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The charge distribution i.scalculated on a grid of rods replacing one

of the conducting plates in a parallel-plate transmission line. Two cases

are investigated, namely, (1) a transmission” line made up of a “grid’of rods

above one plate and (2) a transmission line made up of a grid of rods between

two plates. In each case numerical calculations are carried out for (1) the

maximum value of the normal component of the electric field at the surface

of each rod and (2) the effective electric height of the transmission line,

i.e., the height of a parallel-plate line having the same characteristic
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Abstract

The charge distribution is calculated on a grid of rods replacing one

of the conducting plates in a parallel-plate transmission line. Two cases

are investigated, namely, (1) a transmission line made up of a grid of rods

above one plate and (2) a transmission line made up of a grid of.rods between

two plates. In each case numerical calculations are carried out for (1) t:he

maximum value of the normal component of the electric field at the surface ““-

of each rod and (2) the effective electric height of the transmission line;,

i.e., the height of a parallel-plate line having the same characteristic

impedance as the transmission line considered. The special case where the

grid of rods and the plate (or plates) are very far apart is treated in an

appendix.
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1. Introduction

A common type of EMP simulator is the parallel

In certain types of this transmission line one of the

a grid of rods parallel to the direction in which the

plate transmission line.

plates is replaced by

electromagnetic pulse

propagates. Then the question naturally arises concerning the field in the

vicinity of the rods. As the radius of the rods gets smaller the normal

component of the electric field at the surface of the rods becomes larger.

Moreover, by replacing one of the plates in a parallel-plate transmission

line by a grid of rods we increase the effective electric height of the trans-

mission line. The purpose of this note is to work out in detail the maximum

electric field at the surface of each rod and the effective electric height

for two different situations: (1) a grid of rods above

a grid of rods between two plates.

The effect of replacing one conducting plate with

been considered in reference 1 where the rods are taken

one plate and (2)

a grid of rods has

to be thin wires.

Hence, the problems treated in reference 1 are just some limiting cases of

this note.
@.-

The model chosen for study in section 11 is that of an infinite row of

perfectly conducting cylinders above a perfectly conducting plane (see figure 1). =

This structure can sustain a TEM wave propagating parallel to the direction

of the axis of the cylinders. It is well known that the problem of determining

the transverse electric and magnetic fields of a TEM wave can be reduced to a

two-dimensional electrostatic problem (see figure 3). We wish to calculate

the fields in the neighborhood of each cylinder. This is done by first

calculating the surface charge density on each cylinder. The normal component

of the electric field at the surface of each cylinder is proportional to the

charge density. Furthermore, the tangential magnetic field and hence the

longitudinal surface current for the TEM wave is proportional to this surface

charge density. With knowledge of the charge density the fields anywhere can

be calculated by computing a simple sum, Moreover, the admittance of the

transmission line and hence the effective electric height of the line can be

easily determined from the charge density.

In section 111, we solve the problem of an infinite row of perfectly

conducting cylinders between two perfectly conducting planes (see figure 2).
-9<-



Assume that down this structure a TEM wave is propagating in which the electric

field has equal magnitude but opposite direction on the two different sides

of the grid. Again, we will solve this problem by reducing it to a two-

dimensional electrostatic problem (see figure 4).

The numerical methods that are used to solve the two-dimensional

electrostatic problems treated in sections II and III are presented in section

IV. Graphs of the maximum value of the normal component of the electric -

field at the surface of each cylinder and the effective electric height of

the lines are also presented in section IV.

In appendix A we derive

to a lattice of line charges.

perfectly conducting plane or

in appendix B.

some different expressions of the potential dlle

The special case when the grid of rods and the

planes are very far apart–is treated separately

. .

3
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In this

the waveguide

II. A Grid of Rods Above One Plate

section we will determine the electric field of a TEM wave on

shown in figure 1 by solving the following electrostatic problem.

Consider an infinite row of parallel perfectly conducting cylinders above a

perfectly conducting plane as shown in figure 3. The radius of each cylinder

is a and the spacing between the centers of two neighboring cylinders is 2d.

