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Abstract

The charge distribution is calculated on a grid of rods replscing one
of the conducting plates in a parallel—plate transmission line. Two cases
are investigated, namely, (1) a transmission line made up of a grid of rods
above one plate and (2) a transmission line made up of a grid of rods between
_ztwo plates. In each case numerical calculations are carried out for (1) the
maximum value of the normal component of the electric field at the surface
of each rod and (2) the effective electric height of the transmission line,
i.e., the height of a parallel—plate 1line having the same characteristic
impedance as the transmission line considered. The special case where the

grid of rods and the plate (or platcs) arc_yery_far apart is treated in an

appendix.




Sensor and Simulation Notes
Note 118
October 1970

Effect of Replaéing One Conducting Plate of a Parallel~Plate
Transmission Line by a Grid of Rods

Lennart Marin
Northrop Corporate Laboratories
Pasadena, California

- Abstract

,g' : Thé charge distribution is calculated on a grid of rods replacing one
. of the conducting plates in a parallel-plate transmission line. Two cases

7 are investigated, namely, (1) a2 transmission line made up of a grid of rods
above one plate and (2) a transmission line made up of a grid of rods between
two plates. In each case numerical calculations are carried out for (1) the
maximum value‘of the normal component of the electric field at the surface
of each rod and (2) the effective electric height of the transmission line,
i.e., the height of a parallel-plate line having the same characteristic 7
impedance as the transmission line considered. The special case where the

grid of rods and the plate (or plates) are very far apart is treated in an

appendix.

.
f:



I. Introduction ﬁ .

A common type of EMP simulator d1is the parallel plate transmission line.
In certain types of this transmission line one of the plates is replaced by
a grid of rods parallel to the direction in which the electromagnetic pulse
prepagates. Then the question naturally arises concerning the field in the
vicinity of the rods. As the radius of the rods gets smaller the normal
component of the electric field at the surface of the rods becomes larger.
Moreover, by replacing one of the plates in a parallel-plate transmission
line by a grid of rods we increase the effective electric height of the trans-—
mission line. The purpose of this note is to work out in detail the maximum
electric field at the surface of each rod and the effective electric height
for two different situations: (1) a grid of rods above one plate and (2)

a grid of rods between two plates.

The effect of replacing one conducting plate with a grid of rods has
been considered in reference 1 where the rods are taken to be thin wires.
Hence, the problems treated in reference 1 are just some limiting cases of N
this note. *.

The model chosen for study in section II is that of an infinite row of :
perfectly conducting cylinders above a perfectly conducting plane (see figure 1).
This structure can sustain a TEM wave propagating parallel to the direction
of the axis of the cylinders. It is well known that the pfgblem of determining
the transverse electric and magnetic fields of a TEM wave can be reduced to a
two-dimensional electrostatic problem (see figure 3). We wish to calculate
the fields in the neighborhood of each cylinder. This is done by first
calculating the surface charge density on each cylinder. The normal component
of the electric field at the surface of each cylinder is proportional to the
charge density. Furthermore, the tangential magnetic field and hence the
longitudial surface current for the TEM wave is proportional to this surface
charge density. With knowledge of the charge density the fields anywhere can
be calculated by computing a simple sum. Moreover, the admittance of the
transmission line and hence the effective electric height of the line can be
easily determined from the charge density.

In section III, we solve the problem of an infinite row of perfectly -

conducting cylinders between two perfectly conducting planes (see figure 2). ,’



Assume that down this structure a TEM wave 1s propagating in which the electric
field has equal magnitude but opposite direction on the two different sides

of the grid. Again, we will solve this problem by reducing it to a two-
dimensional electrostatic problem (see figure 4).

The numerical methods that are used to solve the two-dimensional
electrostatic problems treated in sections II and III are presented in section
IV. Graphs of the maximum value of the normal component of the electric
field at the surface of each cylinder and the effective electric height of
the lines are also presented in section IV,

In appendix A we derive some different expressions of the potential due
to a lattice of line charges. The special case when the grid of rods and the

perfectly conducting plane or planes are very far apart is treated separately

in appendix B.



II. A Grid of Rods Above One Plate

In this section we will determine the electric field of a TEM wave on
the waveguide shown in figure 1 by solving the following electrostatic problem.
Consider an infinite row of parallel perfectly conducting cylinders above a
perfectly conducting plane as shown in figure 3. The radius of each cylinder
is a and the spacing between the centers of two neighboring cylinders is 2d.
The centers of all cylinders lie in a common plane parallel to and at the
distance h from the perfectly conducting plane (see figure 3). Moreover,
suppose that the potential on each cylinder is Vo and that the potential on
the perfectly conducting plane is 0.

