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Abstract

Using a method developed by Keller and Blank, the wave
equation is solved to give an exact expression for the dif-
fracted magnetic field about a perfectly conducting wedge.

From one of Maxwell's curl equations, the corresponding elec-
tric field components are written in terms of integrals over
certain derivatives of the magnetic field. These results are
applied to the diffraction of an incident semi-infinite plane
wave propagating parallel to a perfectly conducting sheet when
this incoming wave hits an interior or exterior bend in the
sheet. For a unit incident electromagnetic plane wave with a
step-function time history, the fields were calculated numer-
ically and contour plots of field values in the area surround-
ing the bend are presented. Such results have obvious applica-
tion to the diffraction at bends in a parallel plate wave guide.
Also, the special case of a plane wave coming to the end of a
flat plate (i.e. the limiting case of a very thin wedge) is
specifically considered since it describes the diffracted
fields at the end of an unterminated wave guide or the edge of
a ground plane.

Acknowledgement

I wish to thank Mr. Terry Brown of the Dikewood Corpora-
tion for the computer programming and his extensive work in
helping to prepare the large number of graphs and contour plots
accompanying this note. I would also like to thank Captain
Carl Baum for his interest and advice in the preparation of
this work.

CLE~RED
FOR PUBLIC RELEASE

Ll 1genqi

oL 1177



T e Tl T

Air Force Weapons Laboratory

NOTE 128

i

iRl

a

§

Al

THE DIFFRACTION OF AN ELECTROMAGNETIC PLANE WAVE ’ i
BY INTERIOR AND EXTERIOR BENDS IN A !l; j
PERFECTLY CONDUCTING SHEET i* i

1

i

i

A

i C

by ; }
. i

Lt, Daniel ¥, Higgins ] :

i

l
i
January 1971 : {
|




EMP 1-11 128-1

THE DIFFRACTION OF AN ELECTROMAGNETIC PLANE WAVE
BY INTERIOR AND EXTERIOR BENDS IN A
PERFECTLY CONDUCTING SHEET

ABSTRACT

Using a method developed by Keller and Blank, the wave equation
is solved to give an exact expression for the diffracted magnetic field about
a perfectly conducting wedge. From one of Maxwell's curl equations, the
corresponding electric field components are written in terms of integrals
over certain derivatives of the magnetic field. These resulis are applied
to the diffraction of an incident semi-infinite plane wave propagating parallel
to a perfectly conducting sheet when this incoming wave hits an interior
or exterior bend in the sheet. For a unit incident electromagnetic plane
wave with a step-function time history, the fields were calculated numerically
and contour plots of field values in the area surrounding the bend are pre-
sented. Such results have obvious application to the diffraction at bends in
a parallel plate waveguide. Also, the special case of a plane wave coming
to the end of a flat plate (i, e., the limiting case of a very thin wedge) is
specifically considered since it describes the diffracted fields at the end of
an unterminated waveguide or the edge of a ground plane,
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I. Introduction

When an electromagnetic plane wave encounters an obstacle,
the resultant fields are generally much more complicated than
the incoming fields and correspondingly more difficult to cal-
culate. One of the few cases where Maxwell's equations can be
solved in closed forms is that of the diffraction of a uniform
electromagnetic plane wave at a bend in an infinite, perfectly
conducting sheet. If the direction of propagation of the in-
coming pulse is perpendicular to the straight line formed by
the bend, the problem reduces to that of calculating the two-
dimensional diffracted fields at a perfectly conducting wedge.
If the incident H is parallel to the bend and the incoming semi-
infinite wave travels along one edge of the two-dimensional
wedge (i.e. wedge is infinite in direction perpendicular to
cross—-section being considered), the magnetic field has only
one component and the vector wave equation reduces to the much
simpler scalar wave equation. Such restrictions on the incom-
ing pulse are just those required for TEM mode propagation on a
wave guide. Thus our results will be directly applicable to
the early-time (i.e. before other reflections and diffractions
interfere) diffracted fields at a bend in the plates of a par-
allel plate wave guide.

The problem of diffraction of a scalar Elane wave by a
wedge has been considered by several people. 12  The results of
the work by Keller and Blank (reference 1) were applied in an
earlier note3 to calculate the diffracted electromagnetic
fields at an interior bend in a conducting plate. This note is
an extension of the earlier work where we now consider the case
of an exterior bend. (See figure 5 for an explanation of the
terms "interior" and "exterior" bends.) The interior and ex-
terior bend problems vary in several respects. First of all,
for the interior bend a reflected pulse must be considered,
while the exterior bend case has no reflected pulse but a sha-
dow region instead. Perhaps more important is the fact that,
as one apprQaches the bend, E goes to zero for the interior
bend while E approaches infinity for the exterior bend.” As in
reference 3 we will first calculate H using the scalar wave
equation and then find E from one of Maxwell's equations along
with known boundary conditions.

Solutions for the field diffracted by an exterior bend
have obvious applications to bends in a parallel plate wave
guide. If we let the bend angle o (see figure 5b) approach
zero, we have a solution for the fields reflected and diffracted
at the end of an unterminated wave guide. And in future notes
we also hope to consider using solutions for the two-dimensional
case discussed here as approximations for the fields diffracted
by more complicated three-dimensional geometries such as a
cone-cylinder interface.
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II. Diffraction of a Plane Wave by a Perfectly Conducting
Wedge

We will first consider the general case of diffraction of
a step function plane wave by a perfectly conducting wedge.
For completeness we will first repeat some of the development
given in reference 3 and then we will depart from the previous
work to develop new and mathematically simpler expressions for
the diffracted fields.

