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Abstract

Using a method developed by Keller and Blank, the wave
equation is solved to give an exact expression for the dif-
fracted magnetic field about a perfectly conducting wedge.
From one of Maxwell’s curl equations, the corresponding elec-
tric field components are written in terms of integrals over
certain derivatives of the magnetic field. These results are
applied to the diffraction of an incident semi-infinite plane
wave propagating parallel to a perfectly conducting sheet when
this incoming wave hits an interior or exterior bend in the
sheet. For a unit incident electromagnetic plane wave with a
step-function time history, the fields were calculated numer-
ically and contour plots of field values in the area surround-
ing the bend are presented. Such results have obvious applica-
tion to the diffraction at bends in a parallel plate wave guide.
Also, the special case of a plane wave coming to the end of a
flat plate (i.e. the limiting case of a very thin wedge) is
specifically considered since it describes the diffracted
fields at the end of an unterminated wave guide or the edge of
a ground plane.
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THE DIFFRACTION OF AN ELECTROMAGNETIC PLANE WAVE
BY INTERIOR AND EXTERIOR BENDS IN A

PERFECTLY CONDUCTING SHEET

ABSTRACT

Using amethod developedby Kellerand Blank,
is solvedto givean exactexpressionforthe cliffratted

thewave equation
magnetic fieldabout

a perfectlyc&ducting wedge. From one ofMaxwell’s curlequations,the
correspondingelectricfieldcomponents are writteninterms ofintegrals
over certainderivativesofthemagnetic field.These resultsare applied
tothe diffractionofan incidentsemi-infiniteplanewave propagatingparallel
to a perfectlyconductingsheetwhen thisincoming wave hitsan interior
or exteriorbend inthe sheet. For a unitincidentelectromagneticplane
wave witha step-functiontime history,thefieldswere calculatednumerically 1

and contourplotsoffieldvaluesinthearea surroundingthebend are pre-
sented. Such resultshave obviousapplicationto thediffractionatbends in
a parallelplatewaveguide. Also, the specialcase ofa planewave coming
tothe end ofa flatplate(i.e., the limitingcase ofa very thinwedge) is
specificallyconsideredsinceitdescribesthe diffractedfieldsatthe end of
an unterminatedwaveguide or theedge ofa ground plane.
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Introduction

When an electromagnetic plane wave encounters an obstacle,
resultant fields are generally much more complicated than
incoming fields and correspondingly more difficult to cal-

culate. One of the few cases where Maxwell’s equations can be
solved in closed forms is that of the diffraction of a uniform
electromagnetic plane wave at a bend in an infinite, perfectly
conducting sheet. If the direction of propagation of the in-
comi,ngpulse i.sperpendicular to the straight line formed by
the bend, the problem reduces to that of calculating the two-
dimensional d~ff$acted fields at a perfectly conducting wedge.
If the incident H is parallel to the bend and the incoming semi-
i.nfi.nitewave travels along one edge of the two-dimensional
wedge (i..e.wedge i.sinfinite in direction perpendicular to
cross-section being considered) , the magnetic field has only
one component and the vector wave equation reduces to the much
simpler scalar wave equation. Such restrictions on the incom-
ing pulse are just those required for TEM mode propagation on a
wave guide. Thus our results will be directly applicable to
the early-time (i.e. before other reflections and diffractions
interfere) diffracted fields at a bend in the plates of a par-
allel plate wave guide.

The problem of diffraction of a scalar
?~~neT~~re~~12s Ofwedge has been considered by several people.

the work by Keller and Blank (reference 1) were applied in an
earlier note3 to calculate the diffracted electromagnetic
fields at an interior bend in a conducting plate. This note is
an extension of the earlier work where we now consider the case
of an exterior bend. (See figure 5 for an explanation of the
terms “interior” and “exterior” bends.) The interior and ex-
terior bend problems vary in several respects. First of all,
for the i.nteri.orbend a reflected pulse must be considered,
while the exterior bend case has no reflected pulse but a sha-
dow region instead. Perhaps+more important is the fact that,
as one appr~aches the bend, E goes to zero for the interior
bend while E approaches infinity for+the exterior bend.- As in
reference 3 we will first calculate H using the scalar wave
equation and then find E from one of Maxwell’s equations along
with known boundary conditions.

Solutions for the field diffracted by an exterior bend
have obvious applications to bends in a parallel plate wave
guide. If we let the bend angle u (see figure 5b) approach
zero, we have a solution for the fields reflected and diffracted
at the end of an unterminated wave guide. And in future notes
we also hope to consider using solutions for the two-dimensional
case discussed here as approximations for the fields diffracted
by more complicated three-dimensional geometries such as a
cone-cylinder interface.

‘1
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II. Diffraction of a Plane Wave by a Perfectly Conducting
Wedqe

We will first consider the general case of diffraction of
a step function plane wave by a perfectly conducting wedge.
For completeness we will first repeat some of the development
given in reference 3 and then we will depart from the previous
work to develop new and mathematically simpler expressions for
the diffracted fields.

