
I

Sensor and Simulation Notes
Note 103

7 May 1970

Sloped Parallel Resistive Rod Terminations for
TWo-Dimensional Parallel-Plate Trams mission Lines

David L. Wright
EG&G, IJIC., Albuquerque, New Mexico

Abstract

This note considers parallel resistive rods as a termination
for a two-dimensional parallel-plate transmission line. The rods
are considered to be small in diameter with respect to a wavelength.
and the rod spacing is taken to be uniform and much larger than the
rod diameter. Sloping the rods is permitted. The termination is
considered as a particular realization of a distributed LR aclmittance-
sheet terminator, and methods are given for designing the rods to
have the optimum surface inductance for reducing reflections where
the optimum inductance is found from previous work referenced in
this note. ~ certain frequency ranges, reflection coefficients are
defined and a diffraction grating effect is discussed.
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I. Introduction

Previous Sensor and Simulation Notes 1-3 have examined the
concept of vertical and sloped admittance sheets as distributed
terminations for a two-dimensional TEM wave parallel-plate trans -
mission line from the point of tiew of minimizing the high-frequency
reflections. The required admittance sheet for the ideal (reflec-
tionless) case will, in general, be of nonuniform surface admittance
and may not be completely realizable in terms of lumped passive
elements. 2 An admittance sheet of series inductance and resistance
can, however, match the ideal admittance in high and low frequency
limits. 1 The resistance is chosen so as to terminate the transmission
line in its characteristic impedance for low frequencies and the
series inductance is chosen so as to minimize the reflection of fre-
quencies with wavelengths of the order of the cross-sectional
dimensions of the transmission, line.

The method of selecting the appropriate distributed inductance,
developed in reference 3, is to calculate the current density response
of an ideal reflectionless admittance sheet to a step-function plane
wave input, then, while neglecting any reflections, to calculate the
corresponding current density response of an LR sheet to the same
input with R fixed by the low-frequency matching requirement and L
as a parameter. The L which makes the response of the LR sheet
most like that of the ideal sheet is the appropriate L. This method
is an approximation, rigorously correct only in the limit of small
reflections. It is also an approximation in the sense that the assumed
geometry includes infinite coplanar conducting flanges which are not
actually present. Nevertheless, it is expected that the method predicts
a reasonable value for the distributed inductance.

1. Capt. Carl E. Baum, Sensor and Simulation Note 53, Admittance
Sheets for Terminating High- Frequency Transmission Lines,
April, 1968.

2. R. W. Latham and K. S. H. Lee, Sensor and Simulation Note 68,
Termination of Two Parallel Semi-Infinite Plates by a lMatched
Admittance Sheet, January, 1969.

3. Capt. Carl E. Baum, Sensor and Simulation Note 95, A Sloped
Admittance Sheet plus Coplanar Conducting Flanges as a Matched
Termination of a T?vo-J)imensional Parallel-Plate Transmission Line,
December, 1969.
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The present note considers a particular physical approxi-

mation of an LR sheet, namely, a grid of parallel cylindrical
resistors or resistive rods (wires). The geometry of a finite
termination is illustrated in figure 1. IM.nite grids of

P
rallel

wires have been the subject of several investigations, 4- not
all of which are mentioned here, but the one which is best
suited for a lication to the present case appears to be that of
J. R. Wait. Y The following section will give the derivation of
the expression for the scattered field from a grid, largely fol-
lowing Wait, although one restriction on the frequency which
Wait includes will be relaxed.

II. Fields Scattered from an Infinite Parallel Wire Grid

Before setting forth the assumptions and derivation of the
ref Iection coefficient for the infinite grid, it should be explained
that there are really two separate problems here. The one of
basic interest is the bounded parallel-plate problem of height h.
The second problem, that of the unbounded infinite grid is con-
sidered here because for high frequencies it provides a means of

4. G. G. Mac Farl.ane, “Surface Impedance of an Jhfinite
Parallel-Wire Grid at Oblique Angles of Incidence, “ Journal of
the Institution of Electrical Engineers (London), Vol. 93,
Part IIIA, 1946, pp. 1523-27.

5. Victor llversky, “On the Scattering of Waves by an
Infinite Grating, “ Institute of Radio Engineers Proceedings on
Antennas and Propag ation, Vol. 4, 1956, pp. 330-45.

6. E. A. Lewis and J. P. Casey, “Electromagnetic Reflec-
tion and Transmission by Gratings of Resistive Wires, “ Journal
of Applied Physics, Vol. 23, No. 6, June, 1952, pp. 605-08.