The incoming plane wave is described by

ﬁi = HOU[t - % cos (¢ - ¢l)]fz‘ (1)

g where
H, = [ﬁil = magnitude of incoming magnetic field
U is the Heaviside unit step function

r,$d are coordinates shown in figure 1

¢ = velocity of propagation of the pulse

rt.
n

; time (t = 0 when pulse reaches bend)

¢l is the angle of the direction of propagation with re-
spect to the x-axis )

4

Z is a unit vector along the bend (see figure 1)

Similarly

> _ - £ _ A

E, = EOU[t S cos (¢ ¢l)]y (2)
where

> >

1 = 2,18 (3)

=

Z = impedance of ffée'séécéu;-Q]ég =-120m - - o .o~
o
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(For convenience it is assumed that € = g5, ¥ = Uo.)

Since the incoming wave arrives at the bend (i.e. origin)
at £t = 0, the diffracted field can have reached only as far as
r = ct at some time t > 0., The bend is just a line along the
z-axis; i.e. a surface of zero area. Thus, nQ net'gnergy is
scattered from the bend. This requires both E and H _to be con-
tinuous across the surface r = ct. The total E and H fields
must also satisfy the wave equation

(2) - 2 ()
v -2 { })=0 (4)
%/ o2 oLl \® ,

along with the boundary conditions at a perfectly conducting

plane

> (5)

where ¢n describes the éerfectly conducting surfaces.

Y >
Since H has only a component along Z, the vector wave
equation reduces to the scalar equation

h =0 (6)

(The subscript o will be used to indicate the various diffracted
fields for the general case of a plane wave approaching a wedge
at an arbitrary angle.) Outside the diffracted region (i.e.

r > ct), ho is just the sum of the incident and reflected
fields. Since the fields must be continuous across the boundary
r = ct, the diffracted fields are just solutions of the wave

A Sp——————
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equations which satisfy the known boundary conditions at r = ct
and at the surfaces of the wedge.

Now
2 2

9°h 9 h
Vzho = o} + (o]

9x oy

2 .
=1 3_( iﬁg) + 1 B (7)
r or or r2 3¢2

where it is assumed that ho is independent of z. If one con-
siders the diffracted region as it expands with time, it.can be
seen that the only characteristic length of the problem is r =
ct. Thus ho has to be a function r/ct rather than of r or t
separately. Therefore, define the variables

2 1/2
r
p = ct[ - (EE) ] (8)
.2 1/2

a=!- (&) ()
and when we write the wave equation in terms of p and g, one
gets

' 5h dh_\ - B2 '
109 (pz o) 3 ([q2-1] o) 1 °_ o (10)
—2 9p 9 g ] 2 9 -
g2 P P q q g% -1 99

However, since hp is only a function of ¢ and r/ct, it must be
independent of p. Then equation 10 reduces to

5h 3%h
O

) ( 2 o 1
2 _llg®-11 ) + =0 (11)
faNT TRa ) g2 1 g2 - T

: . . . Ty I 2P I S
L sty s TtiTrLO2 T LR ROt SEE RIS Pab AN S I I S

Making the furthef change of variable
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-1
1/2
1/2 2
- (i) ety [(ey) o
p = (E"‘TE) - {r‘ + _(r ) 1] } (12)
the above equation becomes
2

1 3_(p aho) L L 3 h0 _ . (13)
p 3p\" Tp p2 a¢§ )

which is just the Laplace eéuation in a cylindrical (p, ¢) co-
ordinate system with p = 0 at r = 0 and p = 1 at r = ct.

Thus we must solve the Laplace equation subject to the
boundary conditions of field continuity across a circular sec-
tor at p = 1 and [dhp/3¢]¢y, = 0 on the conducting surface of
the wedge. The circular sector is mapped into a semicircle in
the upper half of the W-plane by the conformal transformation

(7H%0,e0)’
W= \e pe (14)
where
-1 |
v =3[ - 2]

The above transformation is for a wedge of angle o = 2¢o which

is bisected by the x-z plane (see figure 1). If a point in the
W-plane is described by the polar coordinates (R, w) (see fig-

ure 2), then

R=op (16)

0= A(¢ - ) (17)

By forming an image of the semicircle below the real axis, we
obtain the problem of solving Laplace's equation given boundary
conditions on a unit circle. For the wedge, we have two cases:

Pl ot v ipesr

—“——

TRAMR L v et ey S Sy et e Ty

e
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(1) If 0 < ¢1 < ¢o, we have reflected pulses on both sides of
the wedge (see figure 3a). Thus at r = ct

hO = 2 for ¢o < ¢ < ¢2 (18)

ho = 1 for ¢2 < ¢ <21 - ¢3 (19)

ho = 2 for 2w =~ ¢3 < ¢ < 271 - ¢o (20)
where

¢2 = 2¢o - ¢l (21)

¢5 = 29 + ooy (22)

When mapped into the complex W-plane, we get corresponding
boundary conditions on the unit circle.

ho =2 for 0 <w<uw = l(¢2 - ¢O) (23)
ho = 1 for Wy <0< W, = A(2w - ¢3 - ¢o) (24)
h0 = 2 for Wy, << T " (25)

where image regions below the real axis have the same boundary
values as the corresponding regions above the real axis. Thus
dho/3¢ will be zero along the real axis, which corresponds to
the conducting edges of the wedge.