In the region y > - h, the influence on the field due to the perfectly
conducting plane y = - h can be taken into account by replacing it by an
infinite row of image cylinders all having the potential - VO (see figure 3).
From the symmetry of the problem it follows that we can make the following
Fourier series expansion of the charge distribution, ok(ek), on the cylinder

with center at x = 2kd (k= ... -2, -1, 0, 1, 2, ...) and y = O

I t~18

ck(ek) = oo(ek) = s cos nf . (1)

k
n=g

The charge distribution, 0£(¢k)’ on the image cylinder with center at x = 2kd

and y = - 2h is then given by

t = - - = - KL
Gk(¢k) = Oo(ﬁ ¢k) Z (-1) s, cos n¢k . (2)
n=gQ
In the region y > - h but outside the primary cylinders we have the

potential

@ oo a

by = £y + ] ]

n=1 k=-w

s
n
2ne
[o]

-3 it ’
- (pk) cos né, | (3)

[e&”
(—) cos nf
rk k

where Typs Ops Sk and ¢k are defined in figure 3. The function fe(x,y) is
the potential due to the net charges on the primary and image cylinders, i.e.,
the potential due to two sets of line charges. The potential from these line

charges may be accounted for by solving with the aid of conformal mapping the

* .
Thus, the original problem is transformed to the electrostatic problem of two

parallel grids of rods having the potentials VO and -VO, respectively.
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electrostatic problem of one set of line charges above a perfectly conducting

plane. Thus,

as

_ o coshLm(y+2h)/d] - cos(mx/d)
fe(x,y) - 280 1n{ cosh(ry/d) - cos(nx/d) }

Inside one of the primary cylinders, e.g. the 0-th cylinder, we have the

potential
b, (x,y) = £,(x,y) + § %v “*n [CEL)n cos nf, - (:i)n cos né, |
i g FoY Zne T k 0 k
n=1 =—c0 k k
© as T
n oD -a.
+ ) T [(:;) cos nb_ - (E—) cos n¢o] (&)
n=1 o o}
where
N as, coshlm(y+2h)/d] - cos(mx/d) x2+y2
£, (x,y) = 1n{ . }
i 250 cosh(ny/d) - cos{wx/d) aZ

and the prime on the summation indicates the ommision of the k = 0 term.
Within the perfectly conducting cylinders the potentilal is constant.
This condition can be ensured by putting ¢i(0,0) = VO and all the partial

y~derivatives of ¢i(x,y) equal to zero at the origin. As mentioned in refs=
erence 2, another procedure leading to the same condition on S is to expand
¢e(x,y) on the surface of one primary cylinder in a Fourier cosine series

and to equate all Fourier constants in this expansion to zero except the first.

Both methods lead to the following system of equations

0 o o 2d 21h
= 1n{ 55 [coshc—%—) - 173}
T a
© 35 i~ .
n a 1 nn -3, 0 1 -a R
+ nzl Y {kzl [(EEE) cos - - CE;) cos ng, 1 - 5 G) 1 (52)



-1)* (2-1)! v . ! (—1)£2(2—1)! L8
0=s{- Ll_)___(z_l)-_*, ) [(—l) 2(2=1)! cos 4m/2 _ cos k] .

° (2m)* k=1 (2xa)* bi
b ] D" (24n-1) ! (-a)"
p=l 0 ggt ™ 2(n-1)! (2n)¥™

. § [(-1)R(z+n-1):an cos[ (+n)w /2]

k=1 (n-1)! (2kd)* ™
1% (Gn-1) ! (~a)® cos[ (1+n)4, ]
- ) o, =21 (5b)
{(n-1)! bk
where
-1
Sk = tan ~(kd/h)
and
b, = 2/h? + 12al

This system of equations can be simplified to
z Nlnxn = § . (6)

Here,

x = ﬁahsn/(dsovo) R
N, = é‘aﬂ_l 1n{2a2[cosh(2ﬂ/a) - 1]/(ﬂ282)}
1 !
N = a/(ﬂn)[An(a,B) - C (a,8) -5 (-8/2)"] , n=z1
N, = 40D (2,8) - C, (0,8) -~ (-3/D%] , 231
%0 g g 2 ’ ’




®

_ =1y~ . % . -
Ny =8, + 2( a )E( DA (0B - Cp (a,8)

1 g+
-5 (=8/2) ", 421, a1

8 = a/h

(co/2) COS(qu)
-8

C (a,B) —_—
q k=1 (l+a2K2)3/ 2

1

q- -
- (_B/z)q'*'l{g(q:rl): [:zq_l (coth WZ)] -1 + B l}

0o , q odd
A (@,8) =
0VEG B - 5 (DY (8/0%a! , g even

where 7(x) is the Riemann zeta function and the Bn's are the Bernoulli numbers.

