

To solve (5) we set z = p cot 2 and eliminate

becomes

az d3—— = -4CSC?
p dp

._ (5)

z from (5). Thus, (5)

(6)

3
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which gives on integration +
.<

2P2”+ ~
cose=—

2 0)
a

..

where C is the integration constant. Eliminating 8 in favor of z, we have

from (7)

z -2P2+C

& + 22 2
(8)

“‘-l
This equation could also have been obtained by setting the total flux

. ‘\ ‘
(incident plus scattered) through a loop of radius p equal ~o a constant. \-

The cor-stant+Cwill be so determined that (8) will describe the profile,

of a semi-infinite body. To do this we observe from (5) that dp/dz = ~ at ‘

p=O,z=-a/2. Thus, setting P = O, z = - a/2 in (8) we find that C = -1.

Solving (8) for P/a we get

Cla = 2-% El - (z/a)2+ (z/a]J2+ (z/a)2J%
,.. ..

(9)

which is graphed in Fig. 2. Noee that (9) gives p = a when z/a = m.

Equation (9) describes, in the p-z plane, a family of curves with “a”

as a parameter and is the equation of the lines of force we set OUE to find

at the beginning of this section. If a body takes the fern described by (9)

and is immersed in a uniform magnetic field% as shown in Fig. 1, then the

scattered field is given by (3) w-henthe boundary condition at the surface

of the body is that the normal component of the total magnetic field vanishes.

This boundary condition is in complete agreement with the one for a time-

varying electromagnetic field on the surface of a perfectly conducting body.

In the next section we shall calculate the magnetic flux through a loop

coaxial with the scattering body (see Fig. 1).

4
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,- ,IIL..l?ractional.,l?luxThrough.-a:.Coaxial Loop

Referring to Fig. 1 we

of the incid=ent.field & and‘,.
now calculate the fractional

define 00 and A@ to

the scattered field

flux, - A#/$o, as a

as a parameter. Using the second expression of

A@ = -{ma2Ho/(4r)l f: zr-32rpdp
-—

40
nb2H

0

be, respectively, the flux

~s through the loop.. We

function of z/awith b/a

(3) andm= 27raHo we have

/’

2“
s— z 1~d~ a2=~ {1 - c1 + (b/z)*]-%} (lo)

2b2 ~ (P2 + 22)3’2 2b

which, of course, can be expressed in terms of the solid angle, L?,subtended “

by the loop at the origin, i.e.,

A@ 1-—. —
@o-

~b2H. .-0

For a loop of any shape situated

(?ra2Ho)(&) = 2 ~ .
~2 4T (11)

anywhere outside the scattering body equation

(11) can be easily generalized to be

Ao
2

za ~..—= ——
00 A 47T

where A is the area of the loop projected onto a plane perpendicular to H
-0-

Equation (10) is plotted in Fig. 3 for several representative values of

b/a. The curve for b/a = O is actually the plot of - H~/Ho along the z axis.

The total magnetic-field lines outside the scattering body are plotted in

Fig. 4; this plot is obtained from (8) by appropriately choosing the values

for the constant C.

..’
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Iv. The Corresponding Electrostatic Problem “(

From the symmetry and the boundary conditions of two sta~ic problems,
,r

the longitudinal magnetic and the transverse electric, for a perfectly conduc~ing

body of revolution, one can deduce certain relationship between the solutions
6

of the two problems. Let V be the scalar potential of the transverse electric

case and A the ~-component of the vector potential of the longitudinal magnetic
. +

case. Then, from Ref. 6 we can immediately write down

i“
v=- 2Eof(p,z)cos @

.-

(12)

‘4
= Hof(p,z)

.

~~) is the external electricwhere E (r.agnetic)field perpendicular (parallel)

to the axis of the body. At infinity f should vary as p/2 so that V and A
@

give, respectively, E and% there.

Let us now deduce f from the results of section 11. From (3) with

m = ra2Ho and JJ= v : (~A4h), we have

af
2

a s—= .— —
az 4 ~3

-2
$$(pf)=l+f&+.

r

Integrating the second equation we get

t’‘

(13)

(14)

which automatically satisfies the first equation of (13). To determine the

integration constant C? we use the boundary condition that A
$
should vanish

on the surface of the body defined by (9). We find that C’ = - a2/4. Thus,



$

,f

( ... .-

With (12) and (15) we can calculate

particular, we shall calculate the norml

surface of the body. Referring to figure
..

the electric field everywhere. In

component, E of the field on the
n’

1, we have

..-.

En = (E: +--E:)%=
af 2

2E0 COs @[(&) + (~)z]% .
P

Evaluation of En on the surface of the body defined by (9) gives

,

En’= 2Eo(o/a.)cos$(4 - 3:2/a2)% \- (16).
. “\

~:m ~and the induced surface charge density a is obtained from o = CE
n“ ,,

one can deduce the induced surface current density K
+

in the longitudin@

magnetic case, since

and

froruwhich

7

(17)

. .
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Figure 2, Profile of the scatterer,
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field lines outside Ehe scatterer.Figure 4. Magnetic
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