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Abstract

The capacitance between a circular disk and an infinite plane with a .

circular aperture is computed for the case where the disk lies in the plane

of the aperture and is concentric with it. The equivalent area of this

structure when used as an electric-field sensor is also computed.
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1. Introduction
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In note 98 of this seriesl a “circular flush-plate dipole” sensor is

described. This sensor consists of a circular disk at the center of a

circular aperture in a large ground plane. For mathematical simplicity

the disk and the ground plane are assumed to be infinitely thin and perfectly

conducting and the ground plane is assumed to be infinite in extent.

An incident electromagneticwave generates an electric field in the

annular slot between the disk and the ground plane. Such a wave also induces

some current flow between the disk and the ground plane. If the integral of

the radial component of the electric field along a radial line between the

disk and the ground plane is zero, the current flowing is called the short-

circuit-current. The ratio of this short-circuit current to the displacement

current per unit area in the incident field is a parameter having the dimension

of area. This parameter is called the equivalent area of the device2. .

It should be noted that, except in the low-frequency limit, the condition

that the line integral of the electric field be zero is not unique. In note

98 the short-circuit current is computed by assuming the radial electric field

to be zero everywhere in the aperture. At low frequencies, the definition.of

the short-circuit current may be made unique by considering the plane of the

disk to be a plane of symmetry of the device. One of the two main purposes

of this note is to give this alternative explicit definition of the short-

circuit current and, based on this definition, to compute accurately the

equivalent area of the device in the low-frequency limit. The second mairl

purpose of this note is to compute accurately the electrostatic capacitance

between the disk and the ground plane for the symmetric device. This para-

meter is useful in the low+requency limit if one wishes to consider the

interaction between the sensor and some output cable in an approximate

manner. Both of these computations will be carried out for an arbitrary

ratio of disk radius to aperture radius; in note 98 this ratio is assumed

to be close to unity.

In essence then, the work in this note complements the computational.

part of note 98. In

for a narrow slot at

(-’.

note 98, approximations are made that are appropriate

any frequency. Here, we treat the low-frequencylimit
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very accurately and for arbitrary slot width.

In the next section, we give a little more detailed discussion of the

meaning of the equivalent area and input admittance of the device in the

low-frequency limit. This will lead to a heuristic justification and a

precise statement.of the boundary-value problems we will solve and the

parameters we will calculate from their solution.

In the third section, the boundary-value problems arrived at in the

second section will be formulated in terms of a pair of coupled Fredholm

integral equations of the second kind. The kernels of these equations will

have properties such that the equations are very suitable for numerical

solution. This coupled integral equation formulation will be based on
9

standard methods from the theory of mixed boundary-value problems=.

In the fourth section, we discuss the analytical solution of the

equations developed in the third section in certain limiting cases. These

analytical solutions will lead to asymptotic forms for the capacitance and

equivalent area of the device for the case of:small disk radius.

The fifth section is devoted to a reformulation of the capacitance

problem in terms of a single integral equation of the first kind. This

kind of integral equation is not as susceptible to precise numerical solution

as an integral equation of the second kind. However, the equation of the

first kind leads to a variational expression for the capacitance of the

sensor. This, in turn, leads to a reasonably simple approximate represen-

tation for the capacitance which is very accurate for small disk radii.

In fact, for the disk radius less than half the aperture radius, the varia-

tional expression for the capacitance is correct to five significant figures.

In the last section, we return to the integral equations of the third

section and discuss the particular numerical method chosen for their solution.

Also, reasons are given for our confidence in t-he‘accuracyof the six-figure

tables of capacitance and equivalent area.
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11. The Boundary-Value Problems

In this section we wish to arrive at a precise mathematical statement

of the two physical quantities to be calculated, namely the capacitance and

the equivalent area.

Concerning the capacitance calculation there can be no confusion. We

merely determine the electrostatic capacitance between the disk and ground

plane shown in figure 1. It should be pointed out that the low-frequency

limit of the input admittance of the sensor is shown in note 98 to be purely

capacitive, and that one of the quantities calculated there is

$-2
c=—

o-
2E~

(1)

..-.

where C is the total capacitance between the disk and the ground plane, “a”

is the radius of the disk, and “b” is the radius of the aperture, as shown

in figure 1. In this note we will compute Q. for comparison purposes, but.

first we will compute the capacitance normalized in a slightly different

manner -- we will normalize to the capacitance of the disk isolated in free

space, i.e. 8ca. This new normalization will leadto a quantity which varies

very slowly with disk radius. we will compute, then,
..

c
cz8&a “

This will be done by first solving, in the geometry shown in figure 1,

V2+ = o

(2)

(3)

for the electrostatic potential $, which vanishes at infinity and is subject

to the following conditions on the z = O plane:

4(P,0) = o p>b

M.Q_&=o a<p<b

c
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The last condition listed above is necessary because of the assumed symmetry

of the sensor about the z = O plane. Once this boundary-value problem is

solved, it is clear that c is determined by the equation

a a$(p,o+)---
C =—

2a ~ az
pdp .

0

(4)

We turn now to the slightly less familiar concept of equivalent area,

A The parameter that would be really nice to calculate is the one which,
eq”

no matter what kind of “short circuit” is applied to the sensor, would give

.

--...0

the short-circuit current when multiplied by the incident displacement

current per unit area. Unfortunately, such a parameter does not exist. The

reason for this is the non-uniqueness, except in the low-frequency limit,

of the definition of short-circuit current mentioned in the introduction.