After having solved the system of equations (6) the field outside the
primary cylinders and above the perfectly conducting plane can be evaluated
from the gradient of equation (4).

A quantity of interest here is the admittance of the transmission line
or, equivalently, the capacitance per unit cell, C, between the grid of
cylinders and the perfectly conducting plane. In this connection we introduce
the effective electric height, hl’ of the transmission line, i.e., the height
of a parallel plate transmission line having the same admittance as the
transmission line considered in this section (see figure 5). The quantities C

and h1 are given by

C = ZWaSO/VO = 2dsoxo/h (7)



and

hl = Vosod/(ﬁaso) = h/xo . (8)

The incremental effective electric height, Ah, of the structure is gilven by

_ -1
fh=h -h=hx -1 . (9)

For d << h and a << d we can solve the system of equations (6) approximately

by perturbation methods and get

x ~ 1 - ar- a7l 1nartah

Thus,

1

Ah =~ dﬂﬁl ln(dﬁ—la— ) (10)

and this expression for Ah coincides with the expression given by equation (88)

in reference 1. The case when d >> h can be studied with the aid of the

solution of the electrostatic problem of two coupled cylinders(3). This study
leads to the following approximate expression
Ah m dr T 1n[(h + vh? - az)/a:f -h . (11)

The normal component, En(ek), of the electric field at the surface of

one of the cylinders is given by

-1 -1 % |
En(ek) =€, oo(ek) = e n£1 s, ¢os nek . (12)
The relative field distribution, e(ek), (field enhancement factor) is defined as
the normal component of the electric field at each rod divided by the mean value
of the normal component of the electric f£ield at the perfectly conducting plane.

Thus, we have

e(ek) = doo(ek)/(waso) = d(naxo)—l nzo x_ cos nd

K (13)



"I' and

[>=3

e, = max{e(ek)} = e(r) = d(ﬂaxo)—l Zo <~1)nxn (14)
o) =
k

For d << h and a << d we have approximately

e ™ dﬂ—la—l (15)

and this expression for e, can be obtained by taking the proper limit of

equation (92) in reference 1. For d >> h we have

- /55 -1 D
e, ~ dn 1(a - h + h2 -,a2) . (16)

1

The quantities e, and n,

1

n=Ab/h (17)

are graphed in figures 7-16 for a wide range of d/h and a/h.



III. A Grid of Rods Between Two Plates

In this section, we will determine the electric field of a TEM wave on
the waveguide shown in figure 2 by solving the foilowing electrostatic
problem. Consider an infinite row of perfectly conducting cylinders between
two parallel perfectly conducting planes. The radius of each cylinder is a
and the spacing between the centers of two neighboring cylinders is 2d. The
centers of all cylinders lie in a common plane parallel to and at the distance

D/2 + Yo from one of the perfectly conducting planes. Here D is the distance

between the two perfectly conducting planes and 0 < yol < D/2 - a (see figure 4).
Moreover, suppose that the potential on each cylinder is VO and that the potential
on the two perfectly conducting planes is 0.

By the method of images the potential between the two plates can be
determined from the two dimensional lattice shown in figure 4. From the
symmetry of the problem it follows that we can make the following Fourier

series expansion of the charge distribution, Gmk(emk)’ on the cylinder with

center at x = 2kd (k = ..., -2, -1, 0, 1, 2, ...) and y = mD - [1 ~- (—1)m]yo
m= ...y =2, =1, 0, 1, 2, ...),
i (emk) = Z s, cos emk s m even
n=0
(6 = ) (18)
_ TS
- Go(ﬁ - emk) = RZO (-1) s, cos emk , m odd .

