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. Abstract

This note considers the low-freguency magnetic field dis-
tribution in a simulator with the geometxy of a half toroid con-
nected to a periectly conductiﬁg ground or water surface. The
toroid minor radius is restricted to be small compared to its
major radius so that for calculating the low-~frsquency magnetic
field the current can be considered as localized on & semicircu-
lar current path centared inside the half toroid. Jsing -“age
theory to give a bent circular current path the magnetic field
is found from the vector potential Ffrom such a current. The
asymptotic forms of the field distribution are found near the
centar of the simulator and for distances Zar from the simulator.
The. £ield distributicn is graphed for a wide range of parameters.
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; Capt Carl E. Baum
Air Force Weapons laboratory

o Abstract

This note considers the low-frequency magnetic f£ield dis-

. tribution in a simulator with the geometry of a half toroid con-
nected to a perfectly conducting ground or water surface. The
toroid minor radius is restricted to be small compared to its
major radius so that for calculating the low-freguency magnetic
field the current can be considered as localized on a semicircu-
lar current path centered inside the half toroid. Using image
theory to give a bent circular current path the magnetic field
is found from the vector potential from such a current. The
asymptotic forms of the field distribution are found near the
center of the simulator and for distances far from the simulator.
The field distribution is graphed for a wide range of parameters.
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I. Introduction ‘ .

In a previous notel we discussed some of the features of an
electromagnetic pulse simulator for simulating the case of a
pulsed electromagnetic plane wave incident on the earth's sur-
face at some angle of incidence and polarization and with a fi-
nite, nonzero (except for special cases) low-frequency content
of the appropriate field components. This simulator has the ge-
ometry of a half toroid connected to the ground or water surface
as shown in figure 1. A pulse generator is located at a partic-
ular position in the half toroid and the toroidal structure has
impedance loading for shaping the waveform. One varies the
angle £] of the plane of the half toroid with respect to the x
axis (vertical), varies the angle £3 of the generator from the
topmost position around the half toroid, and varies the angle £3 -
which positions the connections ¢f the half toroid to the ground
or water surface with respect to the system under test:; by so
doing various angles of incidence and polarization are achieved.

The ground or water conductivity and permittivity influence
the fields, both in the case of an incident uniform electromag-
netic plane wave and in the simulator geometry being considered.
If the ground conductivity is sufficiently high the low-frequency
magnetic field near the center of the simulator on the ground
surface ((x, y, 2) = (0, 0, 0)) closely approximates the desired
low-frequency magnetic field resulting from the incident plane
wave as discussed in reference 1. In this note we consider the '
. low-frequency magnetic field throughout the vicinity of the sim-
ulator structure for the case ¢f an infinite ground or water
conductivity.

Strictly speaking, if the ground or water conductivity is
finite then in the low-frequency limit the magnetic field pene-
trates the lower medium, assuming a distribution dependent on
the nonuniform current distribution in the lower medium plus the
current in the half toroid above. Such a distribution for the
low-frequency magnetic field will not in general be the same as
in the case for an infinite ground or water conductivity which
we consider in this note. Provided that the lower-medium con-
ductivity is large emough such that there are frequencies of in-
terest with both wavelengths in air large compared to a (the
simulator major radius) and skin depths in the lower medium
small compared to a cos(§1), then the case of infinite conduc-
tivity for the lower medium gives accurate results for this case
for the magnetic field in the upper medium; possible exceptions
include positions where the fields are significantly changing

1. Capt Carl E. Baum, Sensor and Simulation Note 94, Some Con-
siderations Concerning a Simulator with the Gecmetry of a Half
Toroid Joined to a Ground or Water Surface, November 1969.
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near the lower medium over distances less than or of the order
of the skin depth in the lower medium. Perhaps the case of
finite ground or water conductivity can be considered in future
notes.

Since in this note we consider the case of infinite conduc-
tivity for the lower medium and the surface of this medium a
plane, then we can use an image of the half toroid below the
¥, 2 plane as shown in figure 2 for calculating the fields.

Note the choice of cocordinates, the same as in reference 1,
where the ground or water surface is chosen as the y, 2z plane
with the y axis meeting the half toroid at two positions where
the image also meets the half toroid. 1In this note we are gQnly
considering the low-frequency magnetic field which we call H for
simplicity because the complete waveform is not being considered.
Let I be the low-fregquency current in the toroid and the image
with direction around the complete bent toroid (upper half tor-
0id plus image) as indicated. This low-freguency current is
considered as localized on two semicircles of radius a as shown
in figures 2 and 3 where a is the major radius of the half tor-
0id; the semicircular current. filaments are located inside the
half torcid and image of minor radius b where the minor radius
is measured perpendicularly from the semicircular curve to the
toroidal surface. Since we are considering the limiting case of
low frequency (with infinite lower-medium conductivity), then I
is uniform around the complete bent toroid and for purposes of
calculating the low-frequency magnetic field distribution the
generator position is then insignificant. Note that in calcu-
lating the fields in this note the presence of any system under
test (as shown in figure 1) is not included. Such systems will
distort the fields and interact with the simulator structure.
Perhaps idealized gecmetries of such systems can be considered
in future notes.

Besides the cartesian coordinates (x, y, 2) we define a
cylindrical coordinate system (¥, ¢, 2z) with the relations?

x =Y cos(¢) , y = ¥ sin(¢) (1)
We also have spherical coordinates (r, 8, ¢) with

z = r cos(8) , ¥ = r sin(8) (2)

For unit vectors we use the symbol e with the particular coordi-
nate added as a subscript.

2. All units are rationalized MKSA.
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Figure 32 shows a full perspective view of the line current
taken inside the toroid plus image on r = a on two planes each
containing the y axis and canted at angles £ with respect to
the positive and negative x axes respectively. For positive &3
this current path is only in the half space z > 0. Note the
convention for positive I in the figure; for the spegial case of
£1 = 0 then I is taken peositive in the direction of €.

Figure 3B shows one half of the bent circular current path
with its own coordinate systems. There are cartesian coordi-
nates (ui, u2, u3) and cylindrical coordinates (A, 8, u3) re-
lated by

uy = A cos(B) , u, = A sin (8} (3)

There is also the coordinate B8j which replaces § as an integra-
tion variable when integrating over the current I on (i, u3z) =
{a, 0). ©Note that all of these coordinate systems are right
handed. This particular set of coordinates shown in figure 3B
is used in section III to find the magnetic field from a semi-
circular current f£filament which is then applied by superposition
to both halves of the bent circular current filament to give the
‘total low-frequency magnetic field.

For convenience define a normalized low-frequency magnetic
field as :

Rz (4)
Defining a position vector as

r=ré e +ye +ze_ =VYe, +ze (S)
= r- ¥ 7Y Sy z ¥

we have at ; = 3 from reference 1 the result that in the low-
frequency limit for infinite lower-medium conductivity

> EI -+
H[;=5 = == cos (£ )e, (6)

so that we alsoc have




A = cos<gl>€ ‘ (7)

‘—»—»
| r=0 Z

Thus for §] = 0 we have a unit normalized magnetic field at the
coordinate origin. Since a uniform plane wave incident on the
surface of a perfect conductor would produce a uniform resulting
magnetic field at low fregquencies over restricted dimensions
near the conducting plane one is then interested in the devia-
tion of the field in the simulator from a uniform field at low
frequencies. For this purpose define a normalized difference
field as

AK = E - cos (g

so that at the origin
=
Bz g =10 (9)

and the origin is used as the reference point for the magnetic
field distribution. For the plots we also diyide the various
components of h as well as scalars such as |Ah| by cos(Z1) in
order to show the size of the various guantities relative to the
field at the origin; thereby one obtains fractional deviations
of the field components and magnitude of the difference £field
from the reference field in egquation 7.




II. Low~Frequency Magnetic Field in Flat Toroid

First consider the somewhat simpler special case of a flat
toroid specified by £1 = 0. This case is worked out in Smythe3
and is included for comparison to and as a special case of the
more general result in the next section.

First we go through some preliminary considerations. The
magnetic field is related to a vector potential as

B=yull =9 x & (10)

where u 1s the permeability of the medium being considered (ug

in our case). For our static problem the vector potential can

be written as a volume integral over the current density in the
form )

{ V.