At the low-frequency limit, however, the definition of short-circuit current

is unique once the geometry is completely specified, because at the low-—

frequency limit the electric field may be derived from a potential and the

potential on the disk can b-e-set equal to the potential on the ground plane. J
Again we will choose the geometry to be symmetric about the z plane. This

approximatioilinvolves a neglect of the details of the cable feed but has

become standard in these sensor problems.

There are two further details to mention in order to completely specify

the equivalent area computations we willmak.e. The first of these is that we

will divide the short-circuit current not by the displacement current in the

incident field alone but by the displacement current in the incident plus

reflected field, This division may be the most appropriate one when large

ground planes are involved; it ha-sbeen used before (note 98); and in the

low-frequency limit leads to a simple division by the field at infinity on

one side of the z-plane. The second detail to be stated is that we will

normalize the equivalent area to the area of a disk whose radius is the

geometrical mean of the disk radius and the aperture radius. As with our

normalization of the capacitance, this choice leads to a quantity that

varies very slowly with the disk radius.

In order to relate current to an electrostatic problem we will say that

J
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by integrating the surface current ‘-” ‘we can determine the short-circuit current

surface divergence theorem, i.e,, ,flowing out of the disk and then using the

(5)

where Qd is the

at infinity.

total charge on the disk and E- is the electrostatic field

. .

:1SIt is clear we may write the total electrostatic potential,that

@=- Ezz + Ez$(x,y,z)a

= Ez+(x,y,-z)a

previous discussion it follows

2>()

2<(),

(6)

From

area

this

is

and our that the normalized equivalent

(-’
a

C@ (7)
a~(p,o)

a2
o

where

V’ti= o

and

IJ(P,O) = o p >b; P < a

MP#Q=& a<p < b .

The last condition is brought about by the continuity of the total field

through the slot.

7
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III. The Coupled Integral Equations

There are several ways one could think.of to solve the two potential

problems stated in the previous section. For instance, one could readily

write down a pair of coupled integral equations for the charge density on

the disk and ground plane using the free space electrostatic Green’s function.

Alternatively, one might use a half-space Green’s function to write an integral

equation for the electric field in the slot. The method that we will actually
3

use, based on the well-developed theory of dual integral equations , may seem

rather roundabout and unnecessary, but it will lead in the end to a pair of

equations that are extremely well suited to numerical solution. Almost any

other method one could think of would lead to

extraction of numerical results.

We begin by noticing that, for both our

in the upper half space may be represented as

m
f

much greater difficulty in the

potential problems, the potential

$(P,Z) =
1
A(a)Jo(ap)e-azda (8)

o J
where A(a) is determined by the conditions on V on the z = O plane. In

particular, for the capacitance problem A(a) is determined by

m

\
A(a)Jo(up)da = 1 p<a

o

m

~
aA(a)Jo(ap)da = O a<p<b (9)

o

m

1’A(a)Jo(ap)da = O p>b

o

while for the equivalent area problem A(a) is determined through

J
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JA(a)Jo(ap)da = O

0

! aA(a)Jo(ap)da = - l/(2a)

o

w

IA(~)Jo(ap)da = O

p<a

a<p<b (lo)

o

Both of the above sets of equations may be written as special cases of the set

m
f

! A(a)Jo(ap)da = g(o) p<a

o

m

\
uA(u)Jo(ap)da = f(p) a<p<b (11)

o

m

~
A(a)Jo(ao)da = g(p) p>b

o

and from equations (4) and (7) it can be seen that what we would like to have

is f(p) for p < a.

We may derive a relation between f(p) for p < a and f(p) for p > b by

assuming for the moment that–f(p) is known for p < a and writing the pair clf

dual integral equations

m

JaA(a)Jo(ap)da = f(p) p<b

o

m

~
A(a)Jo(ap)du = g(p) p>b

o

If-we normalize the independant variables in these equations so that p = xI),

it is seen that they are the pair solved in appendix A, and since, for both

our special cases, g(p) is zero for p greater than b we may write, from

equation (A-20),

C.+<,..,.

9
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~

22$
b

2 2+
f(p) = ‘2

tf(t)(b -t ) dt 2

~

tf(t)(b -t ) dt

~(p2-b2)% ~
2_t2 -

n(p2-b2)Li
2_t2 1

P a P

p > b (12)

where we have separated the two intervals of integration to remind ourselves

that f(t) is known in the second integral but unknown in the interval of the

first integral.

We

p>bby

integral

may derive a second relation between f(p) for p < a and f(p) for

writing the pair of dualassuming that f(p) is known for p

equations.

> b and

m

1aA(a)Jo(ap)da = f.(p) P>

0<

a

a

B, and so we may use

o

~
A(a)Jo(up)d~ = g(p)

This pair corresponds to the pair solved in appendix

equation (B-15) to write

m

J
22$

t(t -a ) f(t)dt _
22 2’2+

b
t -p ~(a -p )

b

\

t(t2-a2)%f(t)dt
22
t -p

_)
-2

f(P) = 2 2+
r(a -p )

a

ta
2d_——
7Tpdp I

sg(s)ds

(t2-s2)4
<a

o

we have again separated the known and unknown portions of f.(t).

Now in equations (12) and (13) we can make the substitutions

a (14)
Jx

f(p) =
p(a2_p2)$ .p-l(o/a) P

P,(b/p) o

<

>f(p) = b

P (# b2)Lz

(15)b

and achieve the simpler pair

-J

10



.
.

