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Abstract

In this work the scaﬁtering of a plane electromagnetic field from an
infinite unidirectional conducting screen is considered. The screen models
an array of sinusoidal wires whose spacing is much less than the wavelength
of the incident field. First the boundary cdnditions imposed are shown to
give a unique solution. Secondly the scattered field is calculated and it
is shown to consist of TEM, TE and TM waves. It is found that an otherwise
transparent screen can become significantly reflecting by introducing slight

periodic curvature to the conducting direction.
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I. Inﬁroduction

It is sometimes the case that one is interested in scattering from a
structure which is an array of elements that are closely spaced compared to
the wavelgngﬁh of the incident electromagnetic field. When this is the case,
the problemlis often simplified by comsidering the structure to have a con-
tinuous surface on which boundary conditions are satisfied which are physically
suggested by the actual array configuration. We shall refer to such a éurface
as a unidirectional conducting screen. In this work we examine whether the
solution to the mathematical problem is unique and we show that it is., Wé
then consider scattering by an infinite plane unidirectional conducting screen
in which the conducting direction is sinusoidal. Many problems concerning
unidirectional conducting screens have considered the case where the conducting
direction was along parallel straight lines. For such a screen,f;eld components
alone introduce a conveﬁient number of unknown scalars for the problem to be
readiiy formulated. When the conducting direction has some cur§ature the
problem is not as easily formulated. Rumsey [ 1] has considered the introduction
of potentials for a certain class of problems involving unidirectional con-
ducting structures, but thaﬁ formulation requires a certain symmetry in the
boundary conditions for the E and H fields. This symmetry is absent for the
scattering problem due to the presence of the incident field. In this work we '’
introduce the appropriate number of scalars by using certain components of the
vector potential A. We expand these components of A in a Fourier series with
unknown coefficients. The application of boundury conditions leads to an
infinite matrix which must be Inverted to find these coefficients. We prove
that the matrix has a unique inverse and then obtain approximate solutions using

an iterative procedure that is known fto converge.



II. Uniqueness Proof
Consider the case where the conducting screen forms a closed surface §
which bounds a source free volume Vl. The remaining part of space contains
a source J and is designated as Vz. We denote the flelds in région 1 as
5

is used for region 2. We now use Poynting's theorem and integrate over

and E& and the constitutive parameters as e, W, and G- Similar notation

volumes 1 and 2 to obtain
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where n is the outward normal to S, ap is a unit vector in the radial direction
in a conveniently located coordinate system, and S_ is the surface of a sphere
with its center at the origin of our coordinate system and with its radius

tending to infinity. The boundary conditions that we consider are such that

on S,

-~
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nc (B xE) =0 (E, xH) (2)

that is the energy flux is ccntinuous through S. We also assume that EQ and
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§2 decay exponentially due to Tye These requirements lead to a class of
boundary conditions each set of which will be shown to guarantee unique
solution. The choice of a particular set is dictated by.the physics of
the problém. When this is the case then we can combine (la) and (1b) and

use the fact that the integral over S_ is zero to obtain
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= dwe,|E | - 0, |E, |7 - E, + 1DdV =0 (3)

Let us now assume that we have another set of fields that satisfy Maxwell's

equations and the same boundary conditions as E&’ El and EQ, EQ and

we denote these fields as E;, H, and Eé’.ﬁé‘ We form the difference fields
- - B! = - ! = - ' = - ut

Ejp = E; - Ej» By = By - By, Epy = Ep - Ej and By = By - Hy and assume that

the boundary conditions that allowed (2) to be satisfied also allow (2) to

be satisfied for the difference field. This point will later be explicitly

examined. When these conditions are satisfied, then we can arrive at the

equation
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+ J (iwuzlEQDiz - inZIEQDlz - UzlEQD‘Z)dV =0 %)
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in the same manner that (3) was obtained. We note that the term containing
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J is absent. This is the case because the primed and unprimed solutions ~
satisfy the same inhomogeneous Maxwell's equations so the difference solution
satisfies Maxwell's equations with the source terms cancelling each other.