The centers of all cylinders lie in a common plane parallel to and at the

distance h from the perfectly conducting plane (see figure 3). Moreover,

suppose that the potential on each cylinder is V and that the potential on
o

the perfectly conducting plane is O.

In the region y > - h, the influence on the field due to the perfectly

conducting plane y = - h can be taken into account by replacing it by an

infinite row of image cylinders all having the potential - V. (see figure 3).
‘k

From the symmetry of the problem it follows that we can make the following

Fourier series expansion of the charge distribution, Ok(Ok), on the cylinder

with center at x = 2kd (k= ... -2, -1, 0, 1, 2, ,..) and y= O

‘k(ek) = Oo(ek) =~scosnOk .
n

n=(j
(1)

The charge distribution, a’(k @k), on the image cylinder with center at x = 2kd

and y = - 2h is then given by

co

al’($k) = - ao(m - (jlk)= - ~ (-l)ns cos n$k .
nn=O

(2)

In the region y > - h but outside the primary cylinders we have the

potential

as

$e(x,Y) = fe(X,y) + ~ ~ &--~(~ncos nflk- (~)n cos n~k] (3)
n=l k=-~ o

where ‘k! Pky Ok and $k are defined in figure 3. The function fe(x,y) is

the potential due to the net charges on the primary and image cylinders, i.e.,

the potential due to two sets of line charges. The potential from these line

charges may be accounted for by solving with the aid of conformal mapping the

*
Thus, the original problem is transformed to the electrostatic problem of two

parallel grids of rods having the potentials V. and -Vo, respectively.

4
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electrostatic problem of one set of line charges above a perfectly conducting

plane. Thus,

as
fe(x,y) = $ ln{

cosh[~(y+2h)/d] - cos(~x/d)
cosh(ny/d) - cos(nx/d) }

o

Inside one of the primary cylinders, e.g. the O-th cylinder, we have the

potential

as

$JX,Y) = fi(x,y) +n~l J ~E(~)n cos nek- (~)ncos n~k]
=.m o k

where

as
fi(x,y) = $ ln{

cosh[~(y+2h)/d] - cos(?rx/d) . X2+y2}

o
cosh(ny/d) - cos(nx/d)

2

(4)

and the prime on the summation indicates khe ommision of the k = O term.

Within the perfectly conducting cylinders the potential is constant.

This condition can be ensured by putting @i(O,O) = V. and all the partial

y-derivatives of $i(x,y) equal to zero at the origin. As mentioned in ref’-—

erence 2, another procedure leading to the same condition on s~ is to expand

@e(X,Y) on the surface of one primary cylinder in a Fourier cosine series

and to equate all Fourier constants in this expansion to zero except the first.

Both methods lead to the following system of equations

Cv 2
00

- ‘~ ln{~[cosh(~)
a

- 1]}
na



(-l)L(l-l)! -f.y [(-Uk2(W!
(-l)L2@-l)! Cos L6k

o = so{- Cos kT/2
1

0

(2h)L k=l (21cd)1 ‘- !?,
bk

+f >{> ~n,- (-l)L(L+n-l)!(-a)n

n=1 2(n-l)!(2h)L+n

+i[
(-l)L(k+n-l) !an cos[(k+n)m/2]

k=1 (n-l)t(2kd)R+n

(-l)L(L+n-l)!(-a)n cos~(~+n)$kl

11 , !?,21
(n-l)! b~+~

where

Bk= tan-l(kd/h)

and

bk=2- .

This system of equations can be simplified to

~ Nlnxn = 610 .
n= ()

Here,

x
n

= nahsn/(dsoVo) ,

N
1

=—aT
00 2

‘1 ln{2a2[cosh(2n/a) - 1]/(n262)\

N
on

= a/(nn)[An(a,6) - Cn(a,6) - ~ (-B/2)nl , n 2 1 ,

N
LO

= 4[(-l)kA@~) - C@,~) -; (-~/2)L] , L21,

(5b)

(6)
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(3 ()+~k+n-1

‘2n = J?n n [(-@ AL+n(a,N - CL+n(a, B)

a = d/h
-.

