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Abstract

A consideration of the magnetic lines of a semi-infinite line of static
magrietic point dipoles parallel to a uniform external magnetic field leads
to a profile of a2 semi-infinite, perfectly conducting body which lends itself
to exact analysis of the scattering problem. The solution of this scattering
". problem mz2y yield some information concerning the distortion of the magnetic
field by a rocket platform or a boom which approxirates this spacific shape.
The flux through a cozxial loop is calculated and plotted against the distance
from the end of the scatterer for several values of the loop's radius. The’
plot of the magnetic field lines outside the body is also given. The
corresponding electrostatic problem, where the incident electric field vector

is perpendicular to the axis of the body, is discussad.
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I. Introduction

The field distortion by a perfectly conducting, solid cylinder (which

could be a rocket platform or a boom)} and a method of reducing it have been

1,2

discussed previously. The present note is concerend with a detailed cal-

culation of the magnetic-field distortion near the end of such a cylinder
where an EMP sensor is likely to be placed.1 Sinée only the field near the
cylinder’s end concerns us here, we may assume the cylinder to be semi-infinite
and then treat the problem as a magnetostatic one provided that we are only
in;erested in frequencies of the incident energy sﬁaller than the lowest

te

‘\\

Iv
the magnetostatic boundary-value problem with the normal component of the \\\\

resonance frequency of the cylinder. One might first think of a semi~infin

solid circular cylinder exposed to a uniform magnetic field and try to solve

magnetic field vanishing on the cylindrical surface as well as on the end.

Although this problem can be formulated by the Wiener-Hopf technique,3 it “
becomes too complicated to obtain any quick numerical solution for the field
near the cylinder's end. Other shapes like a semi-infinite cylinder with a -
spherical or conical end cap are at least equally difficult. Thus, instead
of solving a boundary-value problem for a given shape of a body we shall
employ an indirect approach in which we seek the shape of a bod§ that would
correspond:to the known field of a given distribution of magnetic sources
(e.g., magnetic multipoles) and yet would resemble a rocket platform or a boom.
In section II, we shall consider the magnetic field of a semi-infinite
line of magnetic point dipoles and calculate the total magnetic field lines
wvhen the field of such a dipole distribution is superimposed on a uniform
magnetic field parallel to the dipoles. This consideration leads to an
axisymmetric body whose profile follows the field lines. The fractional
flux, namely the ratio of the scattered to the incident flux, through a loop
coaxial with the body is calculated in section III. A similar approach has
been tried in the transverse case, where the incident magnetic field is per-
pendicular to the axis of a rocket platform, but these attempts have not yet
met with success. In section IV, the corresponding electrostatic problem,
vhere the external electric field is perpendicular to the axis of the body,
is briefly discussed. It is shown how the sclution of this electrostatic
problem can be directly deduced from that of the corresponding magnetostatic

problem.



II. Lines of Force

Consider the situation as-dépicted in Fig. 1 where a line ofi'”
magnetic point dipoles, each having dipole moment mdz and pointing in tﬁe
negative z direction, is immersed in a uniform magnetic fieldlgo. We wish
to find the magnetic lines of force in this situation. The magnetic field

. qgs due to a magnetic point dipole situated at z = z' and pointing in the

Y

neéatiﬁe z diréﬁtion (Fig. 1) is given by4

- \ - oy
s _mdz' _ cos 8§ _ mdz' z = z'
di” = v = v (1)
The total magnetic field due to a line of magnetic point dipoles extending
from z = 0 to z = = is obtained by integrating this expression. Thus,
s m z - z' L m _ 1
H(p,z) =5—V f dz' = - — V7V = 2)
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Writing (2) out in component form we have
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The equation of the total magnetic-field (i.e..ES +_§O) lines is obtained
by solving
d dz =
L - L2 “)
H H + H
o] z
Setting m = nazHo, where a has the dimension of length, and substituting

(3) into (&) we get
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To solve (5) we set z = p cot £ and eliminate z from (5). Thus, (5)

becomes
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which gives on iﬁtegration

202
cos 8 = _92__,.,_ c (7)
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where C is the integration constant. Eliminating 6 in favor of z, we have

from (7)

2
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This equation could also have been obtained by setting the total flux . |
(incident plus scattered) through a loop of radius p equal to a conséant.\\\ -
The constant ' C will be so determined that (8) will describe the profile
of a semi-infinite body. To do this we observe from (5) that dp/dz = e at R
p =0, z=~ a/2, Thus, setting p =0, z = - af2 in (8) we find that C = -1.