Here oo(eok) is the charge distribution on one of the primary cylinders, and
the angle emk is defined in figure 4. Following the procedure in section II
the potential, ¢e(x,y), between the plates but outside the cylinders.and the

potential, ¢i(x,y), inside the primary cylinders are

© as
_ n
¢e(X,Y) = ge(x,y) + Z P z mn(E——) cos nemk (19)
n=1 o m,k
© as, I
¢ (x,y) = g4 (x,y) + nz 25 = C—;—) cos nb__
® as_ '
+ Z e A Z mn(a——) cos nemk (20)
n=1 o m,k mk



@

where

1, m even
- D", modd

the distance Ok is defined in figure 4 and the prime indicates omission of
the termm = k = 0 in the summation where - © <m < ® and - @ < k < », The
functions ge(x,y) and gi(x,y) are the potentials due to the net charges on
the cylinders and their respective expresslons are derived in appendix A,
Using the fact that inside each cylinder the potential is constant and

hence all its derivatives are zero we arrive at the following system of equations

© as, . I —
Vo T gi(0,0) * Z 2ne Z emn<§—_) cos nfy
n=1 o m,k mk
m i ,
v (D)7 (=1)! cos(RB_,)
0=s_ ] k (21)
° m)k Y
‘l'; ’ mk
® s g , Enm(2+n—l)!an cos[(2+n)6mk]
+ z -2;{—:—6%{1-‘- {14 2D
n=1 a Tomk (n-—l).bmk
where
- 2 2.2
bmk = VQmD - dm) + 4k~d s
_ _ oAl
dm = [1 (-1) ]yo
and

tan’ltzkd/(mb - dm)] , m# 0

=

Bmk
- % sgn(k) , m=0

Suppose, here and after that Vo = 0, that is to say, the rods are situated

symmetrically with respect to the two plates. From the symmetry of the problem

®
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it then follows that s, = 0 for n odd. The original system of equations (21) ‘

can then be reduced to

¥ Ky Ko = 8,0 (22)
n=0

where

X = waD/ (450V0d)szn

{4y /w) [ln(ZTr—lé_}-l) -2 Z In tanh(nyk)]

R =
© k=1

= 1+ Gy/minGs E™h - gy/m T DX @ - Y

=1
-1 -1

Kon = YT on Fn<Y’E) s nx1
Ko = ZFQCY,E) s 221

_ 29,+2n-1)
K,Q,n = (S,Q,n+ ( on F9,+n(Y’g) , 221 , n=21

d/p

-
H

£ = a/D

r (~1)" cos(2q8 )

' —
m,k  (m +4y7KT) m,k

Making use of the theory of elliptic functions we have

12
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F)(v,8) = = £°R(131,1y)
(23)
F (,E) = gzqth/<zq -1 -2 1 i)/ - 1)1, g 2

where P(x;wl,wz) is the Weierstrass elliptic functiom,

-1 -1 922
ey = 32+ D7 - 3) mzz S -
c, = g2/20 » Cg = g3/28
and
gz = gz(l’iY) ’ 83 = g3(1,iY)

are the invariants of the Welerstrass elliptic functiom.
The admittance, Y, of the transmission line for the symmetric TEM wave
is determined by the capacitance, C, per unlt cell between the grid of cylinders

and the two perfectly conducting planes. The capacitance is given by
C = 21Taso/VO = 8dsoxo/D . (24)
In this connection, we define an effective height, Dl’ of the transmission
line, i.e., the height of a three-plate transmission line having the admittance
Y (see figure 6). Equating (24) to the capacitance of the three-plate line
per 2d, we have
D1 = D/xO (25)

Define A to be

-1 . (26)

13



For d << D and a << d we can solve the system of equations (22) by perturbation .
methods and get

A~ 2dﬂ~1 ln(dﬁ-la_l) . 27

This expression for A coincides with the expression gilven by equation (100)
in reference 1. For d >> h we can neglect the interaction between the primary

cylinders and get the approximate expression

-1 1
A 4d€0C1 -3 D (28)

where CIl is the capacitance between one cylinder and two parallel plates.

When D -~ 2a << D we can determine C

(3)

1 approximately by studying the problem of

two coupled cylinders This study leads to the following approximate

expression
A~ dw—l In[ (D + VDZ - Aaz)/Za] - —;— D . (29) .

The normal component, En(ek), of the electric fleld at the surface of

one of the cylinders is given by

-1 I
En(eok) =g oo(eok) =€ nzo Son cos(2ne0

W (30)

The relative field distribution, e(aok), (field enhancement factor) is

e(8,,) = 2do_(8_ )/ (ras ) = 2d(ﬂaxo)'1 nzo x_ cos(2n0 ) (31)

and define

- _ _1 oc ) _ —1 oo
e, = max{e(eok)} = 2d(ﬂaxo) Z x = Zy(ﬂgxo) Z S (32)
g n=0 n=0
ok
For d << h and a << d we have approximately
e, A 2d7r~1a-1 (33)

2
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and this expression for e, can be obtained by taking the proper limit of

2
equation (104) in reference 1. For d >> h and D - 2a << D we have

ey 2d'rr—1/(2a ~p+ h%- 4a2)

The quantities e, and §,

2

§ = A/D ,

are graphed in figures 17-25 for a wide range of d/D and a/D.