Cq(a,Ei)= @/2)q ~ Cos(%)
k=l (lta2k2)q’2

I
o, q odd

Aq(Q,@) =

(-l)q’2(;~/a)q~(2q) =; (-l)q/2~qBq,2(~/~)q/q: , q even

where <(x) is the Riemann zeta function and the Bn’s are the Bernoulli numbers,

After having solved the system of equations (6) the field outside the

primary cyliridersand above the perfectly conducting plane can be evaluated

from the gradient of equation (4).

A quantity of interest here is the admittance of..the transmission line

or, equivalently, the capacitance per unit cell, C, between the grid of

cylinders and the perfectly conducting plane. In this connection we introduce

the effective electric height, hl, of the transmission line, i.e., the height

of a parallel plate transmission line having the same admittance as the

transmission line considered in this section (see figure 5). The quantities C

and hl are given by

c = 2raso/V = 2dcoxo/h
o

(7)



and

‘1
= Vasod/(naso) = h/x. . (8)

The incremental effective electric height, Ah, of the structure is given by

Ah=hl-h=h(x;~-l) . (9)

For d << h and a <c d we can solve the system of equations (6) approximately

by perturbation methods and get

_ ~m-lh-l
X*WI ln(dm-la-~) .

Thus ,

Ah s d~‘1 ln(dn-la-l) (lo)

and this expression for Ah coincides with the expression given by equation (88)

in reference 1. The case when d >> h can be studied with che aid of the
(3)

solution of the electrostatic problem of two coupled cylinders . This study

leads to the following approximate expression

Ah M dm ~)/a~ - h .‘1 In[(h -t-h (11)

The normal component, En(Ok), of the electric field at the surface of

one of the cylinders is given by

En(6k) = s;loo(Ok) = # ~ s cos nOk .
0

n=l n
(12)

The relative field distribution, e(6k), (field enhancement factor) is defined as

the normal component of the electric field at each rod divided by the mean value

of the normal component of the electric field at the perfectly conducting plane.

Thus, we have

-1
e(fj) = doo(6k)/(raso) = d(maxo) ixn ,cos nO

n=O
(13)

8
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al and

: (-l)nx= max{e(8k)} = e(n) = d(naxo)-l n=O
‘1 ~ n

‘k

For d << h and a << d we have approximately

and this expression for el can be obtained by taking the proper limit of

equation (92) in reference 1. For d >> h we have

‘1
= dn-l (a -h+~)-l .

(14)

(15)

(16)

The quantities el and ~,

n = Ah/h ,

4) are graphed in figures 7-16 for a wide range of d/h and a/h.

(17)

9
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111. A Grid of Rods Between Two Plates

IrIthis seccion, we will determine the electric field of a TEM wave on

the waveguide shown in figure 2 by solving the following electrostatic

problem. Consider an infinite row of perfectly conducting cylinders between

two parallel perfectly conducting planes. The radius of each cylinder is a

and the spacing between the centers of two neighboring cylinders is 2d. The

centers of all cylinders lie in a common plane parallel to and at the distance

D/2 + y. from one of the perfectly conducting planes. Here D is the distance

between the two perfectly conducting planes and O s lyol < D/2 - a (see figure 4).

Moreover, suppose that the potential on each cylinder is V. and that the potential

on the two perfectly conducting planes is O.

By the method of images the potential between the two plates can be

determined from the two dimensional lattice shown in figure 4. From the

symmetry of the problem it follows that we can make the following Fourier

mk(Omk), on the cylinder withseries expansion of the charge distribution, o

center at x =2kd (k= .... -2, -1, 0, 1, 2, ..,) andy=mD -[1- (-I)m]y
o

(m= .... -2, -1, 0, 1, 2, ...).

