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Abstract

In this work the scattering of a plane electromagnetic field from an

infinite unidirectional conducting screen is considered. The screen models

an array of sinusoidal wires whose spacing is much less than the wavelength

of the incident field. First the boundary conditions imposed are shown to

give a unique solution. Secondly the scattered field is calculated and it

is shown to consist of TEM, TE and TM waves. It is found that an otherwise

transparent screen can become significantly reflecting by i.nesoducingslight

periodic curvature to the conducting direction.
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I. Introduction

It is sometimesthe case that one is interestedin scatteringfrom a

structurewhich is an array of elements that are closely spaced compared to

the wavelengthof the incidentelectromagneticfield. When this is the case,

the problem is often simplifiedby consideringthe structure to have a con-

tinuoussurface on which boundary conditionsare satisfiedwhich are physically

suggestedby the actual array corifiguration.We shall refer to

as a unidirectionalconductingscreen. In this work we examine

solutionto the mathematicalproblem is unique and we show that

such a surface

whether the

it is. we

then considerscatteringby an infiniteplane unidirectionalconductingscreen

in which the conductingdirection is sinusoidal. Many problems concerning

unidirectionalconductingscreens have consideredthe case where the conducting

directionwas along parallel straight lines. For such a screen,field components

alone introducea convenientnumber O* unknown scalars for the problem to be

readily formulated. When the conductingdirectionhas some curvature the

problem is not as easily formula~ed. Rumsey [1] has consideredthe introduction

of potentialsfor a certain class of problems involvingunidirectionalcon-

ducting structure:;,but

boundary conditionsfor

that formulationrequirl:sa certain symmetry in the

the ~ and ~ fields. This symmetry is absent for the

scatteringproblem due to the presence of the incident field, In this work we

introducethe appropriatenumber of scalars by using certain componentsof the

vector potential~. We expand these componentsof & in a Fourier series with

unknown coefficients.

infinitematrix wilich

that the matrix has a

The applicationof boundary conditionsleads to an

must be inverted to find these coefficients. We prove

unique inverse and then obtain approximatesolutionsusing

an iterativeprocedure that is known to converge.

w
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11. UniquenessProof
e

%4’

Consider the case where the conductingscreen forms a closed surface S

which bounds a source free VOIUme VI. The remainingpart of space contains

a source J and is des%na~ed as vz~ We denote the fields in region 1 as

El and 111and the co~~tutive Parametersas El, VI and al’ ‘imilar‘otation

is used for region 2. We now use Poynting’stheoremand integrateover

volumes 1 and 2 to obtain

‘2

and

(la)

(lb)J
.

x H*)dS =n c (131 _l
\

(iLwJgJ2 - iL+112-aJ@2)dv
s ‘1

. A
where n is the outwardnormal to S, aR is a unit vector in the radial direction

in a convenientlylocated coordinatesystem,and Sw is the surface of a sphere

with its ceraterat the origin af our coordinatesystem and with its radius

eendingto infinity. The boundary conditionsthat we considerare such that

on s,

(2)

that is the energy flux is continuousthroughS. We also assume that~2 and
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Ii2decay exponentiallydue to U2. These requirementslead to a class of

boundary conditionseach set of which will be shown to guaranteeunique

solution. The choice of a particularset is dictatedby the physics of

the problem. When this is the case

use the fact that the integralover

61

Let us now assume

equationsand the

then we can combine (la) and (lb) and

Sw is zero to obtain

+212 -g2 ‘ J*)dV = O (3)

that we have another set of fields that satisfyMaxwell’s

same boundary conditionsas El, &l and ~2, ~2 and

we denote these fields as ~i$ kliand ~~, llj. We form the differencefields

%D ‘% ‘~i’ %D ‘%
-H’ E–1$ -2D = ~2 - ‘; andH2D = ‘2 -% and assume ‘hat

the boundary conditionsthat aUowed (2) to be satisfiedalso allow (2) to

be satisfied’for the differencefield. This point will later be explicitly

examined. When these conditionsare satisfied,then we can arrive at the

- ‘uC2\~2D12- u2]~2D~2)dV= O

in the same manner that (3) was obtained. we note that the term containing

(4)
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J is absent. This is the case because the primed and unprimedsolutions

satisfy the same inhomogeneousMaxwellts equationsso the differencesolution

satisfiesMaxwellfs equationswith the source terms canceling each other..

Equatingthe real part of (4) equal to zero we obtain

.,

.