(2 U § i)d i
(r) =ﬁ£]—l_--f_ (11)

where V is the_ volume of integration. A subscript i with coor-
dinates (like rj, dVi) is used to indicate the position of the
quantity over which the integration is being performed, as dis-
tinguished from the observer position where the appropriate
electromagnetic gquantity is bheing calculated. If the current
density is localized to give a current I on a contour with a
unit tangent vector eg (with I taken positive in this direction)
then equation 11 becomes

Ryl Ry

i

. I(r.)e (r.)
>, W i"7s' 71
Alr) = e g |§~;-l ds (12)
1

where C is the integration contour for thg line integral and s
is the arc length parameter. Thus I and eg as well as rj can be
considered as functions of s. The magnetic field components in
cylindrical coordinates can be calculated from

3. W. R. Smythe, Static and Dynamic Electricity, 3rd ed.,
McGraw-Hill, 1968, pp. 290-291.
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_ 13 3
By = HBy Sy 5z R T 3p Ry
_ 3 3
By = HHy = 37 Ay - 37 A, (13)
_ 13y, 13
B, = uH, = g7 (YAy) -~ 7 335 Ay

Now we consider Smythe's derivation for the case of §; = 0.
In this case the bent circular current path (shown in figure 3A)
lies on the circle (¥, z) = (a, 0). The unit tangent on the
contour in eguation 12 becomes

e, = eLb (14)

so that the current I is taken positive in the +¢ direction.
Since we have a single closed contour for the line integral in
equation 12 and since we are considering a static problem then I
is independent of ¢ and we have by symmetry

Ay =A_ =0
(15)

8 = uIa ]rn cos l)dqa

RCE AN
with A¢ independent of ¢ and where

' 1/2

Z - %, | = ta® + ¥* + 2% - 2a¥ cos ()] (16)

The result is
1/2
= Blja_ ffy -m - |
a, = B(Ep) L - Frm -z (17)




where the parameter is taken as

4Y¥

o s da¥ a (18)

(a+¥)2+2° (l+i 2+( )2
a

The elliptic integrals (X and E) are discussed in appendix A.
The resulting magnetic field has no z component and has

PN

—3 - L L
By = MHy = - 33 B,
-1/2 2,,2,. 2
Ul z 2 2 5 a“+¥ +z
= L= B (a+¥)c + z°] -K(m) + ————= Em)
z2n ¥ (a_\{;)z_:.zz
-1/2
_ uI z y 2,2 f- 2-m
- 5 e et wm + B Em)|
e 3 L - (19)
B = uH_ = & 2 (va,)
z 2 ¥V 3 ¢
-1/2 _w2_.2
= %%{(a+¥)2 + 2°] K(m) + 222 22 5 E(m)
{a=¥) " +z
‘1/25

i

xm - A2 - (2+F)n]zm)]

uI 2,.2
EF[(a+W) +z7] N

- For convenience we have defined a normalized magnetic field
h by equation 4. For our present case of §j = 0 we then have
only ¥ and z components given by

B T TR



2
hy = £2 1y
-1/2
=Lz i(}l+g>2+(5>2} ok (m) + 28 E (m)
T aV a a ] 2mq
' (20)
2
-1/2
- 2] e - e (1f)n)zm)
m a a l Zml Y S

There are some special cases for which the results simplify
considerably. On the z axis we have only a z component given by

5 -3/2
- _ E -
Blysg = [1+(a) e, (21)
On the z = 0 plane we have
-2
= 4 2]7.Y
m‘z=0 =4 E[l+—]
.
> i vt 142 > i
h|z=0 = F[l+3] K(m) + T E(m) e,
a

Note for 0 < ¥ < a that hz is positive while for ¥ > a that hj
is negative on the z = 0 plane.

This section has considered the special case of £ = 0 as
an introduction to the more general case considered in the next
section. The graphs for the low-frequency magnetic £field dis-
tribution are considered in section VI.




III. Low-Fregquency Magnetic Field in Bent Torcid

Now consider the low-frequency magnetic field distribution
associated with a uniform current I around a hent circular path
lying in two planes. To do this we consider the vector potential
and magnetic field associated with a semicircular current path
carrying a uniform current I as in figure 3B. By taking two
such semicircular current paths and appropriately orienting them
in space and adding the fields from the two semicircular paths
the fields from the bent circular path are obtained. Note that
one cannot have a semicircular current path carrying a uniform
static current because of the charge buildup at the two ends of
the path. However the calculation of the magnetic field by a
superposition of the fields for two semicircular paths is still
legitimate. The fields for one semicircular current path are
calculated as an intermediate result.  Note that for the semi-
circular current path in general ¥V x h # because the current
has_a divergence, while for the full bent current path the curl
cof h is zero.

In section III A we first consider the magnetic field asso~-
ciated with a uniform semicircular current path. Second the
transformations required to apply the results for a semicircular
path to a bent circular path are developed in section III B.

A. Low~frequency magnetic field associated with a uniform
semicircular current filament

Consider the geometry in figure 3B which is used for both -
halves of the bent circular current path. Here we consider the
static magnetic field associated with one half of the bent cir-
cular current path without specifying which half. The results
are used later for a superposition of the fields associated with
both halves. As shown in figure 3B we have cartesian coordinates
(uyp, ug, uiz) and cylindrical coordinates (¥, 8, u3) related as
in equations 3. There is a coordinate B3 which is used as an
integration wvariable in place of B. For convenience define

By = B, - 8B . (23)

The vector potential and magnetic field calculated here
(section III A) are related to these special cocordinate systems.
The vector components are designated by subscripts 1, 2, and 3
for the cartesian case and by subscripts &, B, and 3 for the
cylindrical case. These are not the total vector potential or
magnetic field and the special coordinate reference identifies
this fact. From the vector potential we obtain the magnetic
field by using

10



_ 13 3
By = HHy = T 35 A5 Sy Bg
_ 3 3
By = WHg = 2 A - 2T A, (24)
_ 13 13
By = wHy = 737 (ARg) = T 37 Ay

Now since no current is parallel to the uj3 axis then from equa-
tion 11 we have

A, =0 (25)

In terms of a normalized magnetic field as in equation 4 we then
have

o223
_ fgk ul du, AB
_2a 3 ' '
= 22afl 3 L3,
hy = Ef{x 3% (M) =T 37 By

Converting to cartesian form we use

h, = cos(8)h

1 y sin(8)h

8
(27)

h, = sin(B)hA + cos(B)h

2 8

The parameter for use with the elliptic integrals in this case
has the form

11




(28)

Now consider the wvector potential which can be calculated

from
T @ dBi
> _ ula i
=2 == (29)
o 7T
where
1/2
> _ >, _f.2 2 2 _ _
Fr - ri' = [a + A%+ ug 2aXx cos (B Bi)] (30)
Define
T+ {8=-8,)
~ i R
LP:—_Z——’ dlp—- 2d8l
giving the relations
cos (g - Bi) = cos(2y - 7) = =cos (2y)
= 2 sin®(y) - 1
(31)

sin(g - Bi) sin(2y - w) = =-sin(2y)

-2 sin(y) cos(y)

Then we have

12




The components

uIa

2

(a+A) ™ + ué - 4aA sinz(w)

1

[(a+k)2 + ué][l - m sinz(w)]

2

- az[(l+%) " ué][l -m sinz(w)]

of the vector potential are then

A 4

SE

=
5

f’ﬂ' Sln(Bl-B)dBl
(@]

=

5]

1]

=
3| H
l,‘\ '

1]
|
——
>
——

13

(33)



where we have defined two integrals Tj and Tg which can be
written, using equations 30 through 32, as

Ty = ff o172 _
o [l=-m sin®(y)]
T+8
—Z
_ sin (y)cos (U)
= 2 5 173 dy
B [1-m sin™ (¥)]
2
(34)
T
1 cos(Bi-S)dSi
Ts -7 5 1/2
o [l-m sin~{v)]
T+B
2z 2
_. 2 sin” (Y)-1 aw
- 2 1/2
8 [l1-m sin” (V)]
2

Appendix A considers some properties of the elliptic inte-
grals and their derivatives. In appendix B (equations B4 and
B6) the integrals in eguations 34 are solved giving

)]1/2}

ry - e o) - o(8]

]l/z - [l - m cosz(

ofmo

where the elliptic integral notation (E, F, and K of one or two
arguments as appropriate} is explained in appendix A. Using
these results with equations 28 and 33 gives the vector potential
for the semicircular current path.