1-
(3 (emk) = ~ s Cos Elmk , m even
o n=o n

(6)= (18)
‘mk mk

ao(’ri- emk) = - j (-l)ns Cos emk , m odd .
n

n=0

Here ao(60k) is the charge distribution on one of the primary cylinders, and

the angle 6mk is defined in figure 4. Following the procedure in section 11

the potential, $e(x,y), between the plates but outside the cylinders.and the

potential, $i(x,y), inside the primary cylinders are

$e(x,Y) =@%Y) +ni’~ z =mnfycos n6
mk= o m,k

as

@i(x,Y) = gi(x,y) + ~ —n=l 2E:n
(~)n cos ne

00

w as

+ n~l 2&l ~’ ‘mn(&)n Cos ‘emk
= o m,k mk

(19)

(20)

10
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0
where

1, m even

& =
mn 9

- (-l)n , m odd

the distance pmk is defined in figure 4 and the prime indicates omission of

thetermm=k= O in the summation where - m < m < ~ and - @ < k < ~. The

functions ge(x,y) and gi(x,y) are the potentials due to the net charges on

the cylinders and their respective expressions are derived in appendix A.

Using the fact that inside each cylinder the potential is constant and

hence all its derivatives are zero we arrive at the following system of equations

V. = gi(c)sco+n~121’S (+)ncosnf3
mn mk

o m,k mk

, (-l)m(L-l)! cos(M3mk)
o =

so 1
m,k bk

mk

where

b =
mk

d =
m

and

, Sm(l+n-l)!an cos[(~+n)~mk]

+1 }
m,k (n-1)lb%

~(mD -dm)2+4k2d2 ,

c1 - (-l)mlyo

tan-1[2kd/(mD - din)] , m+O

6 = (
mk

- ~ sgn(k) , m= o.

(21)

Suppose, here and after that y. = O, that is to say, the rods are situated

symmetrically with respect to the two plates. From the symmetry of the problem

o
11



it then follows that s = O for n odd. The original system
I-I

can then be reduced to

where

x
n

= naD/(4soVod)s2n

K = (4y/7r)Gn(2m-1~-1) - 2 ~ In tanh(ryk) ]
00

k=l

K
-1 -1

on
= y?T n Fn(Y,~) ,

K
?’20

= 2FK(y,~) ,

K =6Ln+
!ln (2’;?l)F ~+n(Y,&) ,

2q
FJYA) = & ~’

m,k

Making use of the

Y = d/D

c = a/D

(-l)m cos(2q13mk)
=

(m2+4y2k2)q

theory of elliptic functions we have

of equations (21) o

- e-ink/y
)

-2q
i2yk) .

(22)
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F1(Y, C) = - &2P(l;l,iy)

(23)

@@(l;l,iy)/(2q- 1)!1 , q> 2Fq(Y,&) = #qrcq/(2q -1)-P

where P(x;Q ,U ) is the Weierstrass elliptic function,
12

= 3(2q + 1)-~(q - 3)
-.1qf2cmcq-2 ‘

Cq
q24,

m=2

C2 = @20 , C3 = g3128

and

g.2,= &’2(uY) Y gs = g3(l,iY)

are the invariants of the Weierstrass elliptic function.

4P

The admittance, Y, of the transmission line for-the symmetric TEM wave

is determined by the capacitance, C, per unit cell between the grid of cyl:~nders

and the two perfectly conducting planes. The capacitance is given by

c = 27raso/Vo= 8dcoxo/D

In this connection, we define an effective height,

line, i.e., the height of a three-plate

Y (see figure 6). Equating (24) to the

per 2d, we have

. (24)

‘1’ of the transmission

transmission line having the admittance

capacitance of the three-plate line

‘1 = D/x.

Define A to be

.(25)

(26)

13
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For d ~< D and a

methods and get

.

,

<< d we can solve the system of equations (22) by perturbation ●

A M 2d~
-1

ln(dr-la-l) . (27)

This expression for A coincides with the expression given by equation (100)

in reference 1. For d >> h we can neglect the interaction between the primary

cylinders and get the approximate expression.

(28)

-1
where Cl is the capacitance between one cylinder and two parallel plates.