15
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IV. Numerical Results

The systems of equations (6) and (22) were solved numerically by keeping
only ten equations and ten unknowns. Then, twenty unknowns and twenty equations
were taken and solved numerically. The difference in the charge density
computed from these two solutions was so small for all cases studied here that
the numerical data from the twenty-by-twenty solution can be considered
accurate to four digits.

Figures 7-10 show the normalized incremental effective height, n, of the
transmission line treated in section II. 1In figure 7 we have also for
B = .05, .03, .0l and B < a < .10 graphed the approximative expression for n
that can be obtained from equation (10). For 8 < ,004 and .0l < ¢ < .1 the
difference between the expressions (9) and (10) for n is negligable. Figure
11 shows the limiting value of Ah/d as h tends to infinity. The broken curve
represents the approximate value of Ah/d given by (10).

Figures 12-15 show the function e defined by equation (14) in section II.
While figures 12-14 is a graph of e, as a function of o with 8 as a parameter
figure 15 1s a graph of e, as a function of B with o as a parameter. In
figure 12 we have also graphed the approximate expression (15) for e - For
R < 10—3 and o > 10—2 the difference between (14) and (15) is negligable. In
figure 14 we have added a graph of the approximate expression (16) for e
For 8 < .2 and o > 2 the difference between (14) and (16) is megligable.
Figure 16 shows the limiting value of e, as h tends to infinity. The broken
curve represents the approximate value of e given by (15).

Figures 17-19 show the normalized difference, §, between the effective
electric height and the actual height of the transmission line treated in
section III. In figure 17 we have for £ = .06, .04, .02 and £ =y < .11
included a graph of the approximate expressions for § that can be obtained .
from equation (27). For & < .0l and .0l < y < .1 the difference between (26)
and (27) is negligable. Figure 20 shows the limiting value of A/d as D
tends to infinity. The broken curve represents the approximate value of e,
given by (27).

Figures 21-24 show the normalized value, €,s of the maximum electric

field at the surface of the rods. In figure 18 we have also graphed the

16



approximate expression (33) for e

2

. For £ <2 10" andvy > 1072 the

difference between (32) and (33) is negligable. TFigure 25 shows the limiting

value of e, as D tends to infinity. The broken curve represents the approximate

2
value of e, given by (33).
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Figure 1. Cross-section of transmission line consisting of one plate and
a grid of rods.

2d

D/2

Figure 2. Cross-section of transmission line consisting of two plates and
a grid of rods.
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Figure 3. Two~dimensional electrostatic problem treated in section II.
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Figure 4. Two-dimensional electrostatic problem treated in section III.
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Figure 5. Effective electric height of transmission line treated
in section II.
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Figure 6. Effective electric height of transmission line treated
in section TII.
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Figure 8. Effective electric height of transmission line treated in section II.
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Figure 9. Effective electric height of transmission line treated in section II.
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Figure 10. FEffective electric height of transmission line treated in sectibﬁ II.
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Figure 11. Limit value as h tends to infinity of incremental electric height of transmission
line treated in section II.
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Figure 15. Field enhancement factor of transmission line treated

in section II.

30



100

‘l'} 10 |-

\
L1 | 1 1 | |
0 .2 A a/d .6 .8 1.0
‘. Figure 16. Limit value as h tends to infinity of field

enhancement factor of transmission line treated
in section II.

31



A3

.35

.25

.20

.15

.10

-.05

=
~
-

I I T !
£=.00001 .0001

.001

002 —

Figure 17. Effective electric height of transmission line treated in section ITI.
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Effective electric height of transmission line treated in section ITI.
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in section III.
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Appendix A

The Potential of a Lattice of Cylinders With
Constant Charge Distribution

In this appendix we will derive some apparently different representations
for the functions ge(x,y) and gi(x,y), defined by equations (19) and (20) in
section III. Suppose the charge distribution, co(eok), on each cylinder

between the plates is constant so that

OO(GOk) = s = const. , 0 < 6ok < 27 . (ADl)
With z = x + iy and making use of the conformal mappying w = exp(wz/D) we

arrive at the following expressions for ge(x,y) and gi(x,y)

