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Abstract

In this note the low-frequency magnetic field distribution of a half
toroid simulator joined to the ground through modified ground connections
1s considered. These ground connections, as distinguished from the simple
ground connections that were examined in a previous note, are such that at
the center of the toroid the field is the same as in the case of a perfectly
conducting ground. Plots are given of the field components at points on,
above, and below the ground. Plots are also presented that are related to
the difference between the actual field and the low frequency component of
the EMP magnetic field. Specifically we consider the magnitude of the
difference between these vector fields normalized to the magnitude of the
EMP field., 1In the symmetry plane that bisects the toroid, we plot contours
that correspond to constant values of this ratio. Finally, we find the
maximum value of this ratio on the perimeter of a circle lying in the ground
plane and centered at the origin or on the surface of a hemisphere resting
on the ground and centered at the origin. Plets are given of these maxima

versus the appropriate radius normalized to the radius of the toroid.
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I. Introduction

C1]

In a previous note the low-frequency magnetic field of a half toroid
simulator directly connected to a finitely conducting ground was studied. It
was found that the ground currents produce no vertical magnetic field. Thus,
for an inclination angle of the half toroid El # 0 (Fig. 1) the static magnetic
field at the origin of the coordinate system has a non-zero vertical component
due to the current flowing in the half toroid. This is an undesirable feature
since an ideal simulator should not allow az vertical magnetic field component
in the static limit. The situation to be simulated is the interaction of the
low-frequency content of the electromagnetic pulse due to a nuclear explosion,

- with a finitely conducting ground. We know that in the limit of zero frequency
the ground behaves as perfectly conducting and consequently the total magnetic
field has no vertical component. It has been shown in referemce 2 that if

the ground were perfectly conducting the half toroid simulator is capable of
matching, at the origin of our coordinate system, the low frequency magnetic
field of the EMP. In the case of a finitely conducting ground we would like,

in addition to securing a vanishing vertical component of the low-frequency
magneﬁic field at the origin, to make the tangential component at the origin
independent of the conductivity of the ground and equal to the one corresponding
to infinite conductivity. In reference 1 we found that if the ends of the half
toroid are directly connected to the ground the matching of the tangential
component is not accomplished. In the present note we use different ground
connections which redirect the currents flowing in the ground connections and
through the ground, in a way that tends to imitate the half toroid image. These
alternate ground connections are such that the static magnetic field at the origin
of our coordinate system is equal to the field at the same point as in the case
of a perfectly conducting ground[3]. This feature can be achieved by a variety
of ground comnections. The ones we use in this note were chosen primarily
because of their simplicity from beth the computational and the implementation
point of view. Thus, instead of directly connecting the end points of the half
toroid to the ground we symmetrically stretch two wires from the end points to
the feed points on the same side as the projection of the inclined half toroid

onto the ground (Fig. 2). The length of these extra wires and the angle they




make with the line connecting the end points of the toroid depend on the inclina-
tion angle of the half toroid El. For each gl they are such that the total
magnetic field at the origin of our coordinate system is the same as for the

case of a half toroid directly joined to a perfectly conducting ground.

To be able to see how the field calculated at points other than the origin
differs from the field for the perfectly conducting ground situation, and also
from the EMP field that is to be simulated, we present plots of field quantities
for the same range of parameters as in reference 3. Thus, for points on or above
the ground, we plot the total magnetic field components, normalized to (I/2a)cos 51,
versus z/a with parameters x/a, y/a andiil. (I/2a)cos ) a, is the EMP field
to be simulated, I is the current in the half toroid, a the radius of the half
toroid and El the inclination angle with respect to the x axis. We denote the
magnetic field normalized to I/2a by h i.e., h = (2a/I)H. We also exhibit
contour plots of the quantity iAh,/cos El where Ah = h - cos €4 éz. This quantity
is zero only at the origin for both the finite conductivity case examined in this
note and also the infinite conductivity case. We present the plots in the y = 0
plane with El as a parameter. To further compare the present situation with
that of a perfectly conducting ground we compute {Aﬁj/cos £, on the circumference
of a circle situated on the ground and the surface of a mathematical hemisphere
resting on the ground. The centers of both the circle and the hemisphere coincide
with the origin of our coordinate system. We find the maximum deviations for the
two cases and we plot them versus the radius of the circle or the radius of the
hemisphere, both normalized to the radius of the toroid, wiﬁh El as a parameter.
For points in the ground we only plot the total magnetic field components