When D - 2a << D we can determine Cl approximately by s~udying the problem of

(3)
two coupled cylinders . This study leads to the following approximate

expression

A-dv ~)/2a]-~D .‘1 ln[(D + D

The normal component, En(9k), of the electric field at the surface of

one of the cylinders is given by

En(60k) = s% (60k) = S;l ; s#o’@60J “00
n=O

The relative field distribution, e(60k), (field enhancement factor) is

-1 0
e(60k) = 2dao(60k)/(naso) = 2d(maxo) ~ Xn cos(2n00k)

n.O

(29)

●

(30)

(31)

and define

max{e(eok)} = 2d(Taxo)e2=e
-l:xn= 2y(mgxo)-1 f Xn . (32)

ok n=0 n=O

For d << h and a << d we have approximately

(33)

●



and this expression for e2 can be obtained by taking the proper limit of

equation (104) in reference 1. For d >> h and D - 2a << D we have

(34)

The quantities e2 and 8,

6 = A/D ,

are graphed in figures 17-25 for a wide range of d/D and a/D.

15
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Iv. Numerical Results

The systems of equations (6) and (22) were solved numerically by keeping

only ten equations and ten unknowns. Then, twenty unknowns and twenty equations

were taken and solved numerically. The difference in the charge density

computed from these two solutions was so small for all cases studied here that

the numerical data from the twenty-by-twenty solution can be considered

accurate to four digits.

Figures 7-10 show the normalized incremental effective height, n, of the

transmission line treated in section 11. In figure 7 we have also for

@ = .05, .03, .01 and 6 < a < .10 graphed the approximative expression for rI

that can be obtained from equation (10). For P $ ,004 and .01 < a < .1 the

difference between the expressions (9) and (10) for n is negligible. Figure

11 shows the limiting value of Ah/d as h tends to infinity. The broken curve

represents the approximate value of Ah/d given by (10).

Figures 12-15 show the function el defined by equation (14) in section IT.

While figures 12-14 is a graph of el as a function of a with 6 as a parameter

figure 15 is a graph of el as a function of 6 with u as a parameter. In

figure 12 we have also graphed the approximate expression (15) for el. For

fJ< 10-3
-2

and a > 10 the difference between (14) and (15) is negligible. In

figure 14 we have added a graph of the approximate expression (16) for el.

For 13< .2 and a > 2 the difference between (14) and (16) is negligible.

Figure 16 shows the limiting value of el as h tends to infinity. The broken

curve represents the approximate value of el given by (15).

Figures 17-19 show the normalized difference, 6, between the effective

electric height and the actual height of the transmission line treated in

section 111. In figure 17 we have for E = .06, .04, .02 and E s Y ~ .11

included a graph of the approximate expressions for d that can be obtained

from equation (27). For # < .01 and .01 < y < .1 the difference between (26)

and (27) is negligible. Figure 20 shows the limiting value of A/d as D

tends

given

field

to infinity. The broken curve represents the approximate value of e2

by (27).

Figures 21-24 show the normalized value, e2, of the maximum electric

at the surface of the rods. In figure 18 we have also graphed the



.

@ -3
approximate expression (33) for e2. Fort <2*10

-2
and y > 10 the

difference between (32) and (33) is negligible. Figure 25 shows the limiting

value of e2 as D tends to infinity. The broken curve represents the approximate

value of e2 given by (33).

17
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o
Figure 1. Cross-section of transmission line consisting of one plate and

a grid of rods.

@- -0 a

D/2

D o 0
Figure 2, Cross-section of transmission line consisting of two plates and

a grid of rods.
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Figure 3. Two-dimensional electrostatic problem treated in section TI.
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Figure 4. Two-dimensional electrostatic problem treated in section 111.
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Figure 5. Effective electric height of transmission line treated
in section II.
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Figure 6, Effective electric height of transmission line treated
in section 111.
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Figure 17. Effective electric height of transmission line treated in section 111.
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Figure 18. Effective electric height of transmission line treated in section III.
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Appendix A

a Lattice of–Cylinders With
Charge Distribution

In this appendix we will derive some apparently different representations

for the functions ge(x,y) and gi(x,y), defined by equations (19) and (20) in

section 111. Suppose the charge distribution, ao(60k), on each cylinder

between the plates is constant so that

Oo(eok) = so = const. , 0 < 9ok s 2Tr . (Al)

With z = x + iy and making use of the conformal

arrive at the following expressions for ge(x,y)

mappying w = exp(nz/D) we

and g.(x,y)
J.