Equating the real part of (4) equal to zero we obtain

! ollgmlzdv + J czlgznizdv =0 (5) ]

Vl . V2

From (5) we conclude the E, = E& and E, = gé. Setting the imaginary part of

) equal to zero and using the results just established we conclude gl = Ei
— t
and H, = H,.
We will now show that the boundary conditions used for the screen

problem allow (2) to be satisfied. Consider a right handed orthonormal set

of vectors to be defined at every point on the screen (t, n, s). The unit ...
- - b 4
vector t is chosen along the direction of conduction on the screen, n is the

outward normal to the surface, while s = t ¥ n and 8 is the direction along
which no conduction takes place. For the unidirectional conducting screen

we impose the following boundary conditions

]
»

t+E =t E =0 (ba)
S-El=sn-E_2 | (6b)
t-H =t-H (6c)

Conditions (6a) and (6b) are imposed because we assume that the screen acts

~

like a perfect conductor in the t direction and is transparent in the s o
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" direction. Condition (6c) is imposed because the induced electric current
on the sheet is n x (§2 ;‘51) and we want this current to flow only in thev
; direction. These boundary conditions have been applied in previoué
probiems; See for example Collin [2]. In genefal

e ExE) = (BB - (s B B %)

Using (7) we see that if (6) is satisfied, then (2) is satisfiéd. We also
observe that (6) is composed of linear relationships so that if Ej, H| and

Eé, ﬂé satisfied (6), the difference between't;e primed and unprimed solutions
would also satisfy (6). Because the difference solution satisfied (6) it
would also satisfy (2) (fof the difference field) and the preceding uniqueness
proof is applicable. We conclude that the solution to the uniconducting
screen problem which satisfies (6) and appropriate conditions at infinity is

unique.

IIT. Solution of the Scattering Problem
The configuration that our screen models is an infinite planar array
of sinusoidally shaped wires. The spacing between the wires is assumed to
be much smaller than the wavelength of the incident field. The screen lies
in the z = 0 plane and the equation for the wire passing through the origin
of our coordinate system is y = m sin ax. Vectors tangent and normal to the

wire and lying in the plane of the screen are. given by

~ ‘A

t = a_ + ma cos ax a (8)



and -!!l'
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s =-macos ax a_+ a (9)
s - y

Notice that £ and s have not been normalized., We will consider an incident

plane wave of the form
=ae ° (10)

The source region, z < 0, is region 2 and region 1 will correspond to z > Q.

The scattered field in region 1l is denoted as §F1),§F1)

field in region 2 is denoted as };(2), 31(2)

and the scattered
. The boundary conditions that will

be satisfied on the screen are

L (n, _ |
t (_}tgi +E }y =20 (11)
(2)y _
t (gi +E) =0 (12)
o N (2)
8 E+E") =5 E +E (13)
W, _ . . (2
£ AR = B FED (14)
From symmetry considerations cne can deduce E_-‘§<1) = -t g‘z) and
consequently from (14) one can conclude t §Fl) =t . Eﬁz) = 0. We would
like to solve for g‘l), E‘l) and EFZ)’ g‘Z) by introducing as few unknown

scalars as possible. The introduction of potentials for problems involving
uni-directional conducting structures was considered by Rumsey [1]. His

formulation concerned propagation and.radiation, but not scattering. The two

former classes of probletgs contained a symmetry of boundary conditions for the .
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" E and H fields that is destroyed by the presence of an incident field in

the scattering problem; thus his method is not directly applicable to our
problem. Our formulationiis based on the introduction‘of the electric vector

(1) (2)

potentials A and A"° for the scattered field. It is argued that these

potentialé have no z components, because their source, the difference in

; x H across the screen has no z component. The difference in ; x E across
the screen is zero due to our boundary donditions so no magnetic vector
potentials need be considered. * That is

A A (x,20a + A}(’I)(x,z);y (15)

2P - P ra 4 A 203, (16)

The components of the A's have no y dependence due to the y symmetry of the

screen. We now introduce the following expansions for these components

@ iY Z
(1) _ inax " 'n
A = ) ae e (17
nE—w
3 j’_-Y 2 .
A(1) - Z b einaxe n (18)
y a=—c n
®© -1 z
(2) _ inax “'n
A" = ) ae e (19)
n=-c
p © ~iy z
A(2) - z b einaxe n
y n=—-o n

and in order to satisfy Maxwell's equations Yo = /kg - (na)2 and the square

(20)



root is defined to give outward propagating or evanescent waves. The expaﬁsion
coefficients ih'(17) and (19) as well as in (18) and (20) are the same because
of the symmetry of the scattered field. Using the standard relationships

between E, H and A that is

iw ? Ax
E = - — (z1)
X kz 322
EY = iwAy (22)
. 3A
i z
_Hx = - u—— 37 {(23)
o
1 an
By =i @24

the boundary conditions (11) and (14) lead to

2
Y
n ma _ ima
12 3, %2 (bn—l + bn.+1) T 2 (Gn,—l + Gn,l) (25)
o
i " ‘ma .
ann - TE-CYn~lan-1 + an+lYn+1) =0 (26)

Boundary conditions (12) and (13) are automatically satisfied because of the
relatiohship of the expansion coefficients for é(l) and 5<2) exhibited in