normalized to (I/2a)cos Sl, versus z/a with x/a, y/a and El as parameters.,



II. TFormulation

Consider the situation depicted in Fig. 2. For a given inclination angle
El we want to determine the length L and the angle o so that the total magnetic
field at the origin of the coordinate system is equal to H = Hzaz where
Hz = (I/2a)cos El. This latter field has the same value as the magnetic field
due to a half toroid directly connected to a perfectly conducting ground.

As we found in a previous noteEl] the magnetic field due to the ground
currents is obtained by replacing the ground currents with two semi-infinite
current elements oriented downward from the feed points to infinity. Thus,
they produce no vertical magnetic field at any point. The wire connections,
from the end points of the half toroid to the feed points, however, do produce
a vertical magnetic field at the origin of the coordinate system which is
directed opposite to the vertical component of the field due to the half toroid.
To calculate the field of the wire segments we should f£ind the field due to a
current element of finite. length. If reference ! we have found the magnetic
field due to a semi-infinite current element.(eq. 9). The same procedure applies
to the present case except that to preserve current continuity we have to apply

charges * It at both ends. Referring to Fig. 3 the field at the origin due

to the wire segment lGl is then given by

, H, = L (cos & + cos B) (1)

By =ah 1x brp

=1  "xlx

We can easily see that

p =asina s
(2)
L - acosa
cos B8 =
/12 + a2 - 2La cos o
Thus, to make the total vertical component equal to zero we demand
21 L - a cos & i, _

" 4ra sin a (cos a + —) + 4a Sim €& = 0 . (3

/Lz + a2 - 2La cos o
where (I/4a)sin Sl is the x-component of the field produced by the half-toroid

at the origin of our coprdinate system. Equation (3) can be rewritten as




L-acoszo = Cg sin El - cot o)sin a . (&)
/LZ + a2 - 2La cos o
Defining
(%-sin £, — cot a)sino =m (3)
we understand that
L - a cos a % 0
if (6)
>
m=0
<

Solving (4) with respect to L we obtain

L=acos gt lﬂdﬁiﬁiﬁlﬁi . (7

/1 - m2
In view of the restrictions imposed by (6), (7) can be rewritten as
C(n/2)sin El - cot olsin o
= cos a + . (8)
V1 - (n2/4)sin2£l + 7 cot o sin El

[P N

Next we calculate the field due to the two semi-infinite currents which
represent the ground currents. The field due to a semi-infinite current I has

been calculated in reference 1 (eq. 9); it is given by
H=—— (1 + cos v) (9)
bap T ?

where v is the angle between the vectorial current element and the vector

joining the finite end with the observation point, and p is the stiortest distance

from the observation point to the current element. Referring to Fig. &
we see that the contribution from both semi-infinite currents at the origin
of our coordinate system is directed along the z-axis and is given by (y = 7/2)

A oA 2T
=aH, = a, 7.g sin Y . (10)



where

R = /Lz + a2 - 2La cos o s

(11)
. a -Lcosu
sin ¢ =
/12 + a2 - 2La cos o
Thus, we demand
I a - L cos o I
= = =— ¢cos & , (12)
2m L2 + a2 -~ 2La cos a 4a L
or
1 ~ (n/2)cos &_,'l(r2 + 1)
cos & = (1 - 7 cos El)r *
(13)
r = L/a
Combining (8) and (12) we can solve for L/a and o, provided a meaningful
solution exists. Few special cases are easy to see. For example from (8)
we find
L/a = cos o
(14)
T
for cot o =3 sin El
For L/a = cos a,(12) gives (w/2)cos £, = 1, and
= 2 1,2
cos El = (El = ,28037) , cot a = §-¢% -4 (o = .21977)
} (15)
Lol 4= 2
a T

Another special case can be obtained from (12) by setting cos £ = 1/%. We

find L/a = 1 and from (8) we can solve for a.



cos El = 1/w (gl = ,39697)

(16)
L/a =1
By studying {13) we can easily see that the following inequalities hold
cos gl < l/m
(17)
T L/a=1
and
cos El =z 1/n
. (18)
(v/2)cos El -1
(r/2)cos El <L/a=1
Thus, the minimum value for L/a is 1 - 2/7 which corresponds to El = 0 and
a =0,
51 =0 , a=20
(19)

L/a=1-2/r= .3634

Notice that (1) is not directly applicable for o = 0, but if we carefully go
to the limit (¢ = 0, B = 7) we find H1x = 0 as we should.