14




In order to calculate h for the semicircular current path
we first calculate some derivatives of m from egquations 33;
these are

2, .2
m _ 4a[(a+k) +u3} - Bal(a+\)
A 2
&a+k)2+u§}

= m _ 1 Ay 2 (36)

Y 2A(l+a)m
m__ -8aAu3 _ Uy 2
Ju 2ai

2
3 [(aﬂ) 2+u§]

There are also the useful derivatives

= ' -1/2 -3/2
i%X-Ba+A)2+u§} = -(a+k)[(a+k)2+u§]
_ 3/2
R TR IE
(37)
-1/2 -3/2
3 2. 2 _ 2
E[(aﬂ) +u3} = u3[(a+x) +u3]
- Bm /2
- 8 ax)

Now we calculate the components of R from equations 26 and
33; these are

1l/2 u
- a 3/m l/m 3 2|3 )
hy = - T\ =lar) Tt 737 [‘ T5a }aﬁ Ts)
3/2
_ 1 1l/2/m 3
g7 ma AR) T g ¢ om 5 7




2wy 32 120 u
N N N o= R ¢
3/2 .
=g R e w Ry
| | (38)
2 1/2
hy = %5%(%) / 1y - Han L2 (1d /2,
1/am\ /2 1A 2 1m /2
SR - Rt R M)
3/2
P bl

In appendﬁi B we have the derivatives

I 7, - -sinlFeos(3fm sa2(3)] 7 +iom cos?(E)])
gﬁ TA = ;—2'{‘ {Z-m sinz(%)] [l-m Sin2<%):l-l/2

(39)

16




found in equations B7, B9, and Bll. Substituting the results of
equations 35 and 39 into equations 38 gives

s - b2 e B -

-1/2

+ %[<l+%>m - Zg]sin(%)cos<%)§[l-m sinz(%)

+ fm st @]

J

17



Using equations 3 and 27 these results for the cylindrical coor-
dinate system (A, B, u3) can be converted to the cartesian coor- ‘
dinate system {(uy, uz, u3). Thus we have the normalized magnetic

field for the 'semicircular current path.

B. Low-frequency magnetic field for bent circular current
path

With equations 3, 27, 28, and 40 we have the normalized
magnetic field for the case of a uniform current I on a semicir-
cular current path as illustrated in figure 3B. Now we apply
these results to the two halves of the bent circular current
path with uniform current I as illustrated in figure 3A. To do
this we consider two cases designated by a prime and a dguble
prime for fields and coordinates. The normalized field h is
written as

R=h8+ A" (41)

where H, H', and Rh" are all considered with respect to the coor-
dinate systems (x, Yy, 2}y (¥, ¢, 2}, and (r, 8, ¢} shown in fig-
ure 3A. The prime case h’ is for the normalized magnetic field
assoclated with the semicircular current path in the half space
X > 0 (with the restriction |§1| < m/2); the double prime case
RA""is for the normalized magnetlc field assoclated with the
semicircular current path in the half space x < 0.

Note that any field components written in terms of the co-
ordinate systems (uy, uz, u3z) and (A, &, u3) are taken from the
solution for the semicircular current path in equations 3, 27,
28, and 40. This solution is used twice with different defini—
tions of the coordinates and field components when expressed in
the (x, vy, 2), (¥, ¢, 2z}, and/or (r, 8, ¢) coordinate systems.

Case 1: Prime

, Consider R' in (%, ¥y, z) coordinates. To do this move the
{uyg, ug, u3) cocordinate system such that the semicircular cur-
rent path (including current direction) 1is allgned with that
half of the bent circular current path situated in x > C as
shown in figure 3A. This requires the coordinate transformation

ui = -y
u! = cos(&,)x + sin(&,)z

2 1 1 (42)
ué = -sin(&l)x + cos(&l)z

18



with

A' cos(B') = u; , A sin(R') = ué (43)
or in another form
1 L
2 2 2 2 2, 2 2 2 2
Al = [ui +ué ] = [cos (El)x +y“+sin (El)z +2sin(£l)cos(il)X2]
(44)
u! ul
cos(B') = T% , sin(B') = T%

The parameter for the elliptic functions is then calculated from

where i' and ué are taken from equations 42 and 44. Substitute
m' and 8' for m and 8 respectively in equations 40 and call the
results h;, hg, and hj. Then calculate hj and hp as

T 1 TR : ' '
hl cos (R )hk sin (R )hB
(46)
I : t 1 1 '
hz sin (g )hk + cos (B )hB
Having hj, hj, and h3 convert to (X, v, z) coordinates from
h; = COS(El)hé - Sin(gl)hé
h' = -hi (47)

19
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giving A' in (x, y, 2) coordinates.

Note for this case that all coordinates in figure 3B have
had primes added to them. These transformations only apply to
the prime case.

Case 2: Double Prime

Now consider h". Use dogble"primes with the ccordinates in
figure 3B. Orient the (uj, uz, u3) system such that the semi-
circular current path {(including current direction) is aligned
with the half of the bent circular current path situated in
X £ 0. This requires the coordinate transformation

ui =y
uE = -cos(El)x + sin(Sl)z (48)
ug = sin(El)x + cos(Sl)z
with -
A" cos (8"} = u{ ‘ A" sin(B") = ug (49)
and
L L
2. 212 2 2. 2. .2 2 2
At = [ui +u§ ] = [cos (El)x +v-+sin (&l)z -ZSin(El)cos(gl)xz]
(50)
ui u;
cos (B") = T sin(8") = ™
The parameter is
4§ _
m" = 5 5 = ] - ml {51)

i) +(2)

20




Substitute m" and 8" for m and 8 respectively in equations 40
and call the results hy, hg, and h3. Then calculate hjy and hj

from
[T 1 noo_ : 1 1"
hl = cos (B )hk sin (B )h8
(52)
h2 = sin (8 )nk + cos (8 )hB
and finally convert to (x, y, z) reference using
hy = —cos(il)hg + sin(il)hg
"n" - h"
4 1 (53)
hé = smn(al)hg + cos(il)h3

TR, .
giving h" in (x, vy, 2z) coordinates.

Adding this result fozx R" to the result for h' in case 1
gives the total normalized magnetic field as in eguation 41.

21




IV. PField.Distribution for Small r/a

Having developed the complete expressions for the low-
frequency magnetic field resulting from the bent circular cur-
rent path we now go on to consider the form of the magnetic-
field distribution for small r/a. This results in simpler ex-
pressions which apply to the field near the center of the simu-
lator (i.e. r = 0) so that the spatial variation of the fields
in this part of the simulator can be easily seen.

To approach this problem of the field distribution for
small r/a we first consider the magnetic field near (A, B, u3z) =
(0, 0, 0) for the semicircular current path as discussed in sec-
tion III A. As a first step consider the two integrals T) and
Tg which enter into the magnetic field solution in equations 38.
We have the power series expansion

—}_ fee)
[1 - m sin®(y)] ‘. Z o sin?® (p)m* (54)
=0
where
-3 S 1
L = TIE T R
2

and where two numbers in a single pair of parentheses is the no-
tation for a binomial coefficient. This series is absolutely
convergent for |sin2(y) m| < 1. Since we are concerned with

0 <m < 1 and with real ¢ then we can use this series to repre-
sent the function. The first several coefficients are

' a2=%’ Q3=5E' (56)

™

¢, =1, al =

For our present purposes we only use up through & = 3 in the
series. '

FProm equations 34 write T as

22



T+R

2
2 sin(¥) cos(y)duv
5 1/2

8 [l-m sin”™ ({) ]
2

T+8

2 [ =

{ 2,2 sin®*"H () cos(¥)m

é 2=0
2

Then we have a representation for T, as

have

Using the

T+R
2
2a2 sin22+l(w) cos (y)dy
8
2

| R
:jzo

l:sin22’+2 (TT;'_S) - sin?%*2 (%)]

Q

irlees?(g) - sG]

half angle formulas
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(57)

(58)

.Note that ag is bounded as % - = because ay and the limits and
integrand in equation 58 are bounded.
tion 58 is absolutely convergent for |m| < 1.