From (5)we concludethe El = g; and ~2 = g;. Setting the imaginary

(4) equalto zero and using che results just establishedwe conclude

We will

problemallow

of vectors to
A

(5)

now show that the boundary conditionsused for the screen

(2) tobe satisfied. Considera right handed orthonormalset
A.*

be defined at every point on the screen (t, n, s). The unit
.

vector t is chosen along the directionof conductionon the screen,n is the
6*A .

outwardnormal to the surface,while s = t x n arids is the directionalong

which no conductiontakes place.

we impose the followingboundary

Conditions (6a) and (6b)

like a perfect conductor

.
t“

.
s*

A

t“

For the unidirectionalconductingscreen

conditions

.

%=t”32=0

A

%

=s*E
–2

are imposedbecause we assume that the screen acts
. A

in the t directionand is transparentin the s

6

(6a)

(6b)

(6c)
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direction. Condition (6c) is imposedbecause the induced

on the sheet is n x (112- 111)and we want this current to

; direction. These boundary conditionshave been applied

problems. See for example Collin [2]. In general

electric current

flow only in the

in previous

“ g) (7)

Using (7) we see that if (6) is satisfied,then (2) is satisfied. We also

observe that (6) is composedof linear relationshipsso that if ~;3 Ii;and

~~, lJ~satisfied (6), the differencebetween t;e primed and unprimed solutions

would also satisfy (6), Because the differencesolution satisfied (6) it

would also satisfy (2) (for the differencefield) and the precedinguniqueness

proof is applicable. We conclude thzt the solution to the uniconducting

screen problem which satisfies (6) and appropriateconditionsat infinity is

unique.

111. Solution of the

of

be

in

of

The configurationthat our screen

ScatteringProblem

models is an infiniteplanar array

sinusoidallyshaped wires. The spacing between the wires is assumed to

much smaller than the wavelength of the incident field. The screen lies

the z = O plane and the equation for the wire passing through the origin

our coordinate

wire and lying in

system is y = m sin ax. Vectors tangentand normal to the

the plane of the screen are.given by

A A

t_=ax+macosaxa
Y

(8)
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and

* *
~=-m~cosaxa +a

x Y
(9)

Notice that& and shave not been normalized. We will consideran incident

plane wave of the form

.*

The source region, z < 0, is region 2 and region 1 will correspondto z >

(1),E(l)The scatteredfield in region 1 is denoted as g and the scattered

field in region 2 is denoted as ~ (2), J2) ● The boundary conditionsthat

be satisfiedon the screen are

0.

will

(1)
l?rorrisymmetryconsiderationsone can deducet_ * ~ _ ● ~ (2)aE-t and

consequentlyfrom (14) one can conclude~ ● H
(1)

= t . H(2) = 0, We would

like to solve for ~
(l),& and E(2), ~(2) – - -

by introducingas few unknown

scalarsas possible. The introductionof potentialsfor problems involving

Uni-directi.onalconductingstructureswas consideredby Rurrsey [Il. His

(11)

(12)

(L3)

(14)

formulationconcernedpropagationand radiation,but not scattering. The two

former classes of problems containeda symmetryof boundary conditionsfor the u
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e ‘ ~ and Z fields

the scattering

that is destroyedby the presence of an incident field in

problem; thus his method is not directlyapplicableto our

problem. Our formulationis based on the introductionof the electricvector

(1)
and A(2)potentials ~ _ for the scatteredfield. It iS argued that these

potentialshave no z components,because their source, the differencein

~ x H across the screen has no z component. The differencein ~ x g across

the screen is zero due to our boundary conditionsso no magnetic vector

potentialsneed be considered.“ That is

Jl)
= A(l)(x,z): +A;l)(x,z):

x x Y
(15)

‘2)(x,z)ay
.

~(’) ~ A(2)(x,z):X+AY
x

The componentsof the ~’s

screen. We now introduce

have no y dependencedue

the followingexpansions

A(l)
x

= ~ aeina~ ‘YnZe
nn=.-co

A(l)= ~ bneinaxeiynz
Y n=.aa

A(2) = ~ ~ einaxe-iynz
x n

n=.-m

(16)

to the y symmetry of the

for these components

(17) .