We have solved for L/a and o« and we have also computed the cartesian
coordinates of the feed points G1 and G2 as functions of the inclination angle

51. The results are presented in table 1.



III. Total Magnetic Field at a Given Observation Point

The total magnetic f£ield at a giwven point on or above the ground is
the superposition of the field due to the half toroid and the field due to
the currents flowing in the wire connections and the ground. The field due
to the half-toroid has been calculated in reference 3.

Referring to Fig. 5, P 1s the observation point characterized by the
three cartesian coordinates x, v, 2z with x = 0. First we calculate the field
due to the current flowing in the wire segment 1G1. The magnitude of the

field at P is given by

{cos o, + cos al) (20)

Hi = dﬂpl 2

where

S, « R
cos oy = - L 1 s u
R
1
cos o, = 1
2 R2

~

and S is a unit vector parallel to (lGl). The field is directed parallel
to the unit vector Qilx Sl)/Rlsin 4. Simple algebraic calculations yield
the following results

H, = L (cos a; + cos mz){(y +a - L cos a) sin o

lnr(R1 sin al)

~ (z ~ L sin o) cos a}

H, = — xl sin o (cos oy + cos uz) . 22)

4W(R1 sin al)

H, = xI cos o (cos oy + cos az) ,

4W(Rl sin al)




where

cos a(y +a =L cos a) ¥+ (z - L sin a)sin o

cos o, = = ’
1 Ry
cos o = (y + a)cos o + z sin ¢ :
2 RZ
(23)
2 2 2%
Rl =[x“"+(y+a~-Lcosa) + (z-1Lsina)"] )
1
Ry = Tx? + (y + )2 + 247"

Similar calculations for the field due to wire segment (2G2) yield

I

H2x = — 5 (cos 81 + cos 82){- cos a(z - L sin a)
4w(R1 sin Bl)
, - sin oy - a + L cos a)} s
H2 = xI sin o 5 (cos 61 + cos 82) , (24)
y 4n(R! sin B.)
1 1
H, = xI cos o 5 (cos 8, + cos 82) s

4W(Ri sin Bl)

where

- cos oy —a+ L cos a) + sin a(z = L sin )

cos Bl = -

1
Ry
cos 82 . —_cos aly —Ra'_) + z sin o
2
L
Ri = [XZ + (y -~ a+ L cos a)z + (z - L sin 0)2]
2 2 2.k
Ry = x" + (y - a)" + 2]

Next we calculate the field due to the ground currents. As we mentioned
earlier for observation points on or above the ground, the ground currents

can be replaced by two semi-infinite current elements oriented downward to



infinity. Referring again to Fig. 4 we calculate the field due to the semi- .

infinite current at Gl' The magnetude of the field at P is equal to

I

Gl 41rp3

H (1 + cos Yl) . (26)

where Py = Rl sin Yy and Yy is the angle between 3_1 and - éx' Thus,
cos Yy = =g - 27)

Noticing that is parallel to the unit vector - (51 x gx)/Rl sin Y, we

H,
can perform simple algebraic calculations to find

HG}_X =0
IRlz
H = - 5 , (28)
GIY lle(l - cos ‘yl)
IRly
H, = .
G 2
1 lle(l ~ cos Yl)

where

cos Y ==X

- H

1 Rl
Rly=y+a-Lcoscx , (29)
Rlz=z—Lsincx ,

and Rl is given by (23).
Similar calculations for the field due to the semi-infinite current

at G2 vield
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sz
Iy, |
HG . = = (30)
2 4wR1 (1 - cos yz)
- t
IRly
HG 2 = 2 )
' -
2 AWRl (1 cos Yz)
where
x
COS Yo = = T
1
1 = - s
R1Z z - L sin « (31)
' = -
Rly =y a+L cosa ,

and Ri is given by (25).