Thus the series in equa-
Integrating, we

(60)



.28\ _ l-cos(B) 218y _
sin (7) = — cos (-2-) =
we have
% -2-1] 2+1
a, = 137 2 l[l+cos(6)]
The first several coefficients are
a, = cos (B}
a; = % caos (8)
_ 1 3
a, = §E{3cos(5)+cos (8)1
a. .S ‘[eoé(éj+coé3(8ii
3 8+ 16
Next from equations 34 write Tg as
T+8
2 2
_ 2sin” () -1

8 [1-m sin®(¢)]
2

T+8
2

-]

- [l-cos(B)]

l+cos (8)

L+1

{z a,[2 sin® () -11sin®* (p)m*fay
8

=0
x5 :

Then Tg can be represented as

24

(61)

(62)

(63)

(64)




T, = bzm (63)

where
T+8
2

[2 sin?(¥) = 1) sin® (y)dy (66)

e = %
8
3

Since the limits, integrand, and ¢y are bounded as & -+ = then by
is bounded and the series in equation 63 is absolutely conver-
gent for |m| < l. Letting

z = 2y (67)

and using equations 62 gives
=gl TR s
bz = —a22 jr cos(zg) [l - cos(z)l7dg (68)
3

Expanding the integrand and integrating the first several cosf-
ficients are

ao m+83
b, = - 3= sin(g) = sin (8)
. 8
o . T+8
by = - Zl[%in(c) -2 - Eiﬁéiﬁl] ) I+ L sine
a . .3 T+B
by, = - §£J}in(c) -z - Eiﬁézﬁl + sin(zg) - Eiﬁgiﬁl] ;
= ézw} + 4 sin{(BR) - % sin3(Bﬂ (69)
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[0 \ .
b3 = - —%{%in(;) - %5 - é_ii%iZEL + 3 sinf(zg) - sin3(;)
_ 3z _ sin(27) _ sin(4p) ™
5 3 32 |,

- 16?16[18-—5 m + 8 sin(8) - 2 sin3(B):l

where one can find the integral of cos?*l(z) for small 2 in
standard reference tables.4

In calculating the normalized magnetic field certain deriva-
tives of T) and Tg are used. From equations 58 and 65 we have

3 _ -1
- T,\ Z Q.aQ‘m
=1
(70)
3 _ =1
m TB = Z ,Q.bgm
g=1

where these series are also absolutely convergent for |m| < 1.
Another derivative of interest is

3 _ Z : 2
5@" Tl = cgm ] (71)
where

(72)

4. H. B. Dwight, Tables of Integrals and Other Mathematical
Data, 4th ed., Macmillan, 19261, chapter 2.
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. Note that this last derivative can also be obtained directly from
eguations 34 and then using the expansion in equation 54 to ob-
tain the absolutely convergent power series in m for |m| < 1.
The first several coefficients are

Cy = -sin (8)
cy = - % sin(8)
(73)
C, = i—[—2 sin(B) + sin3(8)]
2 3
C, = =2 [-4 sin(3) + 3 sin>(8)]
4 8+16 -

With these preliminaries now write the normalized magnetic
field from equations 38 for the semicircular current path for
small m as

j

u 2
_ 1 “3/am\ ‘| 2 3. 4
hy = 57 7=(57) (Bo * 3bym + Sbym® + Togm + O(m%)
3
2
_ 1 Y3/am\¢ 2 3 4,1
hB = &= E_(T'> 12, Jaqm + Sa,m® + Ta.mT + O(m)y
%_l_ (74)
_ 1l /a 2 | ) 3
hy = ﬁ-(-x) m® [(byte,) + (2by+cy)m + (3by+ey)mt + (4bgcyim

A
a

2 3

+ o(m*) - %(14- )[bom + 3b,m® + Sbym” + 7b3m4 + O(mS)]%

. 2 3
+ 4cl + (12b2+4c2)m + (16b3f4c3)m + 0(m~)

e 2 3 4,11
)[bo + 3blm + 5b2m + 7b3m + O{(m )]‘

‘ - (l+a
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where the last result has used bg + co = 0. Equations 74 have
included only the first several terms in an asymptotic expansion
as m + 0. The remainders are included in the order symbols

since an absolutely convergent power series is also an asymptotic
series.

Having the magnetic field for small m now convert this re-
sult to small r/a. Note first that

2 2 2

E) = ()« (2)

= (2) * (;) : (75)

mlwﬁ:
e

This result is independent of which of the two semicircular cur-
rent paths are being considered since the origin of the (uj, ujp,
u3) coordinate system is the same position as the origin of the
(%, v, z) coordinate system in both cases. Then as r/a = 0 we
can write any cartesian coordinate divided by a as O(r/a), in-
cluding ui, w2, u3, X, Y, Z; the same applies for A and ¥. Then
from equation 28 expand m as r/a -+ 0 in the form

1
e
P>
'_l
i
[N)
o[>
i
———
N
R
[N)
+
>
———
o>
S
[§)
+
Q
e —
pin
s
w
\_/
b
~
(o)

Thus we can also write-as r/a = 0
= o(E
m = o(a) (77)

One of the term combinations in equations 74 can be written for
r/a - Q as
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Next find the magnetic field for the semicircular current
path for r/a = 0 by substituting equations 76 through 78 into
equations 74. Equations 63, 69, and 73 are needed for the coef-
ficients., Then as r/a » 0 the low-freguency normalized magnetic
field for the semicircular current path has the form

oy = 22k ol() ) Jlsmeere B - sesmie] - o127

Sy 2 2
hy = % 31[1-3§ + o((%) )]%éos(8)+3cos(s)l + O((g) >§
u 3
= Zcos(8)2 + o((%) )
2 2 3

1 A3 15 2 %, [/z

ny = Hisk - 3E) B4 So((5))]
(79)
2

(1+-);sm<e)+[¥- +3sm<e)]§[1 2 } [1—51 +15sin (8) - §s1n3(e>]
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* =sin(B) 7 +
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where up through gquadratic terms in A/a and ujz/a have been re-
tained. Using equations 27 convert h) and hg to hjy and hy for
r/a + 0 giving for hi, hz, and h3 the results

3
_ 3 A3 fir
hl = Z-COS(B)E res *O((g) )

_ 3 ¥ Y3 r 3
‘za—a—+°<(z)
3
1 %3 3. A 23 /ir
) -'fzr*zﬂn(f’)za—*(’((z))
{80)
u ., u 3
T a 4 a a a
2
2 u 3
_ 1 . AL 3/ANL 3( 3) x
hy =3+ zin@®)5 + 3(3) - 7l5 *O(< ) )
2 2 2
3
1,2% 3(“1) 3(“2) ) 3(“3) ( r )
=3+ 2 2+ 25 5 - 2\ F) lE)

Now that we have the solution for small r/a for the semi-
circular current path we can apply it to the full bent current
path by superposition-of the results for the prime and double
prime cases as discussed in section III B. First apply the re-
sults of equations 80 to the prime case. From equations 42 the
coordinate transformations are

ui = -y
ué = cos(El)x - sin(El)z (81)
ué = -sin(El)x + cos(El)z
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Substituting thgse results into equations 80, applying the trans-
formations for h' from equations 47, and collecting terms gives
(for r/a -+ Q)

h; = cos(El)hé-sin(gl)hé

2

+ [;osz(gl)-zsin

o
Al

= - %sin(&l)- %sin(&l)cos(il) (El{]g

2 ' 2
" %%-sin(&l)<§) +[-3cosz(El)sin(El)+25in3(£l)}(g)

3

+[2cos (El)-Ssinz(El)cos(El)]

]
piN

PN

2
-ty (2]

T

: ’)

- sin(g)E L+ Joos (gL 2 +°((

(o2
H

sin(El)hé+cos(El)hé

[

= 5COS(£1)+ %{?cosz(al)-sinz(al)}g + %sin(il)cos(al)g

2 2

+ %{cos(gl)(g) +[-4sin2(al>cos<al>+cos3(z—;l>] ($)
(82)
+[8cosz(El)sin(£l)-25in3(El)]g

N
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2
+[3Sin2(gl)cos(gl)—2cos3(El)]<§) }

F)

Next apply the results of equations 80 to the double prime
case. From equations 48 the coordinate transformations are

+of(

o IH

ui‘_ =y
u'z' = -cos(gl)x-{—sin(&‘,l)z (83)
ug = sin(El)x+c05(El)Z

Substituting thgse results into equations 80, applying the trans-
formations for h" from equations 53, and collecting terms gives
(for r/a - Q)

R
X

—cos(gl)h§+sin(£l)hg

1

= isj'n(gl)- %sin(al)cos(gl)g + [Zsinz(gl)—cosz(gl):\g-

=N

5 2
+ %{Sin(il)(g) +[3c°52(51)5in(51)“25in3(El)] <§)

+ [Zcos3 (<?;']_)--8s:'.n2 (El) cos (gl)]la{-

Wi

2
« fasinepcont (5 essn? 5] (2]

+ o(( )3)

!