7. James R. Wait, “Reflection at Arbitrary Incidence from a
Parallel Wire Grid, “ Applied Scientific Research, Vol. 4,
Sec. B, 1954, pp. 393-400.
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predicting th+~ be~avior of the finite termination by enabling one
to calculate vahws for the distributed surface inductance for a
wire grid as a function of such things as wire spacing and
diameter. In addition, the reflection coefficient for the infinite
grid case mav he directly applied to the finite case for the case
where the cross -s ectional dimensions of the grid are large with
respect to a wavelength. Although any waveguide must have a
finite widtl~. w , we ignore any effects of finite width. The
derivat km which follows is really that for an infinite grid sloped
with resperi to an incident TEIM wave at the same angle as the
terminati~l; .

It will be assumed that the rods or wires are uniform
cirruh r cylinders of homogen~ous material. The wavelength
will be assumed long with respect to the radius, a , of the rods,
and it will be assumed that d >> a where d is the rod
center-to-center spacing. The analysis assumes a grid
infinite in two dimensions. The region of applicability to the
finite case of the analysis presented here has, therefore, both
hiyh ,md low 1requency limits. The high frequency fimit is
provided by k ~ > a where x is the free space wavelength.
The low Irequency J.imit is provided by the minimum cross-
sectional dimension of the transmission line. If the width, w ,
of the fine is much greater than the height, h , of the line, it
will be h which will provide the low frequency limit. It is
suggested that if h << w , qualitatively correct results may be
obtained for wavelengths as long as the height, but the accuracy
will improve as x diminishes from this value. Another way
of saying this is that edge effects are being neg~ected, The
~d~e effects should decrease as the frequent y increases.

It is convenient to define a coordinate system with respect
to the termination as shown in fi~mre 2. The origin of coordi-
nates is taken to he at the junction of the top plate with the
termination. The angle $ is the termination slope angle
measured from the horizontal and lying in the region
o < ‘$ s (m/2).
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Figure 2. Coordinate

The method of attack is to

System at Infinite Grid.

consider that the incident wave will
induce in the wires currents which give rise to a reflected or s tattered
field. The magnitude of the induced currents and, hence of the
reflected fields, is governed by a quantity called the internal imped-
ance of the wires. The boundary condition imposed at the wire
surface is that the current in ~ wire times the internal impedance of
that wire is equal t:+ the total E field tangential to that wire. Express
the incident field El as 8

%i (x, y, z, d = ‘() (~)e [+j at-p(xcos~+zsin,d)
(1)

where P = UJ-9 u = angular frequency, E (u) is the amplitude of
the incident wave at frequency ~1. The phase L been taken to be
zero at the coordinate origin. It is assumed that the diameter of the
wires, 2a, is small c~rnpared with a wavelength. If this is true, it
may be assumed that El is constant over the cross section of the wire,
and that the only component of ~i which excites currents in the wires
is that component which is parallel to th-e–long dimension of the wires.

8. All units are rationalized MKSA.
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In the present case, this is the x component of @. The current
densities, therefore, may also be taken to be azimuthally symmetric
in each wire. The currents in each wire will be in phase with the
currents in the other wires, but there will be a variation in phase
along the length of each wire given by ~ cos ~ radians per unit length.
The currents in the wires may then be written as

I(x) = Ioe -jgxcos$
(2)

where 10 is the current in a wire at x = O. This is treating the cur-
rent distribution on the wires as that of infinitely long wires.

Since the induced currenQ flow in the x-direction, the field
scattered from a single wire, Es, may be derived from an electric
Hertz vector having only an x-component r: . The scattered
field may then be written as

(3)

Using the fact that a/ax = - j~ cos $ the scattered field components
may be written as

(4)

So far, we are considering only the scattered field from a single wire.
What is ultimately required is an expression for the current Io as a
function of the incident field. In order to do this, we express the
s cattereci field from each wire as a function of 10 and then solve for 10
by setting up a boundary value problem at the surface of the wires,
We assume that the fields s cattereci by each wire look the same as if
the wire were infinite in length. Let the current on a wire be given
by equation 2.
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From the fact that by Ampere’s law the circumferential ~ field, H:,
must approach -I(x)/2 rp as P-a and from the fact that Hs must
behave as an outgoing cylindrical wave at infinity and sati#fy

the proper solution for Hs is
Q

jf?Iosin~
H?= ~ e-j#xcos(~)