,-,.

r.,.

1

PI(X) +
~
K(x,y)p2(y)dy = hi(x) , 0 s X < 1

0

1

P2(X) +
\
K(x,y)pl(y)dy = h2(x) , Osx<l

o

where

2xfi (l-k y
2 2$5

K(x,y) =
24

n(~-y ) (1-k2x2y2)

and we have defined

.. .- ..-. ...

(16)

(17)

(18)

— —

.—

k~a/b .

In equations (16) and (17) hl and h2 are defined by the known parts of

equations (12 and (13). Inserting our special known values of g and f from

equations (9) and (10) into (12) and (13) it is found that for the capacitance

problem

—
2dkx

h;(x) =—
T

h;(x) = O ,

while for the equivalent area problem

(19)

(20)

(21)

(22)

where

k’ = (1 - k2)+ .

c
11
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._Also, recalling the definitions of c and A from equations (4) and (7)

and the fact that, on the z = O plane,

a~(p;o+)
f(p) =-——

az

we can use the substitutions (14) and (15) to write

lC
‘i’r

1

PI(x)dx
c=—

2?’Z~ (1-X2)2
(23)

and

(24) -

(16) - (17), are

la

~

PI(x)dx
A=k+4&

~ (1-X2)%

We note here that, since the kernels of the pair,

identical, we can write uncoupled equations for the pair

p+ =P1+P2

P_ =P1–Pp
J

in the form

1
r

P+(x) f
J

K(x,Y)P+(Y) = h+(x)

o

where

h+ = hl + h2

h=hl-h2

but-we make no further use of this fact since the rest of the analytical

discussion is simpler without this transformation and, although the time

required for numerical solution could be reduced by such a transformation,

the total computation time will be negligible even without it.

We will, however, make one further transformationof equations (16) and

---1

12
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(17). We will also normalize the capacitance and equivalent area problems

slightly differently in order to simplify equations (23) and (24) a little

further and at the same time keep the integral equations of the two problems

as similar as possible. In particular, for the capacitance problem we set

2A
= —PI(0) sin 6PI(X) ~

2&
P2(X) =~P2(f3) sin 6

,.

x = sin 6

y =:Sin e!

and for the equivalent area problem we set

This

used

C
\
...

PI(X) =LP2(6) sin t?
&

P2(X) = ‘PI(6) sin 8
A

x = sin 8

Y = sin6’

final substitution results in the following equations,

for numerical work

Tr/2

PI(9) + k
~

G(0,6’)P2(9’)d8’ = HI(8)

o

lr/2

P2(e) +
I

G(0,0’)Pl(6’)dO’ = H2(6)

o

13

which are the ones

(25)

(26)



where

sin 0’(1-k2sin20’)+G(f3,e’) =A o .~–
l-k2sir126sin26’

(27)

For the capacitance problem we set

q(e) = 1 (28)

Hj(e) = O (29)

and compute

lT/2

c =
J

P~(e)sin 0 dO

o

(30)

while for the equivalent area problem we set’

H:(8) = 1 ~ {k’ - cot 0 tan‘l(k’ tan 0)} (31)
ITsin 0 -J

H;(6) =+{k’ - k cos 6 tan
-1

(k;~8)}
(32)

and compute

T12

A=k+4
~

P~(0)sin e de . (33)

o

Ir is easy to show that a second expression for c, which is equivalent to

(30) and which can be derived by integrating the charge over the ground plane

rather than over the disk, is

7r/2

c =
J

Pj(@)dO . (34)

o

In the next section we will discuss the solution of equations (25) and

(26) for small k. In the last section we will discuss a numerical technique

of solving them with high accuracy.

J
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(’- - IV. Limiting Cases
/.

Equations (25) and (26) are readily solved if we keep

terms in k. The integrals then become independent of 0 and

‘lT/2

P;+=
‘lT J

sin 6’P~dO’ = 1

0

0

only first order -

we can write

From these equations it is clear that, in the limit we are considering,both

P; and P; are independent of 0 and that

pc+2k C

1
yP2=l

(35)

P;++P;=O .

Solving these equations for P; we obtain from equation (30)

c 7T2
c=P=—

1
n2-4k

(36)

This equation is in error by less than one part in a thousand for k less than

a fifth,

For a similar treatment of the equivalent area problem we must also

expand the right hand sides of equations (25) and (26) to first order in k,

We then have

7r/2

~

,,

P:(e) +*
l-e cot e

sin 0’P~(6’)dO’ =
T sin20

o

lT/2
(37)

o

15
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From these two equations it is clear that, to first order in k, both

P;(e) -
l-e cot e

ITsin20

and

P;(e) -++k ‘;s e

are independent of 0. If we denote these.two constants by kxl and X2

respectively, we can use equations (37) to write

7T/2

xl+:
J

sin8’(X2+~- “~ 8’)d6’ = O

0

v/2

X2+:
~

sin 6’(kXl + 1-”0’co;6’)d6’ = O
T sin O’

o

or, carrying out the integrations,

(38)

.=”.‘...)

X2+$X1,=-+++
“r

Solving these equations to first order in k we find

1
‘2=-;+

++?
IT T

Using this, we can easily get P;(8) from (38) and then substitute P; in (33)

to get

32k
A=~+7

‘Tr n

This equation is plotted in figure 3, along with the exact value of A.