Tr(z - 2kd)/D] , (A2)

gi(x,y) = asoc~l lnlz/al - asos~l ~ In tanh[O.5 T(z - 2kd)/D] (A3)
k=-~

and

gi(o$o) = asos~l ln(2Da-1~-1) - 2asoc~1 ~ In tanh[~kd/D] . (A4)
k=1

Introducing the conformal mapping w = exp(inz/d) and making use of the

method of images we get

@GY) =

asos~l f In (1 - w-lv-4k+2) (1 - wv-4k+2) (1 - w-lv-4k)-1 (~ - ~-4k+4)-1
k=1

41
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gi(x,y) =

aso.;l y Ill (1 - i?-lv-4k+2)(1 - wv-4k+2)(1 - w-47-4k)-1(1- wv-4k+4)-1
k=1

(A6)

where v = exp(mD/2d). Moreover, we have

‘11nD(4d)-1gi(o$o) = a~oso + In(dT-La-l) - ~ (-l)k ln(l - e-r~’d)] . (A7)
k=l

The two expressions, (A4) and (A7), fo~ gi(O,O), although seemingly

different, are identical as can be seen from the analysis below.

Consider the function f(y) defined by

f(y) = ~ In tanh(myk)
k=1

f’(y) = ~ 2nk/sinh(2myk) ,
k=1

(A8)

o
(A9)

Making use of the Poisson summation formula we get

and

f(y) = -+ lny - Tr(8y)
-1 m

+ ~ (-l)k ln(l - emk’y) + C (All)
k=1

where C is a constant of integration. Putting y = 1 in equations (A8) and

(All) and identifying the two expressions far f(1) thus derived we get

c=~/8- j (-l)k InIl +“(-l)ke-mk~ , (A12)
k= 1

From the theory of theta functions it follows that (see reference 4 chap. XXI)

o)
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and

m

~ (-l)k ln[l + (-l)ke-=k] = ~ in 2 + T/8
k=1

C=~ln2 .

(A13)

(A14)

Thus ,

~ In tanh(nyk) = ~ ln(2/y) -1 m
- n(8y)

k=1
+ kzl (-l)k ln(l - ~-nk/Y) (A15)

=

and it is easy to see that the two

identical.

expressions (A4) and (A7) for gi(O,O) are

..-
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Appendix B

Some Special Cases

.

.

For pedagogical reasons we will here consider three special cases all of

which can be obtained by taking proper combinations of limits of the problems

treated in sections 11 and 111. In case 1 we consider a grid of rods supporting

a uniform field on one side of the rods. This case can be obtained by letting

h tend to infinity in the problem treated in section II. In case 2 we consider

a grid of r~d~ supporting a uniform field of equal magnitude but opposite

direction on the two sides of the grid. This case can be obtained by letting

D tend to infinity in the problem treated in section 111. In case 3 we consider

a grid of rods supporting a uniform field of equal magnitude and same direction

on the two sides sides of the rods. This case can be obtained by superposing

the results of case 1 and 2.

From the symmetry of the problem it follows that we can make the following

Fourier series expansion of the charge distribution, o(Ok), on the cylinder

with center at x = 2kd, (... -2, -1, 0, 1, 2, . ..) andy=O

CQ

5(0k) = ~ sn cos ne
k“

n=O

Outside the cylinders we have the potential

$ep(x,y) =hep(x,y) +n~l k~ ~ (~)ncos nOk
= =-m o

0
(Bl)

(B2)

where pk and 6k are defined in figure 26 and p = 1, 2 and 3 denotes case 1,

2 and 3, respectively. In case 1 and 2 the function hep(x,y) is the potential

due to the net charges on the cylinders having the asymptotic value hp(x,y),

P = 1 and 2, where

[

dhl ‘1 ‘ y < 0
—.
dy

(B3)

o, y>o

and

dhz
—= - E2 sgn(Y)
dy
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as Iyl + ~. With Z = x + iy and introducing the conformal mappings w = exp(inz/d)

and w = sin(mz/2d) in case 1 and 2 respectively we arrive at–the followin~~

expressions

hel(x,y) = - dEl(2n)-1 ln[l + e-2ny’d

and

he2(x,y) = - dE2n‘1 ln[sin2(~x/2d)cosh2(~y/2d)