<)

g (x,y) = - as et ) 1In tanhEL m(z - de)/D]{ , (A2)
e o0 Lk o 2
g.(x,y) = as el 1n|z/a| - as et ) 1n|tanh[0.5 n(z - de)/D]J (A3)
i oo oo L, IR
and
-1 -1 -1 -1 |
g.(0,0) = as ¢ ~ 1n(2Da "7 ) - 2as ¢ Z I1n tanh[ mkd/D] . (a4)
i ) oo &

Introducing the conformal mapping w = exp(inz/d) and making use of the

method of images we get

g, (x57) =
-1 = -1 - - -1 =4k -1 - -1}
as e 1 P inl(l - w 1v l+k+2)(l - Z+k+2)(l W lv 4k> (1 - wv 4k+4)
oo
k=1
+-% as € 1n|wv| s (A5)
oo ‘ 7
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gi(st) =

as ¢ Z In| (1l - W—lv—4k+2
k=1

—41+2 -1 =4k .-l
WV w v

ya - )1 -

[eJe]

+ asoe:;l 1n|wv] +-% asoegl 1n|z/a|

where v = exp(7D/2d). Moreover, we have

gi(0,0) = as s-IEﬂD(4d)~l + ln(dw"la_l) - 7 D
oo kel

k 1n(l

> (-

- e

~4k+4
wv

¥

"TTkD/d)]

The two expressions, (A4) and (A7), for gi(0,0), although seemingly

different, are identical as can be seen from the analysis below.

Consider the function f£{y) defined by

£(y) = } 1ln tanh(nyk)
k=1

£'(y) = ] 2nk/sinh(2myk) .
k=1

Making use of the Poisson summation formula we get

£'(y) = - é—Y Ly (11/8)\(2 - my 2 Zl [(-1)%%ke ﬂk/thl - e ﬂk/Yj
k=

and

£ =-2iny-16Y T+ I D@ - v
k=1

(A6)

(A7)

(A8)

(A9)

(A10)

(All)

where C is a constant of integration. Putting vy = 1 in equations (A8) and .

(All) and identifying the two expressions for f(1) thus derived we get

c=a/8 - § (-DF 11 + (-DFTE]

k=1

(A12)

From the theory of theta functions it follows that (see reference 4 chap. XXI)
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[ DSl + D% ™= Lin o 4 gy (AL3)
=1 ,

and

C = %—ln 2 . (Alé)

Thus,

k

Y 1n tanh(myk) = %-ln(Z/y) —ren T e T DX 1aa - TR (A15)
| k=1

k=1

and it is easy to see that the two expressions (A4) and (A7) for gi(0,0) are

identical.
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Appendix B

Some Special Cases

For pedagogial reasons we will here consider three special cases all of
which can be obtained by taking proper combinations of limits of the problems
treated in sections II and III. 1In case 1 we consider a grid of rods supporting
a uniform field on one side of the rods. This case can be obtained by letting
h tend to infinity in the problem treated in section II. 1In case 2 we consider
a grid of rods supporting a uniform field of equal magnitude but opposite
direction on the two sides of the grid. This case can be obtained by letting
D tend to infinity in the problem treated in section III. In case 3 we consider
a grid of rods supporting a uniform field of equal magnitude and same direction
on the two sides sides of the rods. This case can be obtained by superposing
the results of case 1 and 2.

From the symmetry of the problem it follows that we can make the following
Fourier series expansion of the charge distribution, c(ek), on the cylinder
with center at x = 2kd, (... =2, -1, 0, 1, 2, ...) and y = 0

[=2) .

c(ek) = Z s cos nek . (B1)
n=0

Outside the cylinders we have the potential

© w  asg n
np .a
¢ (x,y) =h_(x,9) + ] } (—) cos né (B2)
ep ep 021 ke 2ns0 O k

where Py and 9, are defined in figure 26 and p = 1, 2 and 3 denotes case 1,

k
2 and 3, respectively. In case 1 and 2 the function hep(x,y) is the potential
due to the net charges on the cylinders having the asymptotic value hp(x,y),
p =1 and 2, where

E,. , y<0

—d—h—l— = 1 (B3)
dy
0 s, ¥v>0
and
dh2
el sgn (y) (B4)
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as ’y[ *> o, With z = x + 1y and introducing the conformal mappings w = exp(inz/d)
and w = sin(wz/2d) in case 1 and 2 respectively we arrive at-the following

expressions

hel(x,y) = - dE1(2ﬂ>—1 in[1 + e-2wy/d - 2e~ﬂy/d cos(rx/d)] _ (B5)
and
hez(x,y) = - dEsz-l 1n[sin2(ﬂx/2d)cosh2(ﬂy/Zd) + cosz(ﬂx/Zd)sinhz(ﬂy/Zd)]. (B6)