(39)

16
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It follows from the work in note 98 that the asymptotic form of the

capacitance as k approaches unity may be written as a function of the parameter

in the form

x=- (ln k)/2

n = 4ci’K= 2[ln(~) - 21
0

This expression is accurate to better than one part in a thousand for x less

than a tenth. On figure 4, where x only goes up to a tenth, the plot of the

above expression is indistinguishable from the true curve.

r-’
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v. A Variational Expression

We turn now to a reformulation of the capacitance

c)
problem in terms of

an integral equation of the first-kind. This will-lead, through a variational

representation, to a fairly simple explicit expression for the capacitance

which is nevertheless quite accurate for most values of k.

We start.by developing an expression for the potential of a ring charge
.—.

in the plane of a circular aperture in an infinite plane at zero potential.

The ring charge is concentric with the aperture. If the radius of the

aperture is unity and the radius of the ring charge is p’, it can be seen

that the potential is given by

O(P,Z) =
j
A(a)Jo(ap)e-apda

o

where A(a) is determined by

m

p>lIA(a)Jo(ap)da = O (40)

o J

w

j
aA(a)Jo(ap)da = * p<l

o
0

(41)

and Q is the charge on the ring. Equations (40) and (41) are special cases

of the pair of dual integral equations solved in appendix A, and so we may

write immediately, from equation (A-16),

7 ..
L L

J$(p,o) =+ ‘t
I

x’~(x’-p’)dx’

2n E (tZ-pZ)+ o (t2-x’2)*
OP

1

.L
~

dt

21T2& (t2-p2)Rt2-P’2)%
o max(p,p’)

We may now use this expression to write the potential, within the aperture,

of any axisymmetric distribution of charge over-a disk in the aperture in the

form

J

18
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/

..

4(0) =
p’a(p’)dp’

{J

dt
VE 2+ }
o (#.-p2)$(t2-p’ )

o max(p,p’)

where a is the surface charge density within the charged disk and k is the

radius of the charged disk. If the charged disk is a conductor its potential

must be independent of p; so an integral equation determining the charge

density on the disk is

k 1

v=
I

p’u(p’)dp’

{J

dt
TE }
o (t2-P2)kt2-P’2)%

o max(o,p’)

Now we define

which brings the integral equation

k 1

H1{l=fi
o max(p,p’)

to the form

dt
~+} f(p’)dp’

(t2-p2)%t2-P’ )

and the total charge on the disk to the form

.

.-

9

k k

Qd = 2T
J
pu(p)dp = msV

J
f(p)dp .

0 0

Thus the capacitance of the disk is.

Qd
k

C=y=l’rz
~
f(p)dp .

0

Up to now in this section we have been assuming that the radius of the aperture

is unity, but this is only a matter of normalization and it is easy to show

that the normalized capacitance defined by equation (2) is given by

c=

where k has now assumed its former

radii, and f(x) is determined by

k

& ~
f(x)dx (42)

o

meaning of ratio of inner to outer annular

19
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1=
~
K(x,x’)f(x’)dx’

o

(43)

where

1

K(x,x’) = K(x’ ,x) =+

J

dt

(t2-x2)%2-x’2)~max(x,x’)

Because of the form of equations (42) and (43) we may use the standard

theory of variational representations4 to write a stationary representation

for c in the form

n/8 [~~ f(x)dx]2
c=

k~~~ f(x)K(x,x’)f(x’)dx’dx

This expression possesses the usual stationary property that first

order errors in the form of the function f(x) introduce only second order

and smaller errors in the value of the functional c.

To make any further progress we must assume some explicit form for

f(x). We choose to make f(x) proportional to the function it would be if

the disk were isolated in free space. That is, we assume

f(x) = x
(k2-x2)%

This assumed form increases in accuracy as the disk decreases in

size. Inserting this in (44) we see that

k
2

(j )

2
xdX

c=Tr [4w(k)]-1
o (k2-x2)%

= m2k/[4D(k)]

where

20
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D(k) =
1
00

kr

I

J dt x’
~k2:x2)3f “

. dx‘dx
(t2-x2)(t2-x’2) (k2-x’2)%

max(x,x’)

1

J xrdx’

~

xdx

~

dt=

~ (k2-x’2)%x, (k2-x2)% x (t2-x2)~(t2-x’2)~

k x’ 1

+ J x’dx’

~

xdx

J

dt

~ (k2-x’2)4 ~ (k2-x2)+x, (t2-x2)+(t2-x’2)~

k x

2
I

xdx

I

x’dx’=

o (k2-x2)% o (k2-x’2)%

.
1

J dt

x (t2-x2)%2--x’2)%

k 1

2
~

xdx

J

dt=

o (k2-x2)%x (t2-x2)%

‘Jtl’x+bh
o 0 ko

or defining

x

~

x’dx’
—2

o (k -x’2)%(t2-x’2)%

x

(k2--x2)%(~2-x2)%
x’dx’

(k2-x’2)%(t2-x’2)%

x

S(x,t) =
J

x’dx’

o (k2-x’2)%(t2-x’2)%

we have

kt lk

~~ 1~

‘S(x,t) ‘x + 2 ‘t
D(k) = 2 ‘t S(x,t) ‘x

‘S(x,t) ~x
S(x,t) ‘x

o 0 ko

k 1

=
J
dt [S2(t,t) - S2(0,t)] +

j
‘t [S2(k,t) - S2(0,t)] .