(84)
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h" = h»

1]
e
b
:j .
™~

3
X 3 A B
ﬂs%*f““ﬂ%a”“ﬂ)

h; = sin(El)h5+cos(£l)hg

Aj-

=7%cos(€l)+ [sinz(al)-2cosz(£l)]g + FSin(El)cos(El)§

2 _—_ .
{cos () (%) +['45in2 (81)cos (51)"“53(‘51)} (3)

oo W

+ [—8cosz (€,)sin(5,) +25in° (gl)].‘; z
+[3sin2(i )cos (§ )-2cos3(£ )](E»
. 1 1 Pl \a ;

. o((z)’)

L]

Having both R' and A" now add the results to give (for

r/a » 0)

jon
]

h;+h;

3
contsy |- Zasn a3 + Foseaet ]2 ool (2)

h|+hll
Y Yy Y

[}
"

N
] o
PN
+
o)
——
K
\-—/‘w
S —

cos(al){
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fny
1]

' "
hz+hz

2
[Lossinc] ()« 3(2)

+o(( )3)

Note that cos(£;) is factored out of the asymptotic expressions
for each of the components. Also note that some of the terms
vanish for the special case of §; = 0 which introduces symmetry
with respect to both the z axis and the x, y plane.

ESTH)

cos(gl){l+ -S;sin(il)g- +

2

DN

- %[Z-SSinz (al)] (%)
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V. Field Distributicon for Large r/a

Another limiting form for the low-frequency magnetic field
distribution which we consider is that for large r/a. Again
consider the results for the semicircular current path which are
represented for small m by the asymptotic form in eguations 74.
For r/a -~ » we can write m from equation 28 as

2 w2 ~ 2771t
wedfd? s (2)] 2 afieae 2f)
5 -1
- tleadie(3)]
2 \ 2 3
- dth oo g ey o(iy)])] as

Note in considering the asymptotic form as r/a - = that A/r,
u3/r, and 8 are all considered as fixed numbers. One might de-
fine a: polar angle v by

X = r sin(v) , Uy = r cos (v) (87)

so that (r, v, B) 1s a spherical coordinate system for the semi-
circular-current-path problem. Then as r/a - « one keeps vy and

8 fixed which implies fixed A/r and u3/r as well as fixed ui/r

and up/r. Later, when considering the full bent-circular-current-
path problem, this implies fixed x/r, y/r, 2/xr, ¥/r, 8, and ¢ as
r/a - «, From eguation 86 *there is the interesting result as

r/a - = that '

m = o(%) (88)

Thus a/r -~ 0 implies m - 0 and the results of equation 74 direct-
ly apply. For r/a - = one of the term combinations can be
written as
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Substituting the results of these equations intc egquations
74 gives for the low-fregquency normalized magnetic field as
r/a > @

[ﬂ +15sin (B) - ;-;:.n (3):! (% %)

2%

+
w:-{w
Hi>
H

| S
Hi

+ isin(B)i:ij‘ %+[%—5 - %s:.n (B)} (%)2}(%)4+O <(%)S)

"
u
Q
o]
n
-
+
o]
1)
®

el
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leﬁ

[%1 +Gsin(8)]%

| I |

g) 3sin(8)+[-ﬁ3.—ﬂ.— +3sin (8)

5

ismm)- +

1
T T3

[sin®@)-3stn(8)] (2] }(

Using equations 27 convert h) and hg to hy and hp for r/a » =
giving for hyl, hp, and h3 the results

h

1 cos(B)hk-sin(B)h

B

2 u

| 5

- %cos(s)% E_(%) + %sin(s)cos(8)<%) Eé(%> +O((%> )
u, u 3 u; u, u 4 3

3R R E2 220 ()
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h, = sin(B)hﬂcos(B)hB

(@) () B
e N Oy
- - e afm) ) ey

With the solution for r/a - = for the semicircular current
path we go to the solution for the full bent circular current
path by the superposition procedure outlined in section III B.
First apply the results of eguations 91 to the prime case. The
coordinate transformations are (from eguations 42)

ui = -y

[
N -
[

= cos(El)x+sin(€l)Z (92)

[
(% )
|

= -sin(El)x+cos(Sl)z

Substituting the coordinate transgormations into egquations 91,
applying the transformations for h' from equaticns 47, and col-
lecting terms gives (for r/a =+ =)
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QOmAmHvﬁwameAmvaWv

N p
+sin () cos (&;) Aw.v M AWV
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2 2 3
L, 3. + 34 2, 3 x z(/a
+W- Fsin(gy)+ gsin(e) (£) + gsin(g) (§) + eos e F F1(E)
#1- Zain (5008 (5 E - Lf1v2sin? (5))]
5 X 2 z 2
+ 3= mmeAmHVQOmAmHVM +_”u.+mmu..n EHL me.v
= 2 2
5 Nﬁ 2 X\ sas Xz . 2 z a
# 2 Zleos®(5)) (§) #2sin(g))cos ()T ¢ +sin (5)) [5) Q (%)
- .
. a
o+ o:mv v
= Iﬁ.u.'
=l- 3sin(g )2 L+ Jeos (e vmmm wvw
=" sl ¥ pOnHHHAH
¢ 2 L)-sin(g)cos e ;mvﬂTomNa )-sin® (g Lm Z
I B S S AT 1 1']T T
i (93)



(23
i

mwnﬁmwvbw+00mﬁmwv3w

23
R X
Hiw

z)

A 2
+Wanomﬂmpv- cos (£, (£) - Foos(z) (¥) - Fsing))

l,_l
R%
R
HiN

]

in(g;)cos (g, 2

|L:J

<+

d"]w

ﬁw+moommnmwvgw +

N

™

w

+ Nlm.ﬁlﬁu.._.-NOOm_NAmvaW leHB.AmHVOOmAm.HV W@AWV

2 ~ 4

2
-zsineyycos (i E & -ain® (e (2)]|(2)

+
Ajn

WﬁuoomNAmHVAWv

Next apply the results of equations 91 to the double prime
case. From equations 48 the coordinate transformations are

uy =y

"

5 lnomAmHvN+mwbﬁmHVN {94)

]

U3

0

mwnﬁmwvx+nomnmwvu

Substitute these trapsformations into equations 91, apply the
transformations for h" from equations 53, and ¢ollect terms to
give (for r/a + «)
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h;’{ = -cos(&l)h'z'—i-sin(gl)hl_,:
, 2
- - L z/a
- T r(r)
2 2 3
1. 3. 3 .. z 3 X z? a
+%751n<€l)— Z-s:.n(gl) (%) - stn(gl) (E) + Zcos(gl)-f f}(f)
£ %sin(il)cos(gl)-if- + -237[1+2sin2(gl>]§-
+ 5_|2sin(.)cos (2% - [1+25in2 ¢ >]2 7y’
7| 2sin(g))eos (50 - 1#25in” (£)) | T ()
2 2 4
5 z|_ 2 X\ . X Z __:.2,., Z a
+z ;[ cos®(5) (F) +2sin(g)cos (5 F E -sin(gy) () } ()
‘ 5
o a
T 0((5) )
ny = hy
(95)

3. X 3 zlr7a
{ZSln(EJ.)'E L+ qeosepf £(3)

+ % %%-sin(g_l)cos(gl) (§> +[sin2(’r;l)-cosz(£l)}§ %

2

4
+sin(£l)cos(’;’l) (%)

(

)

+o((g))
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h" = sin(&.)h'+cos (&, )h"
z 1’2 1/%3 ¢.-v
2
_ 1 xsa
- 7 2(3)
2 2 3
1 3 X 3 3. X N~ a
+foos (1) - Joos 5,) (£] - Joos(ey) (§) + JeincepE 2l(2)
+w| Mlﬁw+wnom (& v@m + wmwbﬁm voomﬁm ) z
27 T r
+_Wmh-w+N00m ﬁmwvgl.nwmpsﬁm VOOmﬁm ) QANV
- 2 2 4
+ 2 2feon? ey (2 2etniepeon e E 2 wern i) (2) ]2

Now add the results for h' and h" to obtain the results for
the fields from the full bent circular current path for r/a -+ «
as

h, = R +hy
3 2 2 4
- costep 3 E 2 beiniep [- £ 20 Rxy 2xe) (g
+o((2)")
h, = hy+hy
(96}
3 2 2 4 5
- costep) |3 L 22 wmincep 0 L (5)7 2] ](2)] o ((2))




h, = hl+h!
5 2 2] 53 2
ccostey| [ 38 3072 s [ 2 - 2 2y

Here cos{(f]) is factored out of the asymptotic expressions fgr'
convenience, Note that for £] = o the terms involving (a/r)
drop out.