(2) When ¢o < ¢1, we get both a reflected region and a shadow

region (see figure 3b). On the unit circle in the complex
plane the boundary conditions become

h

° 0 for 0 < w < w; = A(¢l - ¢o) ’ (26)

h =1 for w, < 0w < w, = A (27T - ¢3 - ¢o) (27)

o 1
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where in this case ¢3 = ¢o + ¢1

h0 = 2 for W, < W | - (28)

with corresponding values below the real axis.,

Thus the problem becomes one of solving the Laplace equa-
tion subject to different constant boundary values along vari-
ous arcs of the unit circle. By superposition, the solution
may be written as the sum of solutions which take on a speci-
fied constant value on one arc of the circle and zero value
over the rest of the boundary. Therefore, we want a harmonic
function v which has the boundary condition v = C on the arc
wh > w > wy of the unit circle and v = 0 elsewhere on the circle,
It can be shown that

v = Im £(W) (29)

where

£(W) = - w_) (30)

Using transformations of this type, Keller and Blank (reference
1) obtain the following expressions for hg:

(1) For 0 < ¢1 < ¢o

h =1+ % tan" L
(1+p

(l—pzx) cosk(¢l-w) }
A

2>‘) sink(¢l—ﬂ) - 2p sinl(¢-ﬂf

(31)

S|

_1{ - (1-p%%) cosA (4,+m) }
tan

(1+02A) sink(¢l+ﬂ) - 2pA sin) (¢-7)

(2) For ¢1 > do
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2A
_ -(1-p"") cosi(¢,~T)
h =l—-1‘-tanl{ 1
: T (1+p

2>‘) sinl(¢l-ﬂ) - 2pl sini (¢-T)

S

-1 -(l—pzl) cosA (¢, +m)
tan (32)

(l+p2k) sinA(¢1+n) - sz sini (¢=-)

where for both cases above the value of the arctangent is taken
to be in the interval between 0 and .

An equivalent expression for hp which holds for any direc-
tion of incidence has been developed by Friedlander by the use
of Green's functions.2 1In Friedlander's notation

_1 -1 sinh k& sin k7
ho = g ten [cosh KE COS KT - cos K(e—eo)]
1 -1 sinh k& sin k7w
+ g tan [cosh KE cOS Km - cos K(6+60Y] (33)
where
£ = cosh™t %E = cosh it (34)
I U S |

K = 3 T — (35)

o is the wedge angle

6 is the polar angle as measured from one face of the
wedge

8o is the angle of incidence of the incoming ﬁlane wave
| (see figure 4)

Again the arctangent is evaluated in the range from 0 to w.

Friedlander's notation is easily related to that of Keller
" and Blank.
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o= 2¢ (36)
A=k’ (37)
e=¢—¢o-=¢—% (38)
8, = &7 = b, (39)

and the expressions can be shown to be equivalent by consider-
ing that cosh-lt = £ implies

T = cosh & (40)

sinh £ = \/cosh2 -1 - (41)

Therefore, from equation 12

1 1 -£

p = , 172 ~ Cosh E + sinh £ © (42)
T+ (t7-1)
Thus
| (1-p%%) = 1 = e™2%% = 27 ginn ke | (43)
(l+p2h) = 2¢7K€ cosh KE : (44)

Upon substituting these expressions into the Keller and Blank
formulas equation 33 is shown to be equivalent to both equa-
tions 31 and 32.

The Friedlander expression for hg (equation 33) -is found
to be easier to work with than the Keller and Blank expressions
(equations 31 and 32) are, and therefore will be used through-
out the rest of this note.
rEL TG Ive Tntr et zits Tan o T e - T

Using the method described in reference 3, we can f£ind the
electric field from the Maxwell curl equation

. cr e [APT

s e ——_ 4 _A <
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> o
VX H-=c¢ 5'1—:- (45)
Now put
i >
ﬁ-o— = hO = hoZ (46)

2> _ ,uo e

c = T (48)

the above curl equation reduces to

>

‘ Jde

: VxR = ° (49)
! (o} 5(01:5

When we define Tt = ct/r equation 49 becomes

83
Co _ fo)
rv X hO = -a—T—- (50)

which, when written in cylindrical coordinates gives

r_aho

(51)




EMP 1-11 128-13 ”l%

L —-

T 8h_ b

e (1) = f =— dT' + C (53) f
o, 1 a0 1 T
1l

‘}i

T ag b ; Q

—_— - 1 - X !

eoe (T) = ./].- ko b_f —a—g-— drt + Cz (54) Pl H

where C1 and C2 are functions independent of T whose values are ' 4i
determined by the requirement of continuity across the circular e
sector defined by T = 1. Also note that since we are integrat- D
ing a partial derivative with respect to T the integrals must Yl
be considered along a path of constant 8.