Next we consider the magnetic field in the ground due to the currents
flowing in the wire connections and the ground. The contribution due to
the half toroid can be calculated with the aid of reference 3. Formulas
(22) and (24) apply equally well for points above, on or in the ground.
Thus, we can use (22) and (24) to calculate the field in the ground (x < 0)
due to the two wire segments (lGl) and QGz).

Consider now the contribution due to the ground currents. For calculation
of the field at points in the ground it has been showm in reference 1 that
the ground currents can be replaced by two semi-infinite currents oriented
upward from the feed points to infinity. In the present case X < 0. Con-
sequently for points with x < 0 we can use (28) and (30). Notice that the

corresponding angles Yy and Y, are again larger than 7/2, therefore, for x < O

(29) and (31) should read

X
coSs "{l = 'R N
1 (32)
cos v, = =7
2~ R!
1

11



Finally we present the formulas for the magnetic field due to the half

toroid, They are valid for any observation point above, on or below the

ground and their derivation is given in reference 3.

1]

(H, sin 8 + H

Htx A 8 cos B)cos 51 - H3 sin 51

th HB sin B - HA cos B

]
|

H, sin El - (HA sin 8 + H

ez = Ha cos R)cos gl

B

where the subscript f indicates the toroid field, and

B o= r @ 3 [E(K+B’m)"EG§lm] B [?(W+B’m)'FQ§}m£]

m§2;m) 51n-§ cos {[l—m sinzC%)]_é+E1‘m COSZC%)]-ﬁ}%

m\"‘

G—) ;El—m coszég)J_%-[l-m sinZCSDJ-%}

Hg = Sﬂa A

By = gog A~3/2m;§34—(-1—-—)— [(1+A)m-247 E(“*Blm) E(Blm] [F(”J’Blm)-}s(%!m]
+ Ty [(#)n-28Ts1n § cos %{[l-m sin’ &) 17 1-n cosz(%_-)]—;i};

A= {xzcoszgl + 32+ 22 sin2£1 + xz sin 251}%/a

~ X sin El + z cos El'

a

12



4a
(1+4)2

arctan

W
L}

E(p + slq)

F(p + slq)

+BZ
X €Oos 51 + z sin El
-y
pt+s ,
2 &
- E(plq) = (1 - q sin"t) dt
P
pts
2 =%
- Flplg) = (1 - q sin"t) dt .

13



Summary and Discussion of Results

The purpose of this note 1s to alleviate some of the difficulties
encountered in the situation examined in referemce 1 with respect to the
simulation of the EMP. In reference 1 the half toroid is directly joined
at its ends to a finitely conducting ground and the pattern of the resulting
ground currents is independent of the inclination angle of the toroid with
respect to the ground. As a result a vertical component of the low frequency
magnetic field exists at the origin and in a region close to the origin.

This feature makes the simulation of the low frequency content of the EMP
-around the origin less satisfactory than when the ground is considered perfectly
conducting. In fact when the ground is considered perfectly conducting the
simulation at the origin is exact and remains good in a region near the origin.

The main undesirable features discussed in reference 1 are the following.
a) The magnetic ﬁield in the symmetry plane xz and especially close to the
origin deviates considerably from the magnetic field that would exist if the
ground were perfectly conducting. b) Increasing the inclination angle El
of the toroid increases the field distortion relative to the perfectly
conducting ground case. ¢) The maximum normalized field deviation [Agllcos &y
over the surface of a hemisphere centered at the origin or on the perimeter
of a circle with center at the origin assumes large values close to the origin,
thus detericrating the simulation.

To alleviate these shortcomings we modified the ground connections.