For convenience these results can be converted to cylindri-
cal and spherical coordinate representations. In cylindrical
coordinates (¥, ¢, z2) we have the relations

ax o= Y cos(9) y = ¥ sin(9) 7

The field components can then be written

oy
]

cos(¢)hx+sin(¢)hy

3
3 . 6 2 y 10 2
71 23 +Sln<€1>[‘ Feos (o) + Toilreos” ()]

cos(gq)

(98)
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oy
]

—31n(@)hx+cos(@)hy

~cos (£,) sin(E;) 2sin(6) cos (4) £(2)

27,3
h = cos(gl)g[l- 2(2) ]{%) +sin(£l){g Z - q1scos? (4)]

In spherical coordinates we have

¥ = r sin(8) , zZ = r cos(f) (99)

l}

The field components are then

hr

sinfe)h¥+cos(e)hz

3
= cos(al){cos(e)(%)

)

+sin(gl)%[cosz(8)—sin2(e)cosz(¢)](%) §

+ o({

A

he = cos(e)hw—sin(e)éz
1 a\’ 4 2 a4
= cos(&;l){jsin(e)(E) +sin(g;)=sin(8)cos (8) [1+cos” (9)1{Z) 5
2,5 (100)
+o((2))
h, = = (§;)sin(g )2sin(8)sin(¢)cos () (2 4+o((a 5)
5 = ~cos(E;)sin(E;)=sin(8)sin(¢)cos (¢ (;) ;)
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VI. Graphical Results

With the general results and the asymptotic form for small
r/a worked out in the previous sections we next consider ths
quantitative distribution of the normalized low=-fregquency mag-
netic field in the immediate neighborhood of the simulator.
These results are graphed ip figures 4 through 29. Note that
|AR| and the components of h are divided by cos(£1) for the
graphs so that hgz/cos(g§]) - 1 as r/a - 0 and to give a conven-
ient reference for the relative size of the other field compo-
nents and of the magnitude of the difference field. The egua-
tions for the computer programs are in section III B with Ah
taken from egquation 8. The special simpler case for £1 = 0 is
found in section II.

. The figures come in groups. There are five groups associ-
ated with specific values of £1. The first group (for £1 = 0)
has only two figures since the results can be expressed with
only two normalized field components (hy and h;) and two coordi-
nates (¥ and z). Figure 4 plots the £field components as a func-
tion of z/a for various ¥/a; figure 5 is a contour plot of |AR]
on a z, ¥ plane. Note because of symmetry we only considerxr
z >0, ¥ >0. The second through fifth groups have 5 figures
for each group with fixed £7. The first three figures take
fixed values of y/a and plot the three cartesian normalized
field components as functions of z/a for various x/a. The
fourth figure in the group is a contour plot of |Ah| on x, vy
planes for 3 values cof y/a. The fifth figure in the group con-
siders only the x = 0 plane (the ground or water surface) where
there are only two nonzero normalized f£ield components, hy and
hz; these two components are plotted as functigns of z/a for
various y/a, and there is a contour plot of |Ah| on the x = 0
plane. Note that by symmetry we only need consider x > 0 and
y > 0, but both positive and negative z are needed. AFfter the
five groups of figures for fixed &1 values there is a sixth
group. This sixth group comprises two summary figuxes, numbers
26 and 27. Figure 26 plots the maximum value of ?Ah{/cos(il) as
a function of r/a for various values of £] between 0 and 7/2;
the maximum is taken over all 8, ¢ on the surface of a sphere of
constant r/a. Figure 27 specializes this result by constraining
x = 0 (the ground or water surface); the maximum value of
|ah|/cos (£1) is taken over all 8 on a circle of fixed r/a to ob-
tain the maximum on the x = 0 plane; the maximum is plotted as a
function of r/a for various values of £1. These maxima are de-
termined numerically. Note that the maximum over the sphere is
in general only a little larger than the maximum over the circle
on the x = 0 plane for the same value of r/a. Figures 28 and 29
repeat the plots in figures 26 and 27 respectively, except with
expanded scales.

For convenience in the contour plots a star * is used to

indicate the position of the current path where it intersects
the plane being considered.
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VII. Summary

This note has considered the low-freqguency magnetic f£ield
distributicn produced by a simulator with the geometry of a half
toroid connected to a perfectly conducting ground or water sur-
face. The minor radius of the half toroid has been assumed
small compared to the major radius so that the current could bhe
localized to a semicircular current path. Using image theory
then the magnetic field has been found by integrating cver the
uniform current around a bent circular current path. After hav-
ing obtained expressions for the normalized field in terms of
elliptic integrals, the asymptotic forms for positions near the
"center" of the simulator {(r = 0) and for far away positions
(r - =) have been obtained. Graphs show the magnetic f£ield dis-
tribution in the vicinity of the simulator.

The results in this note apply to the case that low fre-
guencies of interest have wavelengths in the air large compared
to a (the major rxadius) but skin depths in the ground or water
small compared to a. Perhaps another note can consider the lim-
iting low-freguency magnetic field distribution for the case of
a uniform finite ground or water conductivity. Furthermore the
two positions where the half toroid meets the ground or water
surface need not be the positions of electrical contact to the
lower medium. Conductors (perhaps including various impedance
elements as well) could run from the two ends of the half tor-
0id along or Jjust above the ground or water surface tb two other
positions where electrical contact to the lower medium would be
made. With this flexibility and perhaps even more general con-
ductor distributions the low-freguency current density distribu-
tion in the lower medium can be tailored somewhat so as to make
the low=~freguency magnetic field distribution better approximate
a uniform field in the 2z direction near the center of the simu-
lator (r = Q).

46



HALF
TOROID =

ROW OF y
HORIZONTAL
REFERENCE AXIS GROUND RODS
FOR SYSTEM

FIGURE 1. GEOMETRY OF SIMULATOR

w7

PULSE
GENERATOR



A.

B.

y IS POINTING
OUT OF THE PAGE .

‘lh

|

|

ri\ \HALF

I TOROID
AIR l
—
GROUND OR WATER N z
IE\\
: AN IMAGE
\\ /
I M
~
SIDE VIEW
|
|
|
1 1S POINTING’

QUT OF THE PAGE . 52 1S AN ANGLE IN

THE PLANE OF THE
UPPER HALF TOROID.

HORIZONTAL —»
REFERENCE AXIS
FOR SYSTEM

~~ POSITICN OF
GENERATOR

TOP VIEW

FIGURE 2. HALF TOROID WITH IMAGE
48




A.

THE CURRENT PATH LIES
IN THE u,, u, PLANE.

HALF OF BENT CIRCULAR CURRENT PATH WITH SPECIAL COORDINATES

FIGURE 3. COORDINATES FOR SIMULATOR WITH IMAGE

49




l

~N

:
2 4 .6 8 Z
a

A os(6] VS. & WITHL AS A PARAMETER

i ] 10, I ! [

!

|

b4
0y 2 4 . .6 8 L 1.2 1.4
8. cos (] VS. <5 WITH < AS A PARAMETER

FIGURE 4. MAGNETIC FIELD COMPONENTS AS A FUNCTION OF z=—2§l :0

50




FIGURE 5. CONTOUR PLOT oF LARL . 281 o

cos(fi) B

51




©
o
©»
_‘i;;
e
i

__L5 ! | I L | {

!
Zie  -l.2 -8 -4 0 z
fx . a
A. cos() VS.—¢ WITH-- AS A PARAMETER

3 T 1 1 T I T T T ] T T

h,

cos(é N

-1 ! { ! L |

°r
|

-i.8 -1.2 -.8 -.4
h

Z z X
B. cos (El) V5.9 WITH @ AS A PARAMETER

2 .

FIGURE 6. MAGNETIC FIELD COMPONENTS AS A FUNCTION OF z: —+: .2, —-:0

(hy =0) -




.3
0
My
cos(s’) -3
-6
-9
-2 | | ] |
~6 -2 -8 —3 0z .4 8 1.2 .6
_,13_ 2z L q
A. cos(f]) VS. T WITH 7@ AS A PARAMETER
T T T T T
hy
cos(El)
-8 | T | | 4 I L \ | l
-1§ -2 -8 ~4 0 1z .4 8 1.2 N
L z x a
B.- cos(E,) VS. 70 WITH @ AS A PARAMETER
LI
cos(El)
- | | ] [ & ! | i | I 1 |
-6 -2 -8 -4 0 1z .4 8 1.2 .6

hz q
b4 X
c. cos(E‘) VS. T WITH @ AS A PARAMETER

2¢

FIGURE 7. MAGNETIC FIELD COMPONENTS AS A FUNCTION OF 2: —1=.2; Lz,

53



8
3
hy
cos (E, )
-3
-8
-9
My
cos(§))
2.8
2
|
Nz
GOS(EI) 0
-
-2

FIGURE 8. MAGNETIC FIELD COMPONENTS AS A FUNCTION

hy

A, ——

" cosif))