Now consider the partial derivatives of hg appearing in ﬁju
the integrands of equations 53 and 54. Using equation 33 for i 1
ho, one obtains N

Vi 73 5 (57)
[coshkE coskm - cosm(6+eo)] + sinh“k& sin“kT7

. el
3h sink (6-6 ) S
559 = -% sinhk& sinkm o ~ — — i

[coshk& coskm - cosn(e—eo)] + sinh“kf sin“kmw TE}

b

sinK(6+60)_ y;:

+ (55) {{-
[coshk& coskm - COSK(9+90)]2 + sinhZKE sinzmﬂ !!

b

- 9€ - - 3 -l/ct - T H
r FE = r E[COSh (i:—-)] = \/‘T———_ (56) ‘%'3
7 -1 B

ik

| e

- - 1
dh k. coskm - coshk& cosk (0 eo) Jﬁﬁ
T T sinkm i > 5 ot

[coshk& coskm - cosm(e-eo)] + sinh®«k& sin“kw j “%

Ty

H ;‘;

i

coskm ~ coshkf cosk (6+6 ) ] : Lé

+ g

P

In evaluating ep, and epg, the integrals were calculated i'
numerically. No particular problem occurred in evaluating S
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T Bho
1
f 35— 9T

but difficulties appeared with the convergence of the numerical
integration of

fT -r 88 "o dt' = fT—-T'—-—ah" ar? (58)
% 5 L TS

due to the fact that the denominator of the integrand goes to
zero at the lower limit of the integral. One can avoid this
problem by integrating over £ instead of 1'. Since

1

£ = cosh 1T (59)
T = coshf - (60)
dt = sinh& 4 = VT: - 1 4§ (61)
Thus
T 3h E (1) 5h
;13 0 v
‘/i -r £ at' = [) cosh a’g—o ag (62)

When written in this form, the rate of convergence of the inte-
gral, using Gaussian quadrature numerical integration techniques,
was greatly increased. The numerical convergence was worst
along |6 + 8p| = 7 (i.e. the boundary line between various sha-
dow and reflected regions); along that line the integrals are
accurate to 10-4. Elsewhere, accuracy exceeds 10-6,

III. The Interior Bend

The case of the interior bend is shown in figure 5a. The
interior bend is just a special case of the more general wedge
diffraction formulas developed in section II where now the
wedge angle is "
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o = 2¢o (63)

and the incoming pulse is traveling at the angle

0o =3 =Tz — =T- ¢, (64)

From symmetry considerations, a conducting plane can be placed
along the bisector of the wedge without disturbing the fields.
Thus we have the appropriate diffracted fields for the interior
bend by substituting the above expressions in the diffraction
formulas derived for the wedge.

Since the interior bend was discussed in reference 3, the
field expressions will simply be listed here in a slightly
simpler form. The subscript I will be used to indicate fields
referring to the interior bend.

From equation 33

_ 1 -1 sinhk& sinkw
hy = T tan [coshKE COSKT - sihKS]

+ 1 tan-l[ sinhk& sinkT ]

T COShKE COsSkm + Sinko (65)
where we have used the fact that
cos [K (e + g)] = ¥sink (66)
since k¥ = m/Bf. Similarly, from equations 53, 54, and 62
T ahI
— L}
b f 35 9T + & (67)
r 1 I
fg(’r) BhI
eIe = A cqspi'gz—-dg +_C21, e .o .. (88)

where for the interior bend
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. o . o o
[l+cosal 51n(6+ 7) - sina cos(e+ E) for 6 < 5
Cl = (69)
I . o o
51n(6+ f) for 0 > 5
sina sin(9+ %) + [l1l+cosal cos/et\%) for 9 < %
C2 = (70)
I o o
cos(e+ 7) for 6 > >

while from equations 55 and 57

ahI K ~-COSK0O
5 = Tr sinhk§g SinKﬂ[ > ) )
[coshkE coskT = sink®]° + sinh"kE& sin“kw
; cosk®
; + : ) —2 — ] (71)
| [coshkE& coskm + sink8]° + sinh“k& sin“kr
oh .
‘ I _ K _. CcOsKT ~ coshk& sink6
; v T--‘ESanﬂ

[coshkE& coskm - sinKG]2 + sinthE sinzKﬂ

+ coskm + coshkg sink6 ] (72)

[coshkE coskm +sin|<e]2 + SinthE SinzKﬂ

In reference 3 the fact that the electric field goes to
zero as one approaches the apex of the interior bend was used
to change the range of integration of the integrals giving eIy
and eIg, thus avoiding numerical problems involved in integrat-
ing the expressions near T = 1, Using Friedlander's notation
we were able to numerically integrate the appropriate functions
near T = 1 and thus did not use the limiting forms of el as T
goes to infinity. In fact, for the exterior bend the electric
field goes to infinity near the bend so that such limiting
forms are not even available for the more general case.

The expressions for hi, er,, and erg were evaluated numer-
ically and contour plots of the values of various field compo-
nents within the diffracted region are attached (see figures 8-
! 17) . [Note: For all calculations the polar angle 86 was used
: since 6 is measured from one face of the wedge and is indepen-
dent of any coordinate system. However for all the attached
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graphs the incoming wave is assumed to be propagating along the
x-axis and polar angles are listed in terms of ¢, the angle as
measured from the x-axis.]