0 k

S(x,t) = in
(k2-x2)%-(t2-x2)%

k-t

r-,,~..-,
21
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Jr
and so

k 1

D (k) =
I

2k+t2+
dt in (~)

J

2 t+k ~
dt In (a)

o k

Now

11 +

1

11=:
j
ln2(~)dx

o

k Tr2.—. —
43

while

12

I/k
k

12=-F J
ln2(~)dx

1

1
k=—
4 j

Inz(fi) +

k
u

‘k
k 2T2 k=—. —. —
434 j

‘ln2(~) ~
u

o

So, substituting II and 12 back in equation (45) we find

k
-1=1 1

j

2 1-I-udu
c _—

2
In (~) ~

‘lT u
o

(46)

This value of c is accurate to five figures for all values of k less than a

half. It–is plotted in figure 2 as a function of k. There it can be seen

that equation (46) is quite accurate for almost all values of k.

A series representation for c can be readily obtained from equation (46)

by making the substitution
i

-/’
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where

l-k
P ‘m “

and integrating the s integral. The result is

-1 = ~ 2 m ]2-pn[l+(l-n In p)2]}
c

21
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VI, Numbers

We return now to equations (25) and (26). These

whose integrands are smooth functions of 0’; so we may

J
,,

equations have integrals

approximate these

integrals to a high degree of accuracy by using a Gaussian integration pro-

cedure. That is to say, if 0. and W(tlj)are the Gaussian points and weights5

appropriate to the interval (~,Tr/2),to a high degree of accuracy we may

approximate equations (25) and (26) by

N
PI(6) +k ~ G(0,0j)w(6j)p2(8j) = HI(O)

j=l

P2(8) + ~ G(%8j)w(8j)P1(8j) = H2(8)
j=l

where N is the number of points chosen for the Gaussian integration.

In particular the above equations mvst be true at the N Gaussian points,

t3i,and so we may write the following two coupled sets of linear algebraic

equations:

N
Pl(6i) +k ~ G(6i,6j)w(0j)p2(6j) = Hl(ei) i= l,--*N

j=l

N

P2(0i) + ~ G(ei,Oj)w(8j)p2(8j) = H2(oi)
j=l

These equations may be solved numerically on a

may again”useGaussian integration to say, using the

i=l, ”**N

digital computer and we

equations of the third

)
4’

section, that if

Hl(8i) = 1 i= l,*o*N

H2(6i) = O i= l,o*oN

then

J
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c = i~~ Pl(Oi)sin f3iw(0,)
1

{:47) ‘–-

or

~ s f paw
i=1

and that if

H1(6i) = 12 {k’ - cot Oi tan‘l(k’ tan @i)}
ITsin 6

i

H2(ei) = : {k’ - k cos 0 tan
-1 k’

i (k Cos e )1
i

then

(48)

N
A= k + 4 ~ P2(Oi)sin aiw(ei) . (49)

i=1

The two independent representations for the capacitance, (47) and (48),

were used as a check on the correctness of the computer code while the

accuracy of the numerical results was assured by doubling the number of

Gaussian integration poinrs until the values for c and A stayed the same

to several significant figures when the number of points was doubled once

more. It was never necessary to use more than twenty-four integration

points to obtain the six-figure accuracy of the tables. This relatively

small number can be attributed to the accuracy of the Gaussian integration

procedure,

Figures 2 and 3 give c and A as a function of k while for easier

comparison with the results of note 98. figure 4 gives O., as defined by

equation (1) or through

i-l.= 4c& ,

as a function of the parameter used in note 98, since the b/a of note 98 is

25
–,

,
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equal to one half the natural

Figure 5 gives the normalized

of note 98.

Tables 1 through 4 give

log of our b/a or, in other words, (%)ln(l/k).

equivalent area as a function of the parameter

the same information as figures 2 through 5,

but to a much higher degree of accuracy. It could be argued with some

justification that the high accuracy of the tables is unnecessary. Never-

theless, the computer time is insignificant in any case and there is always

a certain amount of satisfaction, on the infrequent occasions when it is

possible, in solving a problem to a high degree of accuracy. It took less

than three minutes of CDC 6400 computer time to obtain all the numbers in

the tables.

In closing, we state without proof that the self-inductance of an

annular disk of inner radius a and outer radius b is related to the normalized

capacitance across the annular slot of the same dimensions, which we have

calculated in this note, through

Also, the open-circuit voltage at low frequency which is induced in such an

annular disk by a magnetic field, B1nc, perpendicular to it is related to

the normalized equivalent area we have calculated here through

The general dual nature of–sensors made up of complementary areas of a flat

plane may be discussed in detail in a future note; The above two equations

are presented here so that our tables may also be used to determine the

low-frequency characteristics of an annular disk sensor for magnetic field.

..J

J
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TABLE 1

Normalized Capacitance For

This table gives values of c z C/8ca as a function

Various Disk Radii

of the ratio of the disk radius to the aperture

radius k z a/b. The first decimal point of k should be read from the left column while the

second decimal point of k should be read from the top YOW.

k o

.0 1.00000

NJ .1 1.04234
<

.2 1.08908

.3 1.14172

.4 1.20244

.5 1.27463
1’