Qur basic motivation was to approximately create the image toroid which exists
for a perfectly conducting ground. This image approaches the ground surface

as the inclination angle &1 increases. To satisfy this requirement we ground
the toroid not directly as in reference 1 but through two wire segments that

lie in the ground plane and form an angle o with respect to the line joining

the ends of the half toroid (Fig. 2). The length L of each segment and the
angle o are functions of 51 and they become progressively larger as El increases.
In that fashion the current path from one end of the toroid to the other through
the ground is a function of El and tends to imitate the perfectly conducting
ground image of the toroid. The field at the origin is chosen to coincide

with that corresponding to aperfectly conducting ground and comsequently it
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also coincides with the desired EMP signal. To see how successful the modified
connections are in imitating a perfectly conducting ground we present plots of field
quantities for the same range of parameters as in reference 3. For points onor sbove the
ground we plot the total magnetic field components, normalized to (I/2a)cos £, versus z/a
with parameters x/a, y/z and El. Due to symmetry we choose y = 0. For El = 0
and a perfectly conducting ground (¢ = ») any plane through the z axis is
equivalent for the calculation of the field components. Cbnsequently, in
reference 3 the z and ¢ magnetic field components are plotted versus z/a with
U/a as a parameter (the azimuthal component 1s zero). ¢ is the polar radius in
the xy plane. Contour plots are also given for constant IAQ[/cos &y in a
typical zy plane. Only positive z's are considered because of the symmetry
about the xy plane for a vertical toroid. 1In the modified ground connections
case and 51 = 0 only the vy = 0 plane corresponds to the zy planes considered
in the 0 = « gituation. Plots of the x and 2z field components are given
versus z/a with x/a as a parameter. (The vy-component is zero.) Also contour
plots for constant ‘Ah]/cos gl are presented in the y = 0 plane.
In the perfectly conducting case for any inclination angle 51, the vy
component of the field is zero in the xz (v = 0) plane. This is also the
case in this plane for ¢ # =. The x component is zero in the x = 0 ground
plane for ¢ = «, This is not the case for the modified connections case
except at the origin., Thus, we give plots of hx/cos £y (hx = (Za/I)Hx) versus
z/a with y/a and il as parameters. As El increases the y coordinate of the

ground contact G2 decreases and for observation points with y = Ya ’hx turns
2

out to be infinite when z is large enough to hit the wire segment. This
shortcoming, however, is not of importance since from the geometry we can show
that as long as the maximum distance of an observation point from the origin

is less than .6a we never hit the wire; on the other hand the simulation region
is closer to the origin where our hX stays small. Even for a perfectly con-

ducting ground the simulation has deteriorated for points with r > .6a. As

a result we only plot a finite x—component of the field in the x = 0 plane.

The y and z components of the field are finite in the entire x 0 plane.
The reason is that the field produced by the wire segment in its immediate
vicinity, in the x = 0 plane, has zero y and z components. We present plots

for hy/cos gl and hz/cos El versus z/a with y/a and gl as parameters. Similar
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plots are also given in reference 3.

We present contour plots of constant [Ahl/cos gi only for vy = 0, i.e.,
along the symmetry plane. In reference 3 contour plots are also given in the
planes y = .5a and .8a. In these planes the modified connections do not
imitate the perfectly conducting ground well when we get close to the wire
segments. In the contour plots a star * is used to indicate the position of
the intersection of the toroid with the plane under consideration.

Finally we maximize |Ah|[/cos g, on the circumference of a circle in the
x = 0 plane and over the surface of a hemisphere resting on the ground. The
centers of the circle and the hemisphere coincide with the origin. Studying
the plots of the present note and comparing them to the ones in reference 1
(simple ground connections) and in reference 3 (perfectly conducting ground)
we can draw the following general conclusions. a) The main undesirable
features present in the simple ground connections case and discussed earlier
have been reduced through our modified ground connections. b) Away from the
origin (r > .3a) the simple connections tend to represent the ¢ = = case better
than our modified commections except for &1 large (2£l/w = .7). Thus, for
2€l/ﬂ = ,7 the inequality becomes r > .4a and for ZEl/w = .9, r > ,6a. c} For
large x (x = .8a) all three cases seem equivalent; the reason is that the
observation points are much closer to the half toroid than to the rest of the
currents and consequently the field is not sensitive to the current path that
closes the half toroid. If the comparison is restricted to the modified
connections versus ¢ = @ we can make the following observations. a)} The magnetic
field for the'perfectly conducting ground is best approximated in the xz
symmetry plane of the toroid. b) TFor observation points in the x = 0 plane,
the x-component of the field gets rapidly distorted in the vicinity of the
wire segments. The distortion of the y and z components is significantly less.
The reason is that in the x = 0 plane either wire segment can only produce a
vertical field. ¢) Comparison of the maximum field deviation curves for the
two cases exhibits a variety of features. Close to the origin (i.e. small r/a)
the fit is best for 51 = 0. TFor larger r/e the El = 0 and 251/ﬂ = .2 curves
for the mofified comnections start to rapidly deviate from the ¢ = = curves.