-1.2

VS. & WITH X~ AS A PARAMETER

B. —L— VS. % WITH 5 AS A PARAMETER
COS(E|)
U J ! IR i o t

1 i ] | | ] | | 1'8
-2 -8 -4 0
h 2 X ’
€. —E— VS. ~= WITH = AS A PARAMETER
cos(E,) a a AS RAME

g4

14l



q
1.2 T T T T | {
| A%
| = —==9 -
cos(E,)
.8
L 5

0
S8 T1.2 -3 6
i :
8. CONTOUR PLOT OF —BAL ¢op L .5
cos (£,)




hy

cos ()

Ny

cos (§,)

al«

1.0

~1.6

C. CONTOUR PLOT OF AR
cos (¢, )
FIGURE 10. MAGNETICEHELD COMPONENTS AND CONTOUR PLOT OF ‘Ag ’ FOR
2 l

—-O 2 56

]



ro
|

w
|

V

I O T O I

[ I U I I

i
-.8 -4 0 é. 4 .8 1.2

VS. & WITH £ AS A PARAMETER

o

-6 C—1 l ! I 1 I ! [ .8 8 | [ —
-1.6 -1.2 -.8 -4 0 Tz 4 8 1.2

ik e x

w08 (€, VS. o WITH o AS A PARAMETER

‘ ,. 2
FIGURE |l. MAGNETIC FIELD COMPONENTS AS A FUNCTION OF z: —7§L=.55 al-‘-

(h, =0)

y




1.6 -2 -8 ~4 e Z 4 8 1.2

VS. & WITH 3 AS A PARAMETER

2 i T i | T i — i 3T T T

Ry
cos {§))

hz
cos ()

I
-1.6 -{.2 -8 -4 0 z
a

hz
cos (£, )

aje

WITH & AS A PARAMETER

* 2
FIGURE 12. MAGNETIC FIELD COMPONENTS AS A FUNCTION OF z: %:.5i L:s

58



.75

-2.25

w7

L S R E N T

| | ! ] | i
216 =12 iy -4 0 =L 4 1.2 .6

h a
A, X VS, =~ WITH = AS A PARAMETER

cosi€,) a a
7 T T T T T T NPT ] 1
L
oL

-2 -
- ] ] 1
1.2
h
8. —L- vs. T WITH X AS A PARAMETER
cos(,) g

4
3
2
hZ
cos(E,)

i

i

i

[

| | |
-2 P By S— z 4 12 6
h Z X
. e VS, & WITH - AS A PARAMETER
FIGURE (3. MAGNETIC FIELD COMPONENTS AS A FUNCTION OF =z 95 %—=.8

59



-1.6

C. CONTOUR PLOT

™ 2
FIGURE 14. CONTOUR pLoTs oF L8 o —;':'- =5
cos (&)



i
. Z
hy 4 y a
) VS, T WITH @ AS A PARAMETER

cos(f’)
1.2 T T T
L AT ’
- cos(fl)=-’
8 8
- T
y 86—
-y R
40—
.2
0—16 ' —|‘2 l -8 l ]—4
. . . A-h. N

C. CONTOUR PLOT OF ¢os (6,)

A
FIGURE 15. MAGNETIC FIELD COMPONENTS AND CONTOUR PLOT OF cos(¢) FOR

!
a0 2.5 o



X

cos({l)

-1 ! ! | ] | | 1 ]
8—-!.5 o —-1.2 -.8 -.4 0

X z X
A. Tos(€) VS. T WITH T AS A PARAMETER
AT T T T 7 T T e ®

o

-y R —
=.6 hz-

———

Z X
B. cos(fi) VS. @ WITH '@ AS A PARAMETE

] ] ! I !
1.2 —.8 -4 0

)
L
g

R

FIGURE 16. MAGNETIC FIELD COMPONENTS AS A FUNCTION OF z:-25L27, Lz 0

(hy =0)

62



2.4

Ay

cos(§)

| l

; /
-1.2 -8 -4 0 I 4 8 .2 K
hx

VS. = WITH =~ AS A PARAMETER
cos(§)) ¢ g

[ i T i i i B

N 2 —
co:(fl) ‘ -
0

-2 ] | ! ] | ] L ! ! . ! !

-1.6 -1.2 -8 -4 0 '5' 4 8 1.2 1.6
he 2 5
i VS. = WITH =~ AS A_PARAMETER
2
FIGURE 17. MAGNETIC FIELD COMPONENTS AS A FUNCTION OF z: %a?;-.i: .5

63

e - - e Tt STPIS P Ce imemmmee . v e e —



.4 T i T T T T T T T
I - -
.5
hx - o
cos(cf]) 5 ]
. —
-5 —
-] L | |
-=1.8 -[.2 1.2 .6
hy
A. cos(fl) T WITH T AS A PARAMETER
2.4 —
1.2 =~
h
J n
cos(fl}
0}
- ! | i ] ]
2‘4—-3.6 hy—l.Z -3
8. c¢os (EIJ ySs. % WITH % AS A PARAMETER
4.8 T T T T
24
hy i
cos(f|)
0
— | [ ] ] [ | [
2'4-1 6 b -1.2 ! -8 -.4 ! 0 _zl__ 1.2 | ).6
— z a
C. cos{) VS. @ WITH T AS A PARAMETER
FIGURE 18. MAGNETIC FIELD COMPONENTS AS A FUNCTION OF "aL :.8

64

e g

i



al<

b AR

=9

X
d
l12 ‘ ’
] .
8=
XL
¢ 65
4
2=
0 ! |
-1.6 -1.2




w
|

hy
cos(§)

T T

]

hy
cos(f;)
438 T T T { T T T ] 7 T i E— T

VS. - WITH —- AS A PARAMETER

32 ~

- ! | L
-i.6 -2 -8 -4 0 _é. 4 .8 1.2 {.8

hy 2 y
T VS. - W T AS RAMETER

1.2 1.6

o
R I A N A I O Y BN

R

1 1
%% -i.2 . -4 0

—-— 0

Yay 1!
cos(§,} - .
FIGURE 20. MAGNETIC FIELD COMPONENTS AND CONTOUR PLOT OF =2l roRr
X 2§ cos(§}
T30 =7 66

C. CONTOUR PLOT OF



FIGURE 2. MAGNETIC FIELD COMPONENTS AS A FUNCTION OF z:

(hy 20)

67

0
hy _
cosi§)
-l -
_2 -
_
-3 | L l | L1 ! l 1 |
-1.6 -1.2 -8 -4 oz 4 3 12
h
A, ——— VS, == WITH = As A PARAMETER
oo cosl)) '
3 [ R B B A B E f
4 3. '
: 70 2
.2
hz
~ cos(§))
-2 —
-2.4 — —
20 |2
-3 | | | | | | ! | | | |
-1.6 -1.2 -8 -4 o I 4 8 1.2
h .
——%— VS. == WITH = AS A PARAMETER
cos {§;) .



1.25 ) l o ‘i o 1 j i Tv—l i 1 R
5 2
I5 — —
8
- S .
70 "
cos(§) B -
a5~ -
-125 — » ’ -
-1.50 L L ot L1 | 1 L
T8 -2 -8 -4 0 _g. 4 8 |2 1.6
hy z 1
. . = —_ A PARA
A cos({,) VS. 5 WITH -3 AS PARAMETER
LE H I i r 1 t H
8
4
h
Y 0 |
cos(§y)
-4
-8
-1.2
-1.8 -2 -8 -4 0 -5- 4 .8 L2 18
h
b 2 X
. ¥S. == WITH 5~ AS A PARAMETER
3 cosi§)) VS 4 T A3
2.8 T 1 T T T T 1 T
2.4 _X_:O
- a
16
N -
1 8
COS(E;) L
T
-‘3 -
.6 —
_20 | I [ e I; [;
T8 -{.2 -8 -4 0 _:. 4 .8 L2 |.6
h; 2 X
C. —W_!(e'T VS. o WITH - AS A PARAMETER
2€|

FIGURE 22. MAGNETIC FIELD COMPONENTS AS A FUNCTION OF z:
68

T



-l -
_ | L
3 8 2 X

- ! | ] ! | ! ! l
e — S 0
hz

—— 2

C. cos(§) VS. T WITH < AS A PARAMETER

‘ 2€,

FIGURE 23. MAGNETIC FIELD COMPONENTS AS A FUNCTION OF z: —:.9; - 8

]
L
a

69




A. CONTOUR PLOT OF —2Mt_ rog L
cos(§)] a4
12
I
8
X =
Y -
.
4
2 -
0
-6 D12 -
Ny .
8. CONTOUR PLOT OF —20— FOR - : 5
cos(§)
12 x 7 T T T T ‘ l ' I T T '
o | 12 ]
|- _
- 15 -
8 I__ & - g
X cos(§,)
= 6 |
4 8
- 7
2 - 6
0 i Il [ i 1 ] 1
-16 -1.2 -8 _ -4
C. CONTOUR PLOT OF —=tl_ pop L . g
COS(E{) - 26
FIGURE 24. CONTOUR PLOTS OF —2M— FoR — = 9
cos(§;)



3% T T T T l
28 =~

2! =

N
cos(¢,)

-7 i ] ] | 1 [ | [
~-1.6 ~1.2 -8 -4 0 % 4 .8 1.2 |.6

T A Z X
COS({,) ysS. WITH 3 AS A PARAMETER
30 T T T

Nz
cos(§,) |

vS. & WITH I AS A PARAMETER

-4

-8
—
¢. CONTOUR PLOT oF 4B

-
FIGURE 25. MAGNETICE FIELD COMPONENTS AND CONTOUR PLOT OF %%TI FOR
2 Sl§
'é' 2Q: T" =.9 71




20

15 .3

vy

FIGURE 26. MAXIMUM cos() ON THE SURFACE OF A SPHERE OF RADIUS r-

CENTERED AT THE ORIGIN. .