The function he3 (x,y) represents a homogeneous

he3(x,y) = - E3y

- 2e-”y/d cos(fix/d)] . (B5)

+ cos2(nx/2d)sinh2(fiy/2d)]. (B6)

incident field,

. (B7)

Inside one of the cylinders, e.g. the O-th cylinder, we have the potential

w

3 (>)n cos no
+ n~l2nz o’ p= 1,2,3

= o
(B8)

where

hil(x,y) = -

hi2(x,y) = -

-t

hi3(x,y) = -

dEl(2~)-1 ln{[l + e
-2~y/d _ ~e-~y/d

cos(mx/d)]a2/(x2 + y2)} ,

dE2~
-1

ln{[sin2(mx/2d)cosh2(~y/2d)

cos2(~x/2d)sinh2(ny/2d)]a2/ (X2 + y2)} ,

E3y

and the prime on the summation indicates omission of the k = O term.
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putting the potential on each cylinder equal to a constant (Vp) and

using the method described on page 5 in section II we arrive at the system

of equations

hep(O,O) + ~ Cos =
~ %Q(*)n 2

v=
P n=l k=l ‘CC)

(B9)

where

!?
.!

~ (X,y) ,h(L)(X,y) = (&)! #- !2>1.
ep

,

We have,trivially,

●
(B1O)

and

hep(O,O) = pdEpm
-1

ln(pd/am) , p = 1,2 . (Bll)

From the definition of the Bernoulli numbers it follows that for p = 1,2 we

have

h(l)(o,o) = 0.5 aEp61p
ep

and

[

o, Loddand L>3

h(k)(O,O) =
ep

paEp(~a/d) ‘-1(-1)%’2Bk,2/Q! , k even and ~ ~ 2

(B12)

(BL3)

9
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From the above it follows that

s o, n odd
n2 =

(B14)

s = o, n even .
n3

Moreover, putting El = E2 = E3 the solutions s of equation (B9) are linearly
np

dependent,

s = - Zsnl ,
n3 ‘n2

(B15)

—

Notice also that equation (B9) with p = 1 can be obtained as the limit of

equation (6) in section II as h tends to infinity and that equation (B9) with

p = 2 can be obtained as the appropriate limit of equation (22) in section III

as D tends to infinity.

Fory+- m we have the potential

$ep(%Y) = Epy sgn(2.5 - p) + ma2(4dso)
-1

‘lp

i-E6 2d~‘1 in 2+ O(y-l) , p = 1,2,3 . (B16)
p 2p

The effective electric position of the grid as defined in reference 1 page 30,

is given by

=AP=[V - E d 2dn
-1

Y ln2-
P p 2p

na,2(4dso)-ls ]/Ep sgn(2.5 - p)
lp Y P = 1,2,3 .

(B17)

From equations (B9) and (B17) it follows that

For d >> a we have

‘3
=-2AI - A2 . (B18)
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2d# ln(d~-la-l)

and

The field enhancement factor is

-1 -1
e (6 ) =cr (0 )S E
pk pkop

(B19)

and

‘P = max{lep(6k)l} = lC~lEjl f (-l)nsnp[ , p = 1,2,3 . (B21)

6k
ll=o

From equations (B9) and (B21) it follows that

‘3
=2el-e2 . (B22)

For d >> a we have

and

The quantities 6P,

-L-l+l
e -et = dr a
11

9

= Zdm-la-l
ewe’

22

‘3%e:=2 “

6P = Apd
-1

9

(B23)

(B24)

and ep are tabulated in table 1 and graphed in figures 27 and 28. The broken

curves in figure 27 correspond to the asymptotic values A; and A: given by

equation (B19]. The difference between Al and A; is negligible for O < a < d.
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0 The broken curves in figure 28 correspond to the asymptotic values e; and

e: given by equation (B23). The difference between el and e+ is negligible

for O~a<d,
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Table 1

a/d

,02
*04
,06
,08
.10
.12
.14
.16
.18
.20
.22
.24
.26
.28
.30
.32
.34
.36
.38
.40
.42
.44
.46
.48
.50
.52
.54
.56
,58
.60
.62
.64
.66
.68
.70
.72
.74
.76
.78
.80
.82
.84
.86
.88
.90
.92
● 94
.96
.98
1*O