For 51 large i.e., Zglfﬁ = .5, .7 and .9 the deviation is considerably less.

16



Specifically for 2£l/ﬂ = ,9 the two curves exhibit the same trend and their
percentage deviation varies slowly with r/a. These features can be understood
if we take into account that both the ¢ = » and the modified connections cases
are expected to best simulate the EMP for small r/a and small El and that the
modified connections best approximate the o = « case for large gl.

For points below the ground the field calculated with the modified
connections exhibits the following features. a) The rate of decay for all
three components increases with El' b) The x-component has the most sensitive
El dependence. c¢) The decay rate for all three components increases with
increasing v for El fixed. These features can be explained by referring to
the geometry of the currents flowing through the toroid,the wire segments, and
the ground. 7To draw a comparison between the simple connections studied in
reference 1 and the modified connections, we first make the following observa-
tions. a) TFor the simple connections the x—component is due to the toroid
only but for the modified connections the wire segments can significantly
contribute. b) The y-component is not affected by the wire segments.
Therefore, any difference between the two cases should be attributed to the
variable location of the equivalent current elements in the modified
connections case. c¢) Currents in all the possible paths produce a z compoment
for both cases. Proper interpretation of the plots and consideration of the
above observations can provide an adequate explanation for the following
features pertaining to the comparison between the simple and modified connections.
a) For fixed El and y all three components for the modified connections decay
faster than for the simple connections. This difference is enhanced by increasing
El and is mostly promounced for the x-component. b) For fixed El and increasing
y the decay rate for all three components in both cases increases. This increase
is slower for the modified connections and especially for the x component.

In this note we have attempted to design the ground connections in a
way that would imitate a perfectly conducting ground for the calculation of
the low frequency magnetic field. Our ultimate goal is of course the simulation
of the EMP. We have compared our results to the ¢ = = case only because a
perfectly conducting ground appears to provide an upper bound for the EMP

simulation (at least in a small region around the origin). From the practical

17



point of view the value of our modified connections can be judged by a direct
comparison of the field distribution to the real EMP situation and all of

our curves have been appropriately normalized to facilitate such a comparison.
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Table 1 (Continued)

2€l/ﬂ\ L/a © 2a/w zq [a Yo /a
2 2
5/9 . 767 438 487 407
17730 - .776 441 495 403
26/45 .784 443 .503 <398
53/90 .793 46 .511 394
3/5 .802 449 520 +38¢9
11/18 .811 452 528 .385
28/45 .820 455 .537 .381
18/30 .829 458 .546 .376
29/45 .338 461 .556 372
59/90 .848 465 .565 .368
2/3 .358 468 .575 364
61/90 .868 472 586 .359
31/45 .878 475 .596 355
7 .389 479 .607 .351
32/45 .900 .483 619 347
13/18 .912 .487 .631 .343
i1/15 .924 491 644 .338
67/90 .936 .496 .658 ,334
34/453 . 949 .500 672 . 329
23/30 .963 .505 687 .325
7/9 978 511 .703 . 320
71/90 .893 516 719 315
475 1.009 521 737 310
73/90 1.027 <527 .756 .305
37/45 1.045 .533 776 .300
5/6 1.066 .539 .798 294
38/45 1.087 545 .821 .288
77/90 1.111 552 847 .281
13/15 1.136 .559 874 274
79/90 1.164 .566 L8904 .266
8/9 1.196 .574 .937 257
.9 1.230 .581 973 248
41/45 1.269 589 1.013 237
83/90 1.313 .598 1.059 224
14/15 1.363 .606 1.111 210
17/18 1.422 616 1.170 192
43/45 1.491 .625 1.240 172
87/90 1.576 .635 1.324 146
44/45 1.681 643 1.428 112
89/90 1.821 656 1.563 L067