HI(2) (#PSin~)
a

with the x-component of )3? then given by
-

The x-component
written as

-j#xcostHO(2) (~~sint)e

of the ~ field due to all the wires may be

(5)

(6)

(7)

Wait remarks that the summation over the Hankel functions is a slowly
converging one and uses a formulag to change the form to the more
rapidly converging one

m

x x ~-i2r my/d

m=-m
(9)

9. Wait, op. cit.
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If we assume for the moment that I z \ >> d and that the
frequency is such tht A > dsin~, we need retain only the m = Oterm
in e~ation 9. This gives a reflected field with components

“where q = -121 sing -Xcose

III order to find l., the magni~de of 1(x) On a wire! We set uP the
boundary condition

(11)

where we must use the near field expression of equation 8 rather than
the far field expression of equation 10 for ~ .

The quantity Zi is the internal impedance of each wire. If
a << d, the assumption that the field is uniform around the wire may
be used and for a homogeneous wire the impedance is given by~”

10. E. C. Jordan and K. G. Balmain, Electrom~netic Waves and
Radiating Systems, 2d. ed., Prentice-Hall, hIC., 1968, p. 562.
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nIo(ya)
z.=—

I 2fia11(ya)
(12)

y,, a, and c1 are the permeability, conductivity, and permittivity
o$the wire. ‘10(7 a) and 11(Ya) are modified Bessel functions ot
order zero and one. If equations 8 and 11 are used with the condition
that a c e d, the boundary condition is given by

m

[P \ ‘2)(#lasin< )(2) (n~dsti~) + Hox2 ‘on=l 1 (13)

As in equation 8, the summation in equation 13 does not converge
rapidly and may be made more rapidly converging by using the formula

@

x [[2-1/2+j
1

-1/2
+j(kz-a ) (m+k)2 - U2

m=l .

[ 1
-1/2

+ (m-k)2 - ~z - 2m’-11 (14)

where k and a are real and ln~ is Euler’s number (=0. 5773 ● s c).
For the frequency spectrum

‘o ‘2)(~asin<) = 1- j

under consideration Pa<< 1. For this case

2 ~n rpasin< (15)
% 2
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It is nowpossible to write IOas

-Emd

10 =
(VOSin</2)+ (jgd/2fi)sti2~ I ln(d/2~a)+ FI + Zidsinzt

where E& is the x-component of ~O(U) of equation 1,- and

This factor F is discussed by Mac Far lane 11 for the case $ = ~/2
and a=..

One may write an intrinsic impedance of the incident wave in the
direction normal to the grid as

(18)

Lfthe surface impedance of the grid is Z~, the equivalent circuit looks
like figure 3.

0
I

o

z z

Figure 3. Equivalent Circuit

11. McFarlane, op. cit.
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which is equivalent, as far as reflected fields are concerned, to
figure 4.

z Q‘L

Figure 4. Equivalent Circuit for Reflections

z~ z
where z =—L Zsr Z

The voltage reflection coefficier~t is

ZL-Z
P=—

ZL+Z = &
z~ , the equivalent shunt impedance of the grid, is given by

(19)

(20)

We now remove the restriction A > dsin~ which permitted
dropping all but the m = O term in equation 9. If m k < *in&
where m is an integer, the grid no longer reflects a single wave, but
additional “side waves” will also be scattered from the grid as shown
in figure 5 which, for simplicity, is drawn for < = (n/2) and m = 1.
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Side waves will occur under this condition because planes of equal
phase may be found whose normals do not lie in the plane of incidence.
For sufficiently high frequencies, side waves may be found for many
values of m. The side waves come off symmetrically, as shown, at
angles measured from the normal to the grid in a plane perpendi-
cular to the plane of incidence, given by

em= arc sin
F*) “

(21)

r

*

As is seen from this relation, each frequency which produces side
waves produces them at certain discrete angles. This is the spectrum
grating effect familiar from optics.
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The modifications to Wait’s analysis which are needed to allow
frequencies such that k < dsin $ to be considered are straightforward.
The condition m~ = dsin~ for m = 1, 2, 3, so ● will be referred to
as the mth resonance, and the angle e ~ will be referred to as the
scatter-@ angle of the @h side wave. If, and only if, mk < d sin g
a reflection coefficient for the yth side wave may be defined as

Er
Pm=+

Ex X=o

(22)

For the m = O term in equation 9, this is identical to the reflection
coefficient defined by equations 19 and 20. For each value of m
a reflection coefficient may be calculated using equation 22 and the
s tattering angle may be computed using equation 21.