.6 1.36404

.7 1.48155

1

1.00407

i.04697

1.09405

1.14738

1.20907

1.28267

1.37427

1.49558

1.67401

2.00408

2

1.00817

1.05129

1.09907

1.15313

1.21582

1.29089

1.38479

1.51015

1.69728

2.05764

3

1.01231

1.05584

1.10417

1.15896

1.22269

1.29929

1.39562

1.52529

1.72199

2.11882

q

1.01648

1.06043

1.10932

1.16488

1.22969

1.30789

1.40676

1.54106

1.74832

2.18999

5

1.02070

1.06508

1.11454

1.17089

1.23682

1.31668

1.41824

1.55749

1.77649

2.27488

6

1.02494

1.06977

1.’119s3

1.17700

1.24408

1.32569

1.43009

1.57465

1.80675

2.37973

7

1.02923

1.07451

1.12519

1.18320

1.25149

1.33491

1.44231

1.59261

1.83942

2.51627

d

1.03356

1.07931

1.13062

1.18951

1.25905

1.34437

1.45495

1.61144

1.87492

2.71092

9

1.0:793

1.08417

1.13613

1.19592

1.26fj71j

1.35408

1.46802

1.63121

1.91372

3.04810

I

I

.8 1.65203

.9 1.95649



TABLE 2

Normalized Equivalent Area For Various Disk Radii

This table gives values of A G Aeq/nab as a function of the ratio of the disk radius to the

aperture radius k ? a/b. The first decimal point of k should be read from the left column

whj.le tl~esecond decimal point of k shoLIlclbe read from the top row.

k

.0

.1

.2

.3

.4

.5

.6

.7

.8

.9

0

.810569

.842066

.870903

.897127

.920746

.941726

.959985

.975367

.987607

.996221

1

.813841

.845068

.873642

.899606

.922963

.943676

.961656

.976738

.988643

.996850

2

.817085

.848044

.876356

.902059

.925155

.945599

.963298

.978077

.989642

.997432

3

.820302

.850993

‘.879043

.904486

.927319

.947495

.964911

.979385

.990604

.997464

4

.823492

.853916

.881705

.906888

.929458

.949363

.966494

.980660

.991528

.998444

b

.826654

.856813

.884340

.909263

.931570

.951203

.968048

.981903

.992413

.998869

6

.829790

.859683

.886949

.911612

.933655

.953016

.969573

.983112

.993258

.999236

7

.832899

.862527

.889533

.913934

.935713

.954800

.971067

.984288

.994063

.999541

L,l

8

.835982

.865345

.892090

.916231

.937744

.956557

.972531

.985429

.994826

.999777

9,

.839037

.868137

.894621

.918501

.939749

.958285

.973964

.986536

.995545’

.999937
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This table gives

between zero and

column while the

+ln+

.00

.01

.02

.03

.04

.05

.06

.07

.08

.09

0

:>

10.7549

9.3673

8.5548

7.9976

7.5294

7.1626

6.8522

6.5829

6.3451

TABLE 3

Renormalized Capacitance In Terms Of An Old Parameter

values of floa C/2E(ab)% as a function of x ~ 1/2 ln(b/a), for values of x

one tenth. The first two decimal points of x should be read from the left

third decimal point of x should be read from

1

15.3606

10.5641

9.2696

8.4891

7.9280

7.4895

7.1293

6.8236

6.5578

6.3227

2

13.9744

10.3900

9.1764

8.4254

7.8797

7.4505

7.0966

6.7954

6.5330

6.3007

3

13.11534

10.2298

9.0874

8.3637

7.8324

7.4122

7.0644

6.7676

6.5086

6.2788

4

i2.5880

10.0815

9.0021

8.3038

7.7862

7.3746

7.0327

6.7401

6.4844

6.2572

3

12.i416

9.943A

8.9203

8.2456

7.7411

7.3377

7.0015

6.7131

6.4605

6.2358

the top row.

6

11.7769

‘9.8142

8.8417

8.1891

7.6969

7.3015

6.9707

6.6864

6.4369

6.2146

7

11.4685

9.69?8

8.7660

8.1341

7.6537

7.2658

6.9404

6.6600

6.4136

6.1937

8

11.2014

9.5783

8.6931

8.0806

7.6114

7,2308

6.9106

6.6340

6.3905

6.1730

9

10.5657

2.4701

8.6228

8.0284

7.5700

7.1964

6.8812

6.6083

6.3676

6.1524



TABLE 4

Normalized Equivalent Area In Terms Of An Old Parameter .

This table gives values of A z Aeq/rab as a function of x z 1/2 ln(b/a) for value of x between

zero and one tenth. The first two decimal points of x should be read from the left column while

the third decimal point of x should be read from the top row.

+ln$ o 1 2 3 4 5 6 7 8 9

.00

.01

.02

.03

.04

.05

.06

.07

.08

.09

1.000000 .999997 .999988 .999975 .999958 .999937 .999912 .999884 .999853 .999818

.999781 .999741 .999698 .999652 .999604 .999553 .999500 .999444 .999386 .999325

.999263

.998523

.997603

.996531

.!395328

.994012

.992598

.991056

.999198

.998439

.997502

.996416

.995202

.993875

.992451

.990941

.999131

.998352

.997400

.996300

.995074

.993737

.992304

.990786

.999062

.998265

.997296

.996183

.994945

.993598

.992156

.990630

.998991

.998175

.997191

.996065

.994815

.993458

.992007

.990473

.998918

.998084

.997084

.995945

.994684

.993317

.991857

.990316

.998842

.997991

.996976

.995824

.994551

.993175

.991706

.990157

.998765

.997896

.996867

.995702

.994418

.993082

.991555

.989998

.998686

.997800

.996756

.995578

.994284

.992888

.991403

.989839

.998606

.997702

.996644

.995454

.994149

.992743

.991250

.989678
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Appendix A

In this appendix we will show one way of solving the pair of dual

integral equations

m

I
A(a)Jo(ax)da = g(x) X>l I

o

m

~
aA(a)Jo(ax)da = f(x) X<l

o

We also calculate the integral in (A-1) for x < 1 and the integral in (A-2)

for x > 1.