*
In this table we give the location of the wire segments as a function of the
inclination angle El (Fig. 2). The increments of El are 1° (= 1/180). We also
give the basic angles that were used in the plots, i.e. Zgl/w =0, .2, 5, .7

=ZG’ng~yG.

and .9. The cartesian coordinates of G, are z
- 1 Gy 2 & 2
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Table of Plots

hx/cos £y Vs. zfa hy/cos £, vs. z/a hé/cos £, Vs. z/a
ZEl/ﬂ 0 .2 .5 .7 .9 0 .2 .5 7 .9 0 .2 .5 .7 .9
Fixed

Parameter

y/a =0 6A 14A 22A 30A 38A 6C 14C 22C 30C 38C
y/a = .5 7A 15A 23A 31A 39A 7B 158 23B 31B 39B 7C 15C 23C 31C 39cC
y/la = .8 8A 16A 24A 32A 40A 88 16B 24B 32B 40B 8C 16C 24C 32C 40cC
xfa = 0 94 17A 25A 33A 4lA 9B 17B 25B 33B 41B 9C 17C 25C 33C 41cC
x/a = ~.2 10A 18A 26A 34A 42A 10B 18B 26B 34B 42B 10C 18C 26C 34C 42C
xfa = -.5 11A 19A 27A 35A 43A 113 19B 27B 35B 43B 11C 19C 27C 35C 43C
x/a = -.8 12A 20A 28A 36A 44A 12B 20B 28B 36B 44B 12C¢ 20C 28C 36C 44C
x/a = -1 13A 21A 29A 37A 45A 138 21B 298 37B 45B 13C 21C 29C 37C 45C
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Fig. 1. Geometry of a half toroid directly connected to a finitely
conducting ground. The u, axis lies in the plane of the
toroid which has a radius™a.

Fig. 2. Ceometry of a half toroid connected to a fimitely conducting
ground by modified connections. (lGl) and(ZGz) are wire
segments lying in the yz plane.
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Fig. 3.

Geometry for the calculation of the
magnetic field at the origin due to
the currents flowing in the wire
segments (1G;) and (2G5). The
length of each segment is L.

.

Fig. 4.

Geometry for the calculation of the
magnetic field at the origin due to
the ground currents. For this
calculation the ground currents can
be replaced by two semi-infinite
current elements oriented downward
from the field points Gy, Gg to
infinity.

Fig. 5.

Geometry for the calculation of the magnetic field at an observation

point P(x,y,z) with x = 0, due to currents flowing in the wire segments

(1Gy), (2Gp) and in the ground.

(0P) = r, (GP) = R

, (IP) = 32:

(0Gy) = Ig, s (0G,) = Ig,s (G,P) = Rj, (2P) = Rj and %10) = (02) =.aéy.

23



1.6

-9} -]
-1.2 2 -
-1.5 ! ! ] ! i | ! | ! l ]

-1.6 ~-1.2 -.8 -4 : 8 1.2
c. z
a
: : 2,
Figure 6, Magnetic Field Components as a Function of z: - = 0; %t 0

24



2z

Figure 7. Magnetic Field Components as g Function of z: - = 03

m g
]
W

25



- .8} ]
S I N N N N S [ W N NN N N B
-1.6 -1.2 -.8 -4 0 4 .8 1.2 1.6
B. z
a

Figure 8. Magnetic Field Components as a Funetion of z:. ——'—Iﬂ,'- 0;.y- = .8
. 1 R a -’

26



2;’1
T

‘ Figure 9. Magnetic Field Components as a Function of z: = 03 -:—= 0.

27



-.9 i i i ] i 1 | 1 1 1 I ] | | |
-1.6 -1.,2 -.8 -4 0 4 .8 1.2 1
z
c. a
o .
Figure 10. Magnetic Field Components as a Functlen of zi — = 0; <= -.2

28




. Figure 11. Magnetic Field Components as a Punction of z: - = 0; §-= -.5.
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Figure 14. Magnetic Field Components as a Function of z:
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