IV. The Exterior Bend

A. Exact Expressions

To apply the solutions of the wedge problem to the diffrac-
tion by an exterior bend, we simply let the incoming pulse
travel parallel to one side of the wedge; i.e. 6o = B (see fig-
ure 5b). Thus

COSK(eiBO) = —-cosk0 (73)

since k = 7/B. Let the subscript E refer to fields for the ex-
terior bend.

Because cosk (6+B) = cosk(6-B), equation 33 reduces to
2 -1 sinhk& sinkm
* = £
hE T tan [COShKE cCOosSKT + Ccoskb (74)

Note however that hf goes to 2 at r = ct for 6 > T - o rather
than 1 as indicated in figure 5b. Why this occurs can easily
be seen by considering figure 3b in the limit as the direction
of propagation of the incoming wave becomes parallel to the
lower edge of the wedge. When the incoming pulse direction is
almost parallel to the edge, we get a reflected pulse giving a
boundary condition of h = 2 at r = ct over much of the boundary.
However, when the direction of incidence is actually parallel
to the edge, no reflected pulse appears, requiring hg = 1 on
the boundary. Simply dividing equation 74 by 2 will give us
the required boundary condition without changing the fact that
hgE satisfies the wave equation and the appropriate boundary
conditions on the conducting surfaces of the wedge. Thus

[y

%
_ E
hy = 5= (75)

As before, we write

o r‘ahE .
e = f =— dt' + C (76)
1

36 1E
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E(T) BhE
ep = j. coshg T dg + C2 (77)
o

where now

0 for 0 < 6 < 1T -0
Cl = (78)
E sin (6-7+a) for 6 > 1 - @
0 for 0 < 8 < 7w - q
C2 = { (79)
E cos (6-m+a) for 6 > 7 - «
3h . . .
E _ K sinhk& sinkm sink®
EE PR——. 2 (80)
[coshkE coskm + coskf]” + sinh“k& sin“kw
oh T
E_k sinkm [coskT + coshk& cosk6] (81)
oF T

[coshk& coskT + COSK6]2 + sinthg SinzKﬂ

hr, egEr, and egp were evaluated numerically and contour plots
of the various field components are attached. Also, for the
exterior case, plots of the field components versus T are pre-
sented for various bends and angles of observation. (Such
plots for the interior bend appear in SSN #47--see figures 18-~
35 for the exterior bend.) These graphs are useful in that
they give the time domain waveforms that would be seen on an
oscilloscope monitoring the fields at a given point near the
bend. [Note: The field strengths on these graphs are actually
plotted versus 1% = T - cos¢ where ¢ = 6 - m + o (see figure 5b)
since an observer at (r, ¢) first sees the incoming pulse at
% = 0.]

B. Special Cases

In general, the integrals in the expressions for the elec-
tric fields must be evaluated numerically. However, in the
special case that the wedge angle goes to zero, i.e. the case
of a perfectly conducting half-plane, we can find analytic ex-
pressions for both the electric and magnetic fields. This case
is particularly interesting in that the half-plane corresponds
to the edge of a ground plane or the end of an unterminated
parallel plate wave guide, and the diffracted fields at the
edge of the half-plane describe the effects as a pulse travel-
ing along the ground plane or wave guide hits the edge.
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When the wedge angle goes to zero

Thus
coskm = 0
sinkm = 1

and the expression for hg simplifies to

g

sinh
1 -1 i

hE == tan —5

cos x

Therefore,

. E . B
BhE _ 1 sinh 5 sin
a8 2w 0052 % + sinh2 %

oh cosh

_E_ 1
98 T 2w 2 6 . 3
cos 5 sinh %

COos »

+ [ofew

Using equations 76 and 77 and the identities

sinh& = 2 sinh % cosh %
cosh = 1 + ZSinh2 %

we find for o = 0 tﬁat

128-19

(82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)
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1 6 fE(T) s.1..nh2 %— cosh %
e = = sin = dg + C (90)
Er T 2 cos2 8 + s:.nh2 & lE
o 2 2
1 5 £(1) 1+251nh g)coshg
eg. = 37 €05 3 v 2 E 98 +Cy (91)
5] o 7 4+ sinh -2— E
If we make the change of variables
u = sinh %— (92)
- 1 &
du = 5 cosh 5 ag . (93)
equations 90 and 91 become
u(t) 5
2 gin 9 j G du + C (94)
e = = sin = u
Er T 2 cos2 [ + u2 lE
o 2
u(t)
ep = % cos -g- J (};gu ) s du + C, (95)
6 cos” =+ u E
o) 2
The above integrals over u are easily evaluated giving
g
sinh
ep = %— sin g- sinh % - Ccos % tan l(——— + Cl (96)
R cos E
3 g
sinh = sinh 2
_1 1 2 2 0l . . E _ 6 . -1 2
eE6 = = tan (—T_) + e cos 5 sinh 5 cos 5 tan (-———5—)
cCOSsS 7 CcOsS -2—
+ C, (97)
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where in both equations 96 and 97 the arctangent is evaluated
between ~nm/2 and w/2.

C. Early-Time Diffracted Fields

Although it is not readily apparent how to find analytic
expressions for the electric field integrals for an arbitrary
bend angle, one can find certain asymptotic expressions for the
fields for certain ranges of T.