72



20 T T T T T T T T T ! { Pt

1
i

wax JARL
9 cos(El] 10—

FOR x=0

AR
FIGURE 27. MAXIMUM TcosE,) ON THE PERIMETER OF A CIRCLE ON THE GROUND
SURFACE OF RADIUS r CENTERED AT THE ORIGIN: 5 =0

oo iy e e —aem



! T I T T T T T T
S |
8k _
- <
7 - 2€|
—L -9 7
L J -
MAX AR i
8, cos(«f]) - 5
S —
4= - .
3 -
. 7
.2 ~ -~
- —
0 I | 1 f ! ! ! | ! I ! | I
0 | 2 3 .4 5 6 7 8
|AR
FIGURE 28. MAXIMUM cos(§,) ON THE SURFACE OF A SPHERE OF RADIUS r
CENTERED AT THE ORIGIN (SCALE OF FIGURE 26 EXPANDED) .

74



l i [ i ] i T l
i
8 2¢,
i -
7k
»
— 6=
9 cos(fl) _
FOR x:=0 /
5=
.2
|
4
L 0
I
2
-
] | 1 ]
% — 7

| A7 |
FIGURE 29. MAXIMUM cos(§) ON THE PERIMETER OF A CIRCLE ON THE GROUND
X
SURFACE OF RADIUS r CENTERED AT THE ORIGIN : @ =0 (SCALE OF

FIGURE 27 EXPANDED)

75




Appendix A: Elliptic Integrals and Their Derivatives

For the elliptic integral notation we follow a standard
reference.lA There are three standard forms of incomplete el-
liptic integrals; these are the first kind

-1/2

4
F(z|m) = jﬂ 1 - m sin®(v)] dv (al)
o
second kind
Z 5 1/2
E(z|m) = ‘{ (I - msin“(v)] dv (A2)
o
and third kind
g . 2 -1 2 -1/2
T(n:z{m) EJ{ [l = n sin®(v)] [1 - m sin™(v)] dv (A3)
L o

where 7 is called the amplitude, m is called the parameter, and
n 1s called the characteristic. There are also the delta ampli-
tude defined by

1/2
A(Z) = [L - m sin®(z)] (24)

and the complementary parameter defined by

m, =1 -m (A5)

When 7z is taken as 7/2 the elliptic integrals are called com-
plete and can be written in a shorter form; thess are the first

kind

IA. M. Abramowitz and I. A. Stegun, ed., Handboock of Mathemati-
cal Functions, AMSS55, National Bureau of Standards, 1964, chap=-
ter 17.
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second kind

E(m)

1
(o]
(W]

m) (A7)

and third kind
T(n|m) = n<n;i‘m> (A8)

Now consider the derivatives of the first two kinds of el-
liptic functions. First consider z. The derivatives are ob-
tained from egquations Al and A2 to give

3 -1 L2, "Ll/2
"ng(Clm) = [A(Z)] ~ = [1 = m sin“(g)] (A9)
and
3 | 2 172
33E<clm) = A(z) = [1 - m sin“(zg)] (A10)
For completeness from equation A3 we add
3 .2 -1 -1
ggﬂ(nrclm) = [1 - n sin®(g)] ([A(2)]
5 -1 2 ~1/2
= [1 - n sin“(zg)] (L - m sin“(z)] (All)

The complete elliptic integrals are not functions of 7 and so
such derivatives are not considered.

Next consider the derivatives of the first two kinds of el-

liptic integrals with respect to m. Using equation Al we have
for the first kind
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5 2, . "L/2 .

[l - m sin™(v}] dv

F(z|m)

o~

S_
om Jm

S ,  =3/2
= = J{ sin“(v) [1 = m sin“(v)] dv
o

[y ) o

"

%ﬁ[—F(Clm) + I(m;gim)] (A1l2)

The special elliptic integral of the third kind in this result
can be written as?lh

1 m sin{(2%)

T(m;z|m)

] Zm; AL
I _m__ sin(g) cos(g)

[l -m sinz(c)}

Thus we can write this derivative in terms of incomplete elliptic
integrals ¢of the first and second kind as

1 Jl - m sin(2z)
=—/=—E(z|m) - F(glm) -
2m, l/2j

2mm
l 1 [1 - m sin?(2)]

%EE(CIm)

sin{(z) cos(g)

L/2

11 .., m
mgnTl-E(C[m) - F(Cim) - T'EI

(1 - m sin®(z)]
(Al4)

In the case of the complete elliptic integral of the first kind
this result reduces to

‘._J

1L gm - K(m)} (A15)

my

3 =
T = |

2A. Ref. 1A, egn. 17.7.24.
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Por the incomplete elliptic integral of the second kind we
have

gﬁE(c|m) = (L - m sin“ (v)] dv
o

z -1/2
= = %f sinz(\)) [l - m sinz(v)] dv
o
1
= =[2(¢|m) - P(z/m)] (A16)

For the complete elliptic integral of the second kind this re-
sult beccmes

S E(m) = 2-[E(m) - K{m)] (A17)
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Appendix B: Two Integrals T and Ty and Their Derivatives

From equations 34 we have the integral

T+8
2

sin{y) cos ()

Ty, =2 1/25“1’ (B1)
8 [l -msin®(y]
2
Let
no= A%(g) =1 - m sin’(y)
(B2)
dn = =-2m sin(¥) cos(¥)dy
giving
7 (52)
T, = - % n l/zdn
22(8)
s
. 2.1/2
2
2%(3)
- 2[(3)- (2]

Thus for T, we have
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1/2 1/2
_ 2 8 T+ 8
T, = E%[l - m sin (5)} - [l - m sin (1%—)} }
1/2 1/2
2 L2
= E{{l - m sin (%)] - {l -m cosz(%)] E (B4)
From equations 34 we have another integral
T+R8
2 5
= 2 sin“(y) - 1
TB 5 173 dy
8 (1 - m sin™ (y)]
Z
T+R
] —§—f 2. L /2 ., . ) —l/Z)
= t- E[ - m sin” (¥)] +\E - )[l - m sin”(y)] gdw
8
Z (BS)
. Tht:'tusl Tg can be Wfitten rin terms of incomplete elliptic integrals
as
= 2 8 8
Tg = ﬁ[ (T[ n) - E(ﬂmﬂ
E -y - )] )

These two integrals TA and Tag are both functions of 8 and
; m. Consider first the derivatives with respect to 8. From equa-
tion Bl we have .

%E Tk = sin(E§§>cos(E;§»@ - m sin2(1;§>}-l/2
-1/2
Broe(§: - = o7

= -sin

- sinl=s|cos 5 [l -m 51n 7

-1/2
T

(B7)

rqm
Nj

cos % % 1l - m sin %)}-l/2+[l -m cosz(
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and from equation B5 we have .

bt = s (12) - H[1 - mosn?(1E))
- [asa®(3] - 4][s - m ssn?B))

Now consider the derivative of T, with respect to m. From
equation B4 we have

)

}1/2 }1/22

N

)

—[l - m cosz(

roj o

T, = = -2—2-2;[1 - m sinz(

l e
Ef
>

E=]

+ -{-sinz( )[l -m sinz(%)1-l/2+cosz(%) [l -m cos%%)}-l/“l

=1
Njo

[NTes)

E%N'h‘ .

%- [2 -m sinz( )] [l -m sinz(%—)] | | ‘

+ [2 -m cosz(—g-)][l -m cosz<%-) {B9)

Finally consider the derivative of Tg with respect to m. From
equation B6 and using the elliptic function derivatives from

appendix A we have
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