The behavior of p at frequencies near the ~th resonance
is quite interesting. Co%ider that the frequency is being increased
from a value just less than the ~th resonance. As A + m d sin &
from above (frequency from below), ]pml -0 for n = 0, 1, 2, “ee,
m-1, When the frequency just equals the ~th resonance, a new
set of side waves is generated with a IP ml = 1, and a scattering
angle of 90 degrees. As the frequency continues to increase, 8 m
decreases, but Ipml does also. Figure 6 illustrates this behavior
for a hvnothetical termination terminating a transmission line 50 meters
wide b~ ~ meters high. The resistivity o~the rods is chosen to
the low-frequency characteristic impedance. The spacing may
optimum, but the salient features are illustrated. Figure 6 is
culated from equations 21 and 22.

To close the present secticm it may be remarked that the
reflection coefficients of equations 19 or 22 are “first bounce”

match
not be
cal-

reflection coefficients. Fo; < s (n/4) and frequencies such that
~ e C minimum cross-sectional dimension, ray tracing will indicate
that the incident wave will have to strike the termination more than
once before being returned down the line. This consideration argues
for small slope angles.

-15-
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III. Low- Frequency Expansion of Reflection Coefficient

For frequencies such that x > dsin~ the reflection coefficient
is given by equation 19 with supplementary relations in equations 20,
17, and 12 where equation 12 assumes a solid rod of homogeneous
material. The low-frequency form for Zi may be found by expanding
10(ya) and Il(ya) using the assumptions that ~ >> jue, and that
ya <e 1. The latter two assumptions are “low frequency” assump-

tions, but are still valid for some frequencies too high for transmission
he theory to be useful.

2
Io(Ya) = I + ~ + 0(Ya)4

Il(ya) = & +*3 + 0(ya)5

(23)

(24)

USing n = [j~pl/. ~‘“2and Y . [Uwg \1/2and re~~@ only
the first two terms in equations 23 and 2 , one arrives at a form for
the low-frequency value of Zi to first order in ~ given by

which we may write as

Zi ~ Ri + jQ~Li (26)

neglecting terms higher than first power in u. The value for Ri is
the familiar dc value for resistance per unit length and Li = (u/8n )
is also a well known low-frequency value for inductance per unit
length. This value is .05 #H/meter which for many cases may be
ignored. If the rod is a cylindrical shell rather than a solid, Li is in
fact zero.

We now turn our attention to the quantity F, defined by
equation 17, which for low frequencies is a small correction to the

-17-
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4n (d/2Ta) term in equation 20. Rewriting F in terms of u with
a (1/m) factored out gives

@dSin& .
‘( 2Trc )

Ekpanding the first

‘($%+

term in the braces of equation 27 gives

which in turn may be written as

)F(W . ~j3)(L
dsin~ 2
27TC ) + O(Ld’)

z 12
where ~(n) = m-n is the Riemann Zeta function.

m=1

(27)

(28)

(29)

We now rewrite equation 19, incorporating
which gives

equations 26 and 29

9

(30)

12. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathe-
matical IRmctions, NationaI Bureau of Standards, AMS- 55, 1964,
p. 811.
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where the subs cript “w” indicates “wire” and Z = ~osin c . The
reflection coefficient for an LR sheet considered to be in parallel
with free space and oriented at the same angle with respect to an
incident plane wave as the wire grid, would have a reflection coeffi-
cient given by

(31)

Suppose Rs in equation 31 is chosen to properly terminate the trams-
mission line for d. c., and L has been chosen optimally according
to the analysis of C. E. Baud?. 13 Then PS has been minimized and
it is desired to equate pw to p~. In an attempt to cancel the first
term in the expansion of F in the denominator of equation 30, it was
supposed that the wire grid was physically displaced from the LR
sheet by a distance 5 I as shown in figure 7. The additional distance
traveled by a wave striking the LR sheet over that of a wave
reflected from the wire grid is

Zw Zs

Incident
. Origin of Coordinates

Reflected from
Grid

Reflected from Sheet

Figure 7. Reflections from Wire Grid and Displaced LR Sheet

~=~~+~~~=2~~sin2t; (32)

13. Baum, Sensor and Simulator Note No. 95.
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If the reflections from the LR sheet are taken as havi~~ zero phase,
then the reflection coefficient in equation 30 forthe wire grid must
be multiplied by exp(-j(@/c)5) in the denominator to account for the
displacement, giving

(33)