The early-time diffracted fields are described in the re-
gion just inside the diffraction boundary at T = 1. As T ap-
proaches 1,

£ = cosh™r = [2(1-1)11/2 | (98)

Since & goes to zero as T approaches 1,

2,2

coshkE = 1 + KZE + ogh (99)
: :
sinhk& = k& + O(&7) ) (100) i
e
£2 . : A
t=1+5 +oh (101) o
i
f
and 3{&@
it
ViZ 1 = T = £+ 002D (102) W

Therefore, using these approximations near T = 1, one can write i
from Equations 75, 76, and 77 T [

hE o L tan—l KE sinkTm + 0(53) ! E
™ KZEZ j
COSKT + COSKO + —5=— COSKT S|

. 1 KE sinkm 3 L

o 55 + 0(&7) (103) s

K [
coskT + coskf + ‘§§~ COSKT et
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2
de €
Eq _ T dhg - K s [l+ f—]

K“E

COSKT+coskK0+ 5 cosk®9

- — + o (104)
[coskm+coskB] “+k“E” [1+coskm coskf]

de
E oh .
B .
T = §e ° 7 SLRkT T +0(8)
[coskT+coskB] “+k“E“ [1+coskTcoskb]
(105)
" Since in the region near T = 1
| dr = Edg (106)

one can analytically integrate equations 104 and 105 giving

o)
I
OPW

C,E + c4tan'l( ) + ¢, +0(8% (107)

5 E

O
i

CGE + C tan_l<

OF“

) o o? (108)

7 E

5

where Cly and C2p are defined in equations 78 and 79

sinkm [coskm + coskd + K2 cosk0]

C3 = 3%w 1 + coskT cosk® (109)
sinkw
c, = -C.C. + (110)
4 375 T[1l+coskn cosn<e]l/2

C5 - cCOoSKT + COSK®O (111)

¢ [l+coskw cosn<6]l/2
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_ sinkmT sink®
6 TL1l+coskT cosk8]

(112)
C7 = —C6C5 ’ (113)

where the arctangent term in equations 107 and 108 is evaluated
in the range between -w/2 and w/2.

Since £ is small the tan—1(§{/Cs) term in both equations
107 and 108 can be approximated by the first few terms of its
series expansion, provided C5 is not also near zero. In this
case, we just get

— 3 3
ep = Cif + C4(6’) +C, + 0(E)

0 5 E
- K sinkm -
" T[coskmFcosko] /2(-I) + CZE (114)
c 3
| g 7(& 4
e, =C.E+C (-—) - -(-—) +c, +o(h
e~ % (&) ~ 3\e 1
6 3/2
= —x[2(1-1)] +Cy (115)
3C5 E

Note that whep we expand the arctangent in this way, the 6-
component of er just varies as the first power of &; i.e. a
YT - I. The r-component on the other hand varies as &3 since
the first power terms cancel.

Now consider what happens when Cs5 is small. From equation
111 C5 goes to zero as’ 6 approaches m - a. This is just the
value of 8 which marks the boundary of the shadow region, and
whan we are actually on the boundary T =1 at 6 = 7 - o we are
at the point where we get a discontinuous change in the field
magnitudes from zero to one. If we consider the actual limits
as T + 1 we see that

0 for 0 < 6 < 7w - o0a
lim e = C = % . ) (116)
cos (6-m+a) for 6 > 7 - o

T e e e o e s T

. . i
L g 7 JU LS S .. -

P
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lim eE = C1 =

{0 for 0 < B8 <1 ~-o0
T*+1 r E

(117)
sin(6-m-0) for 8 > 7w -

except when 6 = 7 - o (i.e. C5 = 0). As C5 approaches zero, we
can write

lim tan-l(%—) = -% 6 >mm-0 (118)
C.»0~ 3

5

lim tan-l(%—) = % 8 < T - o (119)
c5+o+ 3

From equation 108 it is easily seen that eg, goes to zero as we
approach 6 = m - a from either side along the circle T = 1.

The case for egg is slightly different since C2g is not contin-
uous across the line 6 = 7 - ¢ and C4 does not go to zero there.
Upon considering C4 it can be seen that

lin ¢, = % (120)
8>m-a
Thus
1
C + = for 6 < w - o
2E 2
li$ ep = (121)
1 6 1
B = C2 5 for 6 > m - «
E
and since
0 for 6 < 1 - «
02 = (122)
B cos (0-1+0a) for 6 > 71 - «

eEg goes to the limit of 1/2 as we approach the limit from
either side of the line 6 = 7 - a; i.e. along the line egg goes
to a value half way in between the values at T = 1 slightly
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away from the boundary of the shadow region. Thus, along 6 =
T - o equations 107 and 108 reduce to

_ _k coskT _1y1L/2 . 1 3
eEe = -z gfﬁEF[Z(T 1)1 + 5+ 0(&™) ’ (123)
ep = :2(-1)1Y% + ogh (124)
r

Figure 6 shows a plot comparing equations 114, 115, 123,
and 124 to the numeric solutions for o = /2. The rate of con-
vergence shown in this figure is typical of that of other wedge
angles oa. As expected, the expressions in equations 114 and
115 converge rather slowly to the numeric solutions when 6 is
near m - 0.

D. Late-Time Diffracted Fields

For late times the diffracted fields approach the static
limit. Thus, since late times correspond to large T (i.e. the
region near the bend), the electric field will go to infinity
as one approaches the apex of the interior bend. We are inter-
ested in obtaining an approximate expression for how both ef
and hg vary in the region near thée bend.