We start by noting that, because of linearity, A(a) may be written as

the sum of the solutions of two other pairs of dual equations, i.e.

A(a) = B(a) + C(u) (A-3)

(A-1)

(A-2)

where

and

m

IB(a)Jo(ax)da = O
J

o

m

JaB(a)Jo(~x)da =’f(x)

o

m
r

JC(a)Jo(ax)du = g(x)

o

0

In (A-4) and (A-5) we set

1
(

.-)
X>l (A-4)

X<l, (A-5) -

X>l (A-6)

X<l. (A-7)

.. ..

B(a) =
J
~(t)sin atdt ; rl(o)= o (A-8)

o >
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Interchanging the order of integration in (A-4) and making use of the

integra16

m

j
Jo(ax)sin atda = (t2

2 -~
-x) X<t

o
(A-8)

X>t,

it can be seen that (A-4) is satisfied identically. Equation

integrating by parts, becomes

w 1r r

(A-5), after

JJo(ax)da {- ll(l)COSa +
J
~’(t)COS atdt} = f(X) (A-9)

o ‘o

Again interchanging the order of integration and making use of a second Besse,L

function integral,
6

namely

m

~
Jo(ax)COS atda

o

x< t

t

f-

(A-1O)

= (X2 - t2)-~ x>

equation (A-9) becomes

x

fl(x) =
I

n’(t)dt

o (x2-t2)~ “

From appendix C, the solution of this equation is

..

t

I-1’(t)=$% J xf (X) dx

o (t2-x2)~

or, integrating,

t
,.-.

.

n(t) =: J xf(X)dx

o (tz:xz)+
(A.-11)
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and we have

1 t

B(a) =;
I
sin atdt

\

xf(X)dx

~ (t2-x2)~
o

To solve the pair (A-6), (A-7) we substitute

m
r

c(a) = 1g(t)sin atdt

Interchanging orders of integration and making use

●

(A-12)

of the derivative of equation

(A-1O)with respect to t, it is clear that (A-7) is satisfied identically

while (A-6) becomes, with the use of (A-8)

m

J ~(t)dt
= g(x) .

x (t2-x2)%

The solution of this equation, from appendix C, is

w

J
and so

m m

c(a) = -:
\
sin atdt * $

~

Xg(X)dx (A-13)

1
t (x2-t2)~ “

Combining (A-12) and (A-13),

1 t m m

A(a) =+
J ~

x’f(x’)dx’ 2

j

d

j

x’g(x’)dx’
sin atdt -—

‘in atdt z
(A-14)

o (t2-x’2)~ T ~
2 24

t (x’ -t )
o

Inserting this equation in (A-l), interchanging orders of integration, and

again making use of (A-8),

1 t

we find for x < 1

m

g(x) =$ j
dt

j

x’f(x’)dx’ 2

j

dt_— , & ] x’g(x’)d~’ (A-15)
x (t2-x2)%o (t2-x’2j% n ~ (t2-x2)% t (x’2-t2)4

The inner integral of the second double integral in this equation may be

integrated by parts. The remaining integral may then be interchanged with

3.8 ‘
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the t integration and the resulting t integration may then be carried out
—

explicitly.. The result of this manipulation is
,. ... .—

1, t m

g(x) =: I dt

~

x’f(x’)dx’ + 2
; (1 -X2)4

I

x’g(x’)dx’
X < ~ (A-16)

~ (tZ-xZ)+o (t2-x’2)~ ~ (x’2-l)~(x’2-x2)

We may evaluate (A-2) for x > 1 where A(a) is given by (A-14) if we note that

J&x) ‘J--+ (xJI(ux)) ,

which gives

co

f(x) =:$
~
xA(a)Jl(ax)da X<l.

In this equation we substitute (A-14), interchange orders of integration,
6

use the result

and obtain

f(x) =+*

co

~
Jl(ax)sin atda = O

0

X<t

22J5
= t(x -t ) X>t,

x.

(A-17)

(A-18)

x t x m

~

tdt

\

x’f(x’)dx’ 2 d

\

tdt d

~

x’g(x’)dx’ x ,>~.——
(xz-tz)~ o (t2-x’2)~

‘TXdx 2_t2)% Z- !2_t2)%~ (x t (x
o ((A-19)

Here we-may interchange the order of integration in the first double integral

and get the following simpler result:

1 x a)

f(x) = ‘2 ,
~

x’(1-x’2)%f(x’)dx’ 2 d

J

tdt

~

x’g(x’)dx’ x,> ~

m(x2-1)5 X2-X’2 -==, (X2-7P fi , (x’2-t2)+
o (A-20)

._
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Appendix B

In this appendix we will give-a method of solving a pair of dual

integral equations quite similar to those solved in appendix A, namely

co

(B-1)“/A(a)Jo(ax)da = g(x) X<l

f(x) X>l

o

m

/
aA(a)Jo(ax)da =

o

We can write

A(a) = B(a) + C(a) (B-3)

m

\
aB(a)Jo(ax)da = f(x) X>l (B-4)

o

Jm

JB(a)Jo(ax)da = O

0

(B-5)X<l

and

m

~
aC(a)Jo(ax)da = O (B-6)X>l

o

03

~
Coda = g(x) X<l. (B-7)

o

We now set

03

B(a) =
I
n(t)cos atdt , r-l(m)= o

1

(B-8)

in equations (B-4) and (B-5). Interchanging the order of integration in (B-5)

and making use of (A-1O) it is clear that (B-5) is satisfied identically;