The function he3(x’y) represents a homogeneous incident field,

he3(X3Y) = - E3Y . 77(37)7

Inside one of the cylinders, e.g. the O-th cylinder, we have the potential

© o, as n
= 0P &
¢ip(x,y) hip(x,y) + nzl kz—m 2n€o (pk) cos nek B
© as S
+ Z 8P (—) cos nd . p=1,2,3 (B8)
2ne a o
n=1 o
where .
by Gay) = - a8 @07 {1+ TV L0 oy Ta 6 v D)
-1 2 2
hiz(x,y) = - dEzﬂ ln{[sin (mx/2d)cosh” (ny/2d)
+ c032(ﬂx/Zd)sinhz(ﬂy/Zd)]az/(x2 + yz)} >
hy (x,y) = - E,y -

and the prime on the summation indicates omission of the k = 0 term.
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Putting the potential on each cylinder equal to a constant (V) and
P
using the method described on page 5 in section II we arrive at the system

of equations

[s4] o0 as n
v =h (0,00 + J § —2 2y cos I
P ep nﬂ.bln% 2kd 2
(B9)
as
0= 1% 0,0 +-5—93
€
e p of2+n~1 +n (2+n)T
n£1 kZI ney @ T2 0 T
where
W X aghe
hep (x,v) =W——'—P‘2 (x,y) , 221
Yoy
We have, trivially,
he3(0,0) = 0 ,
(B10)
(L) _
he3 (0,0) = -~ aEg8,, , L= 1
and
h,, (0,0) = pdEp'zr—l in(pd/am) , p=1,2 . (BL1)

From the definition of the Bernoulli numbers it follows that for p = 1,2 we
have

ey -
By (0,0) = 0.5 aE 8 (B12)

and
0 2 odd and 2 = 3

%) (0,0) = (B13)
°F E_( /d)l'l( 1)2/23 /3! g do=>2
pa P ma - ,Q,/ 2 . N even 4an
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From the above it follows that

S0 = 0 , n odd
(B14)
8.3 0 , n even
Moreover, putting E; = E2 = E3 the solutions snp of equation (B9) are linearly
dependent,
$03 = Spo T ZSnl . 4}315)

Notice also that equation (B9) with p = 1 can be obtained as the limit of
equation (6) in section II as h tends to infinity and that equation (B9) with
p = 2 can be obtained as the appropriate limit of equation (22) in section III
as D tends to infinity.
For y - — = we have the potential
1

) -
¢ep(x,y) = Epy sgn(2.5 - p) + ma (4dso) Slp

+ Epazpzdn"l in 2 + O(y_l) , p=1,2,3 . (B16)

The effective electric position of the grid as defined in reference 1 page 30,

is given by
y=A =[V_-EJS 2d7T_1 In 2 - na2(4de )-1s 1/E_ sgn(2.5-p) , p=1,2,3
P P P 2p o Ip™ 7p
(B17)
From equations (BY9) and (Bl7) it follows that
A3 = 2A1 - Az . (B18)

For d >> a we have
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1 1
o~ 1
Az.v A
and
~ AT
A3 = A3
The field enhancement
and

e, = max{lep(ek)l} = IE;IE—I )

8

dﬂ-l ln(dﬂ—la—l) - naz/(éd)

1l

2d1r“1 ln(dwnla’l)

- 0.5 waZ/d

factor is

_ -1 -1

o

P n=0

From equations (B9) and (B21) it follows that

For d >> a we have

and

The quantities 6P,

and eP are tabulated in table 1 and

-1 -1
~ o' =
e, ¥ e dr "a " + 1 ,
e, 4 eé = 2d1T-']'a_1
' =
e3 ~ eq 2
§ =oad Tt .
p p

curves in figure 27 correspond to the asymptotic values A

D% [, o

1,2,3

graphed in figures 27 and 28.

' and Al

3

given by

(B19)

(B20)

(B21)

(B22)

(B23)

(B24)

The broken

equation (Bl2). The difference between A and Ai is negligable for 0 < a < d.
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" The broken curves in figure 28 correspond to the asymptotic values eé and

eé given by equation (B23). The difference between e

for 0 < a < d.