(17 -~ 20). We can examine the infinite subset of equations (25) and (26)
which corresponds to a,. and b2n+1 for all =n. This’set of equations can be
viewed as an infinite homogeneous matrix equation. This same infinite matrix

will later be shown to have a unique inverse. From this fact we conclude that

10
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the homogencous matrix equation can have only the null solution and 3 and

bont1

derive further relationships between the expansion coefficients. From consider-

are zero for éll n. We now make use of the symmetry of the system to

ing the direction that current would be induced on the "wires" of our screen
we can see tbat.oﬁ th; screenvéx(x) = —Ax(j/a - g) and Ay(x) = Ay(ﬂ/a - X).
Using Fhese equalities we‘can easily see that a = (-1)n+la__n and bn = (-l)nb_n.
These conéluSions couldfﬁe'arfiyed'é: by using matrix arguments.

We now return to (25) and (26) rewritten in the following manner

2 2
=_._1;c_°__i‘§_(b + b )+.j:.i'.1_§_k.°__.5 > 0 (27)
8on+1 2 2 \Pon T Ponyn’ T2 T2 nt+1,1 B
Y2nt1 Y2nt1 | |
b, =D& n=0 (28)

n " 2y, O on-1220-1 ¥ Yont122n41)

This set of equations has the general form of an infinite matrix equation

which can alwayé be rewritten as

%, = .Z cijxj + fi . (29)
j=o0

j#L

A sufficient condition that (29) has a unique solution is

{cij{<1-e,e>o, all i (30)

M 18

j=o
j¥#i

When condition (30) is satisfied the matrix associated with (29) is said to

be fully regular. A fully regular matrix equation can be solved by iteration

with the guarantee of convergence to a unique golution.4 A detailed discussion

11



of fully regular matrices can be found in the book by Kantorovich and Krylov

[3]. Condition (30) when applied to (27) and (28) leads to

k2
0

ma <1-8 n=0 (31)

2
Y2041

Yontl
Y2n

Yon-1
Yon

L

> +

)y <1 -8 n=20 (32)

As long as we are not operating at a resonant frequency, Y, = 0, then an ma
exists such that both (31) and (32) are satisfied for all n. When this is the
case then we can solve (27) and (28) by iteration as described in Kantorovich
and Krylov. Performing this calculation we obtain after iterating

1%k 2> LGS e

2 [») '
b = 1 - —2(E+ =) + [—2 = +-2)] + - -f'l'
° wyy { Yy (ko "2) [ Yy (ko Yz)] 2

G

2 Y Y
2E + " U+ -+ 0+ 0] (33)

1
Y k Y YoY
1 o 2 Y3Yg © 2 2'3

where M = %?. All coefficients in the expansion of A(I) and A(Z) could be
computed in terms of bo. Once_g(l) andqé(z) are known, then all field components
can be determined using standard relationships.

Only a finite number of modes are non-evanescent depending on the frequency
of the incident field. That is for nza2 < kg < (n + 1)2a2 the first n scattered
modes exist far from the screen while the higher scattered modes decay exponen~-
tially with the distance from the screen. For n = 0 we obtain no depolarization

for this scattered mode and it is a TEM mode (Ey,Hx). The remaining even

numbered scattered modes are TE(Ey,Hx,Hz) whereas the odd numbered scattered
a

12
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modes are TM(EX’EZ’Hy)' We note that the scattering structure is infinite and
consequently we can not discuss the behavior of the fields in the far zone;
however, an interesting aspect of the problem is that solutions can exist whicﬁ
have scattered fields directed along the propagation direction which do not
decrease with increasing distance from the scatterer.

When ﬁ?-> 1, then only the zero-order TEM scattered mode is non-evangscent.

°
The magnitude of the reflection coefficient for this mode is

|R] = m{ﬁol (34)

It is interesting to note that IR] can be relatively large for g~small curvature
of tﬂe wires &hich are modeled by the conducting screen. If the wires were
straight, then |R| would be zero. By introducing slight curvature so that the
ratio of the amplitude of the sinusoidally bent wire is 15 percent of the period,
we can use all of the terms through O(Ms) in (33) and (34) to show that

|R| = .42 £ .04. 1In order to obtain this value of |R| we chose (f— ) = 1.405,

We could not choose iL closer to the resonant value unity because Zf the validity
conditions (31) and (32) imposed by our perturbation method of solution. This

calculation shows that an otherwise transparent screen can become significantly

reflecting by introducing élight periodic curvature to the conducting direction.

13



2.

3.

References
V. H. Rumsey, "A new way of solving Maxwell's equations," I.R.E. Trans.
Antennas Propagation, 9, p. 461, 1961.

R. E. Collin, Field Theory of Guided Waves, New York: McGraw-Hill,

p. 402, 1960.

L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher

Analysis, New York: John Wiley and Soms, p. 26, 1964,

14