Now, for large T,

£ = cosh™t7 = log(2T) + o(t”?) (125)
Thus

sinhkg = %[exp(K log 2T)-exp(-k log 2T1)] (126)

coshkE = Zlexp(x log 21)+exp(-¢ log 27)] (127)

Since 1/2 < k¥ < 1 and k log(21) = logl[(27)K]

sinhkg = coshkg = R

KE

N[

e (128)

oy

— 5} S Al B Adhat s =

o A a4 o g
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Thus, from equation 75, for large T

Note that this is just half the large T limit on hy as derived
in SSN #47. This factor of two difference occurs because we
normalized the hg field in equation 75. However, hg for large
T still goes to the expected limit of 1 as o approaches 7w (i.e.
limit of no bend in plane).

To find large 1 asymptotic forms for eg, and erg one must
find a way to approximate the integrals in equations 76 and 77.
First consider egr. Equation 76 can be rewritten as

X T ahE
e, (t) - e (0)=f = dTt'
Er Er 1 YY)
g(1)
. 3 T —
= JC 31nthr(£)d£ = Ir (130)
where £y () = 3hg/96. Now the integral Iy can be written as an

infinite series by continually integrating by parts. One ob-
tains

3E_(Z) 32£_(£)

I, = £.(8) coshf - —5p— sinh& + 362 coshi

23£_(£)
T T 3 sinhE + ... (131)
]
For large T
£ () = Mg ¢ sinkm sink® + 0(e~2KE) (132)
r %0 0w 1 _KE

2

e
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it
il
Vi
-
Thus Lo
il
L
87E_(£) 1
r . n . 5}
— = (=k)£_(E) (133) e
n x N
BE f :{ .
i
| N
and the series for I, becomes 1°21
1
< ‘ll III
&~ l. g n ' ‘lll ‘
I, = fr(F,)[2 e ] E K (134) ; H”t
n=0 RN
iR |
e
But since k < 1 we have a simple geometric series which can be ' &53
summed. Db e
gt
2 L g
E n _ i
K= 1% _ (135) i L?%
n=o . B
.
Thus N
o 1 \x _. . (1-x)& (1-2k) & Cl
Ir = (l = K)F sinkm sink6 e + Of(e ) g
i
= = £ sinkr sinke 2017 + o(r1726) (136) it
i,
iy
. il
One can similarly expand : | m-i
£ 3hy ’ .
IB = f coshg E dag (137) ik
o R
\ . :.’
i .‘;: )
and obtain for large =t i
;i; l
T 1-k 1-2x iy
Ig = 1= ° 7 sinkm coskb6 (271) + O(T ) (138) i ﬁzﬁ
_ | ; 3 |
Thus it can be seen that eg, and egg just vary as 1l-X as 1 be- ;ij
comes large. Since k < 1 ;1}54
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lim e = lim e = 40 (139)

Note that

ep 1 ep © plo=m)/21=0) _ k-1

(140)
Er 8

If one considers the more general problem of diffraction at any
sharp edge, a set of edge conditions describing the field vari-
ation as one approaches the edge can be derived from energy
conservation considerations. Jones4 has derived such edge con-
ditions and they match the variation with r given above.

Although equations 136 and 138 describe the behavior of
the electric field for large £, the actual values of eg, and
egg approach these limits very slowly with increasing T due to
the logarithmic dependence of £ on T (see equation 125). To
obtain an asymptotic expression that approximates the desired
integrals more closely it is necessary to obtain another term
in the asymptotic series describing the integrals. One way of
finding such terms is to consider the integral of the difference
between the actual integrand and the large T approximations;
i.e, write

3
sinhg! fr(E')dE'

H
p]
I
o) >

g L
= f [sinh?—;' £.(€") - % sinkm sinke e(17¥)E ]dg'
o

g -
+f K siner sinko Y L T (141)
(o]

The second integral is just equal to the expression in equation
136. Since the first integral must go to zero as & becomes
large, it can be written as

I, = —j- [sinhE' fr(E') - % sinkm sink® e(l;K)g']dE' (142)
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Here we use the large T approximation

KE

e sinkm sink®0

=
A
N ] =

(143)
+ 2(% ng) COSKT CcoOskb

Upon substitution into equation 142 and simplification by drop-
ping certain unimportant terms, one gets

. _2K sinkm sink6 £ (1-2k) £(1-3k)
Irl = T(I=2%) COSKT coskf e + O(e )

(144)

Similarly, the first order correction to thé integral giving
egg is for large T

. _2K sinkm g(l;ZK) £-(1-3k)
Iel = ﬁTTz?ET—(COSKﬂ+COSKe)COSKﬂ coskf e + Of(e )
(145)

However, even including these first order corrections, the
asymptotic forms do not approach the numerical calculation of
the integral very rapidly. A graph showing both the asymptotic
approximations and the results of numerical integration is at-
tached (see figure 7). This graph is plotted for a wedge angle
of o = m/2 and gives a fairly representative idea of the rate
of convergence of the above asymptotic forms for large t. It
1s apparent however that higher order terms in equations 144
and 145 are dependent on k; since k goes to 1 as the wedge
angle approaches m (no bend) the above expressions converge
faster for small bends.

V. Results

The results of this note are primarily contained in the
attached contour plots of the various diffracted field compo-
nents in the region around the bend. However, a few of the
general characteristics of these contour plots can easily be
summarized.