49

and ei
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Table 1

a/d

§

§

=

e

e

1 2 3 1 2 3
.02 .88054 | 1.76171] -.00063 | 16.9155 | 31.8519 | 1.9791
.04 .65896 | 1.32044( -.00252 8.9577 15.9574 | 1.9580
.06 .52833 | 1.06231} -.00565 6.3051 10.6731 | 1.9371
.08 43456 .87916| -.01004 4.9788 8.0414 1 1.9162
.10 .36070 .73709 | -.01569 4£,1830 6.4707 1.8953
12 .29921 .621001 -.02258 3.6524 5.4305 | 1.8743
14 . 24606 .52283] -.03071 3.2734 4.6934 | 1.8534
.16 .19884 43776 ~.04008 2.9891 4.1457 | 1.8325
.18 .15601 .36269} -.05067 2.7679 3.7242 § 1.8116
.20 .11651 .29550 | -.06249 2.5909 3.3910 | 1.7%07
.22 .07957 .23466 ] -.07552 2.4459 3.1221 1.7679
<24 .04465 17906 F -.08976 2.3251 2,9012 | 1.7490
.26 .01132 .12783}1 -.10519 2.2227 2.7174 1.7280
.28 -.02076 .08032 ] -.12184 2.1349 2.5625 } 1.7073
.30 ~.05183 .03598}1 -.13963 2.0587 2.,4307 | 1.6866
.32 -.08211 | -.00562| -.15860 1.9918 2.3177 | 1.6659
.34 -.11178 | ~.04483( -.17873 1.9327 2.2201 1.6453
.36 -.14097 | -.08195| -.19999 1.8800 2.1353 | 1.6247
.38 -.16980 | -.11723} -.22237 1.8327 2.0611 | 1.6043
40 -.19838 | -.15089 -.24587 1.7900 1.9960 ; 1.5840
42 -.22679 | -.18311} -.27047 1,7511 1.9385 | 1.5637
44 -.25511 | -.21406| -.29616 1.7156 1.8876 | 1.5436
46 ~.28340 | -.24388] =~.32292 1.6830 1.8424 § 1.5236
.48 -.31171 | -.27269} -.35073 1.6528 1.8020 | 1.5036
.50 -.34011 | -.30062| =-.37959 1.6248 1.7658 1.4839
.52 -.36862 | ~-.32776| -.40948 1.5987 1.7332 | 1.4642
.54 -.39729 § -.35419| =-.44039 1.5742 1.7038 | 1.4446
.56 -.42615 | -.38002| -.47228 1.5512 1.6772 | 1.4252
.58 -.45524 | -.40529} -.50519 1.5294 1.6530 | 1.4058
.60 -.48458 | -.43010] -.53906 1.5088 1.6310 | 1.3866
.62 -.51420 | -.45448 | -.57392 1.4890 1.6107 | 1.3673
.64 -.54412 | -.47850} =-.60974 1.4701 1.5921 1.3481
.66 -.57436 | -.50221 | -.64651 1.4519 1.5748 | 1.3290
.68 -.60495 | -.52565| -.68425 1.4343 1.5588 | 1.3098
.70 -.63590 | ~-.54885} =-.72295 1.4171 1.5439 | 1.2903
.72 -.66723 | ~.57186 ) -.76260 1.4004 1,5299 | 1.2709
.74 -.69896 | -.59469 | -.80323 1.3839 1.5168 | 1.2510
.76 -.73110 | -.61737 | -.84483 1.3676 1.5044 | 1.2308
.78 ~.76366 | ~.639931 -.88739 1.3515 1.4926 | 1.2104
.80 -.79668 | -.66237 | -.93098 1.3354 1.4815 | 1.1893
.82 -.83015 | -.68472| -.97538 1,3193 1.4708 | 1.1678
.84 -.86409 | ~.70698 | ~1.02120 1.3030 1.4607 1.1453
.86 -.89852 | -.72916 | -1.06788 1.2866 1.4510 | 1.1222
.88 -.93346 [ ~.75126| -1.11566 1.2699 1.4417 | 1.0981
.90 -.96893 | -.77329} ~1.16457 1.2528 1.4328 | 1.0728
.92 | -1.00493 | -.79526 | -1.21460 1.2353 1.4242 | 1.0464
.94 | -1.04149 | -.81717 | -1.26581 1.2172 1.4161 1.0183
.96 § -1.07863 | -.83902} -1.31824 1.1985 1.4082 .9888
.98 | -1.11546 | -.86081 | -1.37011 1,1792 1.4006 9578
1.0 | -1.15280 | -.88253 | -1.42307 1.1593 1.3932 .9254
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Figure 26. Cross—section of a grid of rods.
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