We now equate equation 33 to equation 31 using a power s cries
expansion of the exponential phase shift in equation 33. If the denomi-
nator of equation 33 is multiplied out using the first ‘few terms of the
power series expansion of the phase shift, arranging in ascending
powers of w and equating the result to the denominator of
equation 31, the result is that 6 must be zero and none of the terms
in the expansion of F may be eliminated. Thus the low-frequency
form of Dw becomes simply

Equating equation 34 to 31 leads to the relations

(34)

(35)

(36)

H Rs and Ls are optimally chosen, equations 35 and 36 give the
prescription for designing a wire grid termination with the least reflec-
tions in the frequency range where the wavelength is of the order of the
cross -sectional dimensions of the transmission line even though a
reflection coefficient per s e is not available in this frequent y region.
For lower frequencies, simple transmission line theory provides a ref’lec -
tion coefficie~t. For highe~ fre uencies u to the point where x = dsin$ + c

?l ?where c is an arbitrar~ly s ma real osi ive quantity, equation 19 gives
Ra reflection coefficient. For still hi~ er frequencies where x < dsi.ng,

side waves occur, but a series of re~lection ‘coefficients for” ~he vario~

20-
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reflected waves may still be defined by equation 22 as displayed in
figure 6.

It is interesting to note in equation 36 that if L.d is zero or
sufficiently small with respect to the second term, thlen the surface
inductance of the wire grid may be interpreted as being due to an
“effective displacement, ” A , as Ls = &oA sin2~ where the A is
exactly the A of equation 88 in Sensor and Simulator Note 2114
if “a” is replaced by “c, “ anti “(i” by “2d” to account for differences
of notation, and the sin2 ~ accounts for the effect of sloping.

Iv. Selection of Optimum Surihce Inductance

The selection of the best L is effected by using the results of
the previously referenced Note 95. s By studying figures 3 through 9 in
that note with the intent of choosing the curves which best match the
ideal current dens ity for early times and using equation 27 of that
note, it appears that a reasonable value for L~ is

Ls = yohsin2~ (3’7)

where h is the height of the termination.

If equation 37 is compared with equation 36, it is seen that if
Li = O, and with a given rod radius, the spacing, d, is not a function
of slope angle. If @ # O, d does vary as a function of $.

v. Addition of Internal Inductance

As has been previously mentioned, if the rods are of homogeneous
material, and if skin effect is negligible, the quantity L1 is (g 0/8 r )
henrys per meter. If the current flows on a thin cylindrical
shell or tube, Li = O. It may be desirable to increase the internal
inductance per unit length, I& in order to decrease the spacing, d,
between rods. As an example, for a hypothetical transmission line
of 50 -meter width and 3-meter height, a termination of solid homo-
geneous rods with ~ = p and c = g of fidius 3.175 cm (1.25 inches)
and with a slope angle ~0= (r/6) shouf!ldhave a spacing, d , of about

14. l/Lt , Carl E. Baum, Sensor and Simulation Note 21,
Impedances and Field Distributions for Parallel Plate Transmission
Line Simulators, June, 1966.
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4.6me~ers. This is rather awiciespacing which would give a total
of about 12 resistive rods in the 50-meter width of the hypothetical
simulator. The theory assumes an infinite number of rods, and it
might be questioned that twelve rods behave approximately as an
infinity of rods. It also might be desirable to reduce the spacing
(increase the number of rods) in order to reduce the currents flowing
in any single rod. In order to do this, additional inductance per unit
length may be added in the rods. If it is desired, for example, to
reduce the spacing of the rods to 1 meter, while retaining the
desired ~ and without changing a or ~ , an additional internal
inductance of .812 x 10-6 H/meter would be required. The
internal inductance might be increased by replacing the homogeneous
rods by rods of another type such as wirewound resistors whose
internal inductance might be adjusted to provide the desired Ls at
reasonable values of ~, a, and d. It may be noted that ~ has the
units of H/meter, whereas LS is surface inductance per square
and has the units of henrys. Thus Lid is of the correct
dimensionality.

VI. Summary

In this note we have considered a sloped parallel resistive rod
termination as a possible physical realization of a distributed LR
termination studied in previous notes. Equations are given which
permit selecting compatible spacing, internal inductance, diameter,
and termination slope angle for realizing the desired distributed
inductance. In addition, for a parallel grid it is possible to quan-
titatively predict reflections for certain low- and high-frequency
rzmges. The derivation for high-frequency reflections is given,
together with a discussion of a “diffraction grating” effect. Low-
frequency reflections may be found from simple transmission line
theory and are governed by resistive mismatch.
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