‘1

.88054

.65896

.52833

.43456

.36070

.29921

.24606

.19884

.15601

.11651

.07957

.04465

.01132
-.02076
-.05183
-.08211
-.11178
-.14097
-.16980
-.19838
-.22679
-.25511
-.28340
-.31171
-.34011
-.36862
-.39729
-.42615
-.45524
-.48458
-.51420
-.54412
-.57436
-.60495
-.63590
-.66723
-.69896
-.73110
-.76366
-.79668
-.83015
-.86409
-.89852
-.93346
-.96893

-1.00493
-1.04149
-1,07863
-1.11546
-1,15280

1.76171
1.32044
1.06231

.87916

.73709
,62100
.52283
.43776
.36269
.29550
.23466
.17906
.12783
.08032
.03598

-.00562
-,04483
-.08195
-.11723
-.15089
-.18311
-.21406
-.24388
-.27269
-.30062
-.32776
-.35419
-.38002
-.40529
-.43010
-.45448
-.47850
-.50221
-.52565
-.54885
-.57186
-.59469
-.61737
-.63993
-.66237
-.68472
-.70698
-.72916
-.75126
-.77329
-.79526
-.81717
-.83902
-.86081
-.88253

‘3

-.00063
-.00252
-.00.565
-.01004
-.01569
-.02258
-.03071
-.04008
-.05067
-,06249
-.07552
-.08976
-.10519
-.12184
-.13963
-.15860
-.17873
-.19999
-.22237
-.24587
-.27047
-.29616
-.32292
-.35073
-.37959
-.40948
-.44039
-.47228
-.50519
-.53906
-.57392
-.60974
-.64651
-.68425
-.72295
-.76260
-.80323
-,84483
-.88739
-.93098
-.97558

-1.02120
-1.06788
-1.11566
-1.16457
-1.21460
-1.26581
-1.31824
-1.37011
-1.42307

el

16.9155
8.9577
6.3051
4.9788
4.1830
3.6524
3.2734
2,9891
2.7679
2.5909
2.4459
2.3251
2.2227
2.1349
2.0587
1.9918
1.9327
1.8800
1.8327
1.7900
1,7511
1.7156
1.6830
1.6528
1.6248
1.5987
1.5742
1.5512
1.5294
1.5088
1.4890
1.4701
1.4519
1’.4343
1.4171
1.4004
1.3839
1,3676
1.3515
1.3354
1.3193
1.3030
1.2866
1.2699
1.2528
1.2353
1.2172
1.1985
1.1792
1.1593

‘2

31.8519
15.9574
10.6731
8.0414
6.4707
5.4305
4.6934
4.1457
3.7242
3.3910
3.1221
2.9012
2,7174
2.5625
2,4307
2.3177
2.2201
2.1353
2.0611
1.9960
1.9385
1.8876
1.8424
1.8020
1.7658
1.7332
1.7038
1.6772
1,6530
1.6310
1.6107
1.5921
1.5748
1.5588
1.5439
1.5299
1.5168
1.5044
1.4926
1.4815
1.4708
1.4607
1.4510
1.4417
1.4328
1.4242
1.4161
1.4082
1.4006
1.3932

1.9791
1.9580
1.9371
1.9162
1.8953
1.8743
1.8534
1.8325
1.8116
1.7907
1.7679
1.7490
1.7280
1.7073
1.6866
1.6659
1.6453
1.6247
1.6043
1.5840
1.5637
1.5436
1.5236
1.5036
1.4839
1.4642
1.4446
1.4252
1.4058
1.3866
1.3673
1.3481
1.3290
1.3098
1.2903
1.2709
1.2510
1.2308
1.2104
1.1893
1.1678
1.1453
1.1222
1.0981
1.0728
1.0464
1.0183
.9888
,9578
.9254
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Figure 26. Cross–section of a grid of rods.
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