.
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while integrating (B-8) by parts and then substituting in

cd ,m w

Jd(ax)da {’l(t):inat -
1

n’(t)sin atdtl

o 11

= f(x)
a J

making use ofNow

and

interchanging orders of integration and we get

co

-j

~’(t)dt =

~ (t2-x2)+

the solution of this equation, from appendix C,

m

2d
rl’(t)=;~

I

xf(x)dx

t (x2-t2)~

substituting back ‘in(B-8),integratingor,

Thus,

co m

(B-9)B(a) =:
\
COS utdt

~

xf(x)dx

1 t (x2-t2)*
.

/--’
the p-air(B-6), (B-7) by setting

.
1

j
$(t)cos atdt

o

with respect to

C(a) =

Of (A-8)

.

t, is satisfiedfrom the (

identically while (B-7) becomes

x

j

< (t)dt

~ (x2-.t2)~
= g(x) ,

whose solution, appendix C, is

xg(x)dx

(t2-x2)+
o

1

and so

t
2.—
j
COS utdt

IT
d

~

Xg(X)dx
“z

(t2-x2)~ “
(B-1O)

o

and (B-1O) we may now

o

write

C
.
.“
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Now we may insert this equation for A(a) into (B-1), interchange orders of

integration, make use of equation (A-1O), and arrive at the representation

for g(x) valid for x > 1:

x m 1 t

g(x) =: I dt

J

x’f(x’)dx’ + ~

J

dt d Jx’g(x’)dx’
22+

—
,2 2+ Tr

X>l (B-12)

~(x-t)t(x -t) o (x2-t2)~ ‘t ~ (t2-x’2)~

but we may simplify the second double integral in the manner used for equation

(A-15) to obtain

x m 1

g(x) =:
\

dt

\

x’f(x’)dx’ + 2
;(X2- 1)+

\

x’g(x’)dx’
2 2k ,22+

X > 1 (B-13)
~(x-t)t (x-t) (l-x’z)~(x’z--xz)

o

Also, by substituting (A-17) and (B-n) in (B-2) and making use of the
6

result

m

JJ1(C%X)COS atda = : t<x J

o (B-14)

1 t=—-
22+

t>x
x

X(t -x )

it can be seen that

m w m m

{j jf(x) =+: dt
x’f(x’)dx’

J

tdt

“J

x’f(x’)dx’
2_t2)% - }

lt
(x‘ x (tz-xz)~t (x’2-t2)k

1 t 1 t
~2d

{j
d

~

x’g(x’)dx’ _

J

tdt d

\

x’g(x’)dx’—. —
ITXdx ‘t K }

~ (t2-x’2)+ ~ (t2-x2)+dt o (t2-x’2)~o

X<l

The first double integral within each pair of braces is independent of x; so

m m 1 t

f(x) =-:$
~

tdt

I

x’f(x’)dx’ 2 d

~

tdt d

J

x’g(x’)dx’ x< ~
2_x2)% ,2_t2)% - =x

—

~ (t t (x x (t2-x2)~dt ~ (t2-x’2)%

J“
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or, interchanging orders of integration in the first double integral, “— = ‘-”

m 1

(

t
-2

f(x) = —— X’(X’2-l)~zf(x’)dx’ 2 d

~

tdt d

J

x’g(x’)dx’_—— —— —
2Li, 22 TX dx x

lT(l-x) ~ x’ -x ~ (t2-x2)+dt o (t2-x’2)~
,

-.

,: 1

(B-15)
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Appendix c

theIn this appendix we will give brief derivations solutions of

two integral equationsthe

x

\

f(t)dt

~ (x2-t2)+
= g(x) (c-1)

and

m

~

F(t)dt

x (t2-x2)~
= G(x) . (c-2)

treat equation (C-l). Operating on both sides of that equation

with the integral operator,

Y

we obtain

J
s x

J xdx

J

f(t)dt.

0 (s2-x2)J~ o (xZ-tL)+

s

JX~ (X) dx.

0 (s2-x2)~ “

Interchanging the order of integration in the double integral on

results in

s

h
s

f(t)dt xdx =
/t (s2-x2)$(x2-t2)* o

0

X~ (x)dx

(s2-x2)~ ●

integral is equal to Tr/2,and so

s s

I Jxg(x)dx .
:

f(t)dt =
(S2-X2)+ ‘o 0 .-

or, differentiating,

s

f(s) =$.*
~
o

the solution of equation

xg(x)dx

(s2-x2)~ “
(c-3)

This equation is (c-1).
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We use the integral

. —.

(c-2)Equation

operator,

may be solved in a similar manner.\

Y

Again, interchanging

m m

J F(t)dt.— =

x (t2-x2)~

co

XG (X) dx

(x2-s2)~
.

the order of integration we get

(C-3), and we obtain

on the left,

mm
r

t

JF(t)dt
~

xdx

J

XG(x)dx=

s (t2-x2)+(x%4 s (x2-s2)~
s

The rest

finally

of the procedure is the same as the derivation

co

F(s) =-+%
J

XG(x)dx

(x2-s2)~ “
(c-4),-

\. ..
s

.—

,
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