Solving (8) for p/a we get
c/a= 2751 = /a)? + Gla)2 + (z/2)? T ()

which is graphed in Fig. 2. Note that (9) gives p = a when z/a = =.
Equation (9) describes, in the p~z ©plane, a family of curves with "a"
as a parameter and is the equation of the lines of force we set out to find
at the beginning of this section. If a body takes the form described by (9)
and is immersed in 2 uniform magnetic fieldlﬂ0 as shown in Fig. 1, then the
scattered field is given by (3) when the boundary condition at the surface
of the body is that the normal component of the total magnetic field vanishes.
This boundary condition is in complete agreement with the one for'a time-
varying electromagnetic field on the surface of a perfectly conducting boay.

In the next section we shall calculate the magnetic flux through a loop

coaxial with the scattering body (see Fig. 1).



 IIL. .Fractional Flux Through-a- Goaxial Loop
. Referring to Fig. 1 we define ¢ and A¢ to be, respectively, the flux
of the incident fleld H and the scattered field H through the loop. We.

- now calculate the fractional flux, - A¢/¢ , as a function of z/a with b/a

as a parameter. Using the second expression of (3) and m = waZHO we have
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which, of couree, can be expressed in terms of the solid angle, 2, subtended

by the loop at the origin, i.e.,
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For a loop of any shape situated anywhere outside the scattering body equation

(11) can be easily generalized to be

where A is the area of the loop projected onto a plane pefpendicular to Eo'
Equation (10) is plotted in Fig. 3 for several representative values of

b/a. The curve for b/a = 0 is actually the plot of - H:/Ho along the =z axis.

The total magnetic-field lines outside the scattering body are plotted in

Fig. 4; this plot is cbtained from (8) by appropriately choosing the values

for the constant C,.



IV. The Corresponding Electrostatic Problem

From the symmetry and the boundary conditions of two static problems,
the longitudinal magnetic and the transverse electric, for a perfectly conducting
body of revolution, one can deduce certain relationship between the solutions
of the two problems.6 Let V be the scalar potential of the transverse electric
case and A¢ the ¢-component of the vector potential of the longitudinal magnetic

case. Then, from Ref. 6 we can immediately write down

V= - 2Eof(p,z)cos i)
' (12)

%

I

H £ (p,z)

where_go(go) is the external electric (magnetic) field perpendicular (parallel)

to the axis of the body. At infinity f should vary as p/2 so that V and A¢

give, respectively, E and H there.
~o ~o

Let us now deduce f from the results of section ITI. From (3} with

It

m wasz and H =V % (e, A ), we have
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Integrating the second equation we get
2 ' :
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which automatically satisfies the first equation of (13). To determine the

integration constant C' we use the boundary condition that A, should vanish
. 2

on the surface of the body defined by (9). We find that C' = - a"/4. Thus,

2 2
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With (12) and (15) we can calculate the electric field everywhere. 1In
particular, we shall calculate the norral component, En, of the field on the

surface of the Body. ﬁgférfing to figure 1, we have

2

E = (B2 +E
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Evaluation of En on the surface of the body defined by (9) gives

E = 2E_(p/a)cos ¢(4 - 3:%/a)" ™ (16)
and the induced surface charge density ¢ is obtained from ¢ = sEn. From ¢
one can deduce the induced surface current density K, in the longitudiqgl

¢

magnetic case, since

Ky=g,+ @xB = (g, x0) + (7 x4

¢ =9
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and
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"//’/”—””’“f_ﬂ"——_--;/a = 2_%E1 - (Z/a)2 + (z/a)/2 + (z/a)zjk

Figure 2,
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Figure 3. Fractional flux through a coaxial 1oopf;;:sus distance,
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Figure 4. Magnetic field lines outside the secatterer,
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