(18)

(19)

~(’)
Y

= ~ bneinaxe-iynz (20)
n=-m

and in order to satisfyMaxwell’s equationsyn = o - (na)2and the square&2

%#’
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root is defined to give outward propagatingor evanescentwaves. The expansion -d ~~

coefficientsin”(17) and (19) as well as in (18) and (20) are the same because

of the symmetryof the scatteredfield. Using the standardrelationships,,

betweenII,land ~ that is

E = iuA
Y Y

3AZ
H ..&—

.x * 3Z

the boundary conditions (11) and (14) lead to

ynbn -’~ (yn-lan_l+an+lYn+l) = o “

(21)

(22)

(23)

(24)

(25)

(26)

1

I

Boundaryconditions (12) and (13) are automaticallysatisfiedbecause of the

relationshipof Lhe expansioncoefficientsfor &(1) and ~(z) exhibitedin

(17 - 20). We can examine the infinitesubset of equations (25) and (26)

which correspondsto a2n and b2n+l for all n. This-set of equationscan be

viewed as an infinitehomogeneousmatrix equation. This same infinitematrix

will later be shown to have a unique inverse. From this fac~ wc conclude that

“*
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0 the homogeneousmatrix equation can have only the null solutionand a2n and

b2n+l
are zero for all n. We now make use of the symmetryof the systern’to

., derive further relationshipsbetween the expansion’coefficients.From consider- ‘

ing the direction that currentwould be induced on the “wires” of our screen

we can see that on the screen Ax(x) = -Ax(n/a - x) and AY(x) = Ay(~/a - x).

Using these equalitieswe can easily see that an = (-1)
n+la

-n and bn = (-l)%-a.

These conclusionscould be arrived at by using

We now return to (25) and (26) rewritten

*

matrix arguments.

in the followingmanner

9
lii k’

‘~ (b2n+b2n+~) ‘**62n+l 1a2n+l = - 2
n>O (27)

Y211+1 y2n+l
9

‘- (y2n-1a2n-1
b2n 2YZn + ‘2n+la2n+l)

n>O (28)

● This set of equationshas the general form of an infinitematrix equation

which can always be rewrittenas

,

‘i= ~ ‘~.jxj+f~
(29)

j=o
j+i

A sufficientcondition that (29)has a unique solution is

m

I lcijl<l-O, e>O, alli (30)
-j=o
j+i

When condition (30) is satisfied the matrix associatedwith (29) is said to

be fully regular. A fully regularmatrix equation can be solved by iteration
.,

with the guaranteeof convergenceto a unique solution. A detaileddiscussion
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of fully regularmatrices can be found in the book by Kantorovichand Krylov .
d

[3~. Condition (30)when applied to

*

(27)and (28) leads to

1 -e n>O

‘fXn-l + ‘h+~ ) < I - 8
y- —

‘2n ‘2n
n20

(31)

(32}

As long as we are not operatingat a resonantfrequency,yn = O, then an ma

exists such that both (31) and (32) are satisfiedfor all n. When this is the

case then we can solve (27) and (28)by iterationas describedin Kantorovich

and Krylov. Performingthis calculationwe obtain af~er iterating

,,

i2M2ko
~2k2 ~2k2 M4k4

my, ~’
bo=— -Q(f+~)+[ Q(#+%2++-

Y1 o Y2 Y1 o Y2 Y~Y2Y3

ma
where M = —. All coefficientsin the expansionof A

(1)
2

and

computedin terms of bo. Once A(l) and A(2) are known, then— —

(33)0(?48))

J2) could be

all field components

can be determinedusing standardrelationships.

Only a finite number of modes are non-evanescentdependingon the frequency

of the incidentfield.
mat is for n2a2

< k: ~ (n + l)2a2 the first n scattered

modes exist far from the screenwhile the higher scatteredmodes decay exponen-

tiallywith the distancefrom the screen. For n = O we obtain no depolarization

for this scatteredmode and it is a TEM mode (EY,HX). The remainingeven

numbered scattered modes are TE(EY,HX,HZ)whereas the odd numberedscattered

12
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modes are TM(EX,EZ,HY).

consequentlywe can not

however, an interesting

We note that the scatteringstructureis infiniteand

discuss the behaviorof the fields in the far zone;

aspect of the problem is that solutionscan exist which

have scatteredfields directedalong the propagationdirectionwhich do not

decreasewith increasingdistance from the scatterer.

When f- > 1, then only the zero-orderTEM scatteredmode is non-evanescent.

The magnitud~of the reflectioncoefficientfor this mode is

(34)

It is interestingto note that [RI can be relativelylarge for asmall curvature

of the wires which are modeled by the conductingscreen. If the wires were

straight,then IR] would be zero. By introducingslight curvatureso that the

ratio of the amplitudeof the sinusoidallybent wire is 15 percent of the period,

we can use all of the terms through0(M6) in (33) and (34) to show that

IRl = .42 f .04. In order to obtain this value of IRI we chose (& ) = 1.405.
0

We could not choose~ closer to the resonantvalue unity because of the validity
o

conditions(31) and (32) imposedby our perturbationmethod of solution. This

calculationshows that an otherwisetransparentscreen can become significantly

reflectingby introducingslight periodic curvatureto the conductingdirection.
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