For the interior bend, refer to figures 8-17 of this note
and to SSN #47. It is easily seen that the magnitude of hrt is
enhanced everywhere in the diffracted region with the greatest
values occurring in the reflection zone of geometrical optics
(i.e. in the region ¢o < ¢ < 2¢0). And in this reflected zone,
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h1i increases to the limiting value of hy = 2 at the outer
boundary of the diffraction region (i.e. at T = 1), It is also
obvious that the magnetic field becomes larger everywhere in
the diffracted region as the bend angle ¢o increases.

The total magnitude of the electric field behaves quite
differently. eItotal is generally less than 1 for negative x,
while eItptzl is enhanced for positive x, particularly in the
reflected zone ¢o < ¢ < 2¢00. eItotal becomes smaller as one
approaches the apex of the bend (actually goes to the limit of
zero) and the contours approach circular arcs near the apex.
This is expected since the fields go to the static limit in
this area. At the edge of the diffracted region, eItgtal has
the limits

1 for 2¢o < ¢ < T
limit e =

> 1t “total 2cos¢  for ¢ < ¢ < 2¢

Thus the largest electric fields occur just inside the dif-
fracted region boundary when ¢o < ¢ < 2¢q.

The x-component of the diffracted electric field is by it-
self a good measure of the amount of diffraction since the in-
cident electric field has no x-component. Also note that ery
is negative everywhere in the diffracted region.

For small bends, ely is almost the same as the total elec-
tric field since eIx is Vvery small for slight bends. As the
bend angle increases, eIy becomes less than 1 over an increas-
ing area of the diffracted region. 1In fact, for ¢o > 7/4, ely
is less than 1 everywhere in the diffracted region.

One should also note that eIy and eIy have the following
limits at the boundary 7 =1

-sin2¢ for ¢_ < ¢ < 24
limit-e; = { © © © (147)
1t X 0 for 2¢o <P <™

1 + cos2¢ for ¢ < ¢ < 2¢
limit e, = { °© °© © (148)
1+t v 1 for 2¢_ < ¢ <

Now consider the exterior bend. (See figures 18-35. In-
cluded in these figures are both contour plots and graphs of
the fields as a function of time. Remember that the contour
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plots describe the fields as a function of position at a given
time while the graphs give the fields at a given point as a
function of time.)

For the exterior bend, the magnetic field is less than the
incident magnetic field everywhere inside the diffracted region.
Why this is true can be seen intuitively from the fact that the
diffracted fields fill a larger volume of space than the inci-
dent field would if there were no diffraction. The smallest
values of hg occur near T = 1 for ¢ < 0 since hg goes to the
limit 0 as T approaches 1 in the shadow region.

Now consider the diffracted electric field for the exter-
ior bend. The magnitude of the total electric field goes to
infinity at the apex of the exterior bend, rather than zero as
it did for the interior case; and eEtotal is greater than 1 in
the upper left hand portion of the diffracted region and less
than 1 elsewhere. These results are essentially opposite those
observed for eItotal-

The x-component of the electric field is again a measure
of the amount of diffraction since the incident electric field
has no x-component. Thus eEx is greatest in the shadow region,
but now it has its largest magnitude near the bend rather than
at the outer edge of the diffracted region as was the case for
€lx.

€Ey 1s very similar to eE{otal in the upper left hand part
of the giffracted region and it gradually becomes smaller as
one rotates around toward the shadow region where egyx becomes
more important in determining the total electric field.

The special case of diffraction at the edge of a conduct-
ing half-plane (i.e. o = 0) is particularly interesting with
respect to the symmetry of the contour lines (see figures 33
and 34). The symmetry results from the fact that the incoming
wave 1s propagating parallel to the symmetry plane of the wedge.

Thus it can be seen that the interior and exterior bends
are similar in that the diffraction effects become larger as
the bends vary more from the flat plate, and both cases ap-
proach the limit of no diffraction for a planar conducting
sheet. However the regions of largest fields within the dif-
fracted area occur in essentially opposite areas for the in-
ternal and external bends.

VI. Summary

We have calculated the diffracted field around exterior
and interior bends in a planar conducting sheet using an incom-
ing step-function pulse traveling parallel to one gdge of the
conducting plate. For a TEM type incoming pulse, H was found
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by solving the scalar wave equations, and E determined from H
by use of one of Maxwell's equations. Since the interior bend
case was discussed in SSN #47, the exterior bend was studied in
more detail here, with contour plots of the field strengths in
the neighborhood of the bend being calculated for both cases.
The application of these results to bends in a parallel-plate
wave guide is obvious, a special case of interest being the
limiting case of a half-plane; i.e. an unterminated wave guide.
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h=1
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FIGURE 1. DIFFRACTION OF A STEP-FUNCTION WAVE AT A PERFECTLY CONDUCTING
WEDGE: BEFORE WAVE INCIDENCE (1< 0)
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FIGURE 2. COMPLEX W-PLANE WHERE EDGES OF CONDUCTING
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FIGURE 3, DIFFRACTION OF A STEP-FUNCTION WAVE AT A PERFECTLY
CONDUCTING WEDGE: AFTER WAVE INCIDENCE (t>0)
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CONDUCTING WEDGE: FRIEDLANDER GEOMETRY
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