The incoming plane wave i.sdescribed by

iii
[

=HoUt- : cos(f#)- 01)]e

where

Ho = Ii!iil= magnitude of incoming magnetic field

U is the Heaviside unit step function

(1)

r,$ are coordinates shown in figure 1

c = velocity of propagation of the

t = time (t = O when pulse reaches

$1 is the angle of the direction of
spect to the x-axis /

pulse

bend)

propagation with re-

; is a unit vector along the bend (see figure 1)

Similarly

fii
[

=EoUt-:cos((#)- $?+]?

where

Ifiil = Zoliii[

(2)

(3)

.- .,
. .. :,., J-~-v.... A.- .: !-. : ,,

Z. = impedance of free space = —=-1207i “- ‘-:; .“”:
‘o
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(For convenience it is assumed that c =

Since the incoming wave arrives at
att= O, the diffracted field can have
r = ct at some time t > 0. The bend is

128-5

&c)I v = lJo.)

the bend (i..e.origin)
reached only as far as
just a line along the

z-axis; i.e. a surface of zero area. Thus , ng net”$nergy is
scattered from the bend. This requires both E+and H+to be con-
tinuous across the surface r = ct. The total E and H fields
must also satisfy the wave equation

(4)

along with the boundary conditions at a perfectly conducting
plane

where on describes the perfectly conducting surfaces.

Since ~ has only a component along ~, the vector wave
equation reduces to the scalar equation

2
V2ho - ~~

c’
~t2 ‘o = o

where

(5)

(6)

fi_=h;
Ho-o

(The subscript o will be used to indicate the various diffracted
fields for the general case of a plane wave approaching a wedge
at an arbitrary angle.) Outside the diffracted region (i.e.
r > et) , ho is just the sum of the incident and reflected
fields. Since the fields must be continuous across the boundary
r = et, the diffracted fields are just solutions of the wave
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equations which satisfy the known boundary conditions at r = ct
and at the surfaces of the wedge.

Now
. .

a2h a2ho
V2ho = ~- + —

ax ay2

()
2

=laahO+l ahO.—
r ar ‘%7 Fz

(7)

where it i.sassumed that ho is independent of z. If one con-
siders the diffracted region as it expands with time, i-t.canbe
seen that the only characteristic length of the problem is r =
Ct. Thus ho has to be a function r/et rather than of r or t
separately. Therefore, define the variables

(8)

(9)

and when we write the wave equation in terms of ‘p and q, one
gets

., ., . .

->i(p+)-%([~-a- 1 $’-=0< “:’10).2-1

However, since ho is only a function of 1#1and r/et, it must be
independent of p. Then equation 10 reduces to

(
ah.

)

a2ho
& [q2-u~ + q21_ ~ ~= 0

~. .. -”. . . .. .
(11)

.-

. ..=.. . .. . . ,, -j-. ; 1/ -,:~-ri,., .,>-.+, ::---
:.. -. . , ,, -. -,. ..~::[~..>;.; :>:: ,. ;;.; ;>-.

.: ”-- “----- .-
. . . .

Making the further change of variable

I
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P (s’={%+ [(:)2-ql’2~.q
the above equation becomes

(12)

(13)

which is just the Laplace equation in a cylindrical (P, $) co-
ordinate system with p = O at r = O and p = 1 at r = ct.

Thus we must solve the Laplace equation subject to the
boundary conditions of field continuity across a circular sec-
tor at P = 1 and [ahO/a@ld~ = O on the conducting surface of
the wedge. The circ~lar 6~ctor is mapped into
the upper half of the W-plane by the conformal

( -i@. A

W= e pei$)

a semicircle in
transformation

(14)

where

(15)

I

The above transformation is for a wedge of angle a = 2@. which
i.sbisected by the x-z plane (see figure 1). If a point in the
W-plane i.sdescribed by the polar coordinates (R, w) (see figu-
re 2), then

(16)

(l.) = A(f$ - O.) (17)

By forming an image of the semicircle below the real axis, we
obtain the problem of solving Laplace’s equation given boundary
conditions on a unit circle. For the wedge, we have two cases:
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i

I
I

(1) If O < @l < $., we have reflected pulses on both sides of
the wedge 7see Zigure 3a). Thus at r = ct

ho = 2 for @o < $ < $2 (18)

ho = 1 for $2 < @ < zm- (#l
3 (19)

ho = 2 for 21T- $3<4<2T-$0 (20)

where

$2 = 2(f).- (#11 (21)

= 2$0 + $1$3 . (22)

When mapped into the complex W-plane, we get corresponding
boundary conditions on the unit circle.

ho = 2 for O < LO< ul= A(@2 - $.)

ho = 1f0rul<u<02=A(2n -@3-$o)

(23)

(24)

ho = 2 foru2 < u < n - (25)

where image regions below the real axis have the same’boundary
values as the corresponding regions above the real axis. Thus
~ho/a@ will be zero along the real axis, which corresponds to
the conducting edges of the wedge.

(2) When $0 < $1, we get both a reflected region and a shadow
region (see figure 3b). On the unit circle i.nthe complex
plane the boundary conditions become

ho = O for O < u < WI = A{@l - $.) (26)

I ho = 1 for WI < u < rJ.)2= ~(2T - $3 - @o)‘1 (27)

~,
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where i.nthis case

with

tion

ho = 2 for W2

corresponding values below the real axis.

128-9

(28)

Thus the problem becomes one of solving the Laplace equa-
subject to different constant boundary values alonq vari-

ous arcs-of the unit circle. By superposition, the solfition
may be written as the sum of solutions which take on a speci-
fied constant value on one arc of the circle and zero value
over the rest of the boundary. Therefore, we want a harmonic
function v which has the boundary condition v = C on the arc
ub > u > ~a of the unit circle and v = O elsewhere on the circle.
It ~an Fe shown that

v = Im f(W) (29)

where

[1
iu
b

f(W) = ~lnw~ - :(ob - ma)

W-ea

(30)

Using transformations of this type,
1) obtain the following expressions

Keller and Blank (reference
for ho:

(1) For O < $1 < $0

ho=l+

{

(1-.pz~)cosA(@@
* tan-1

(1+P2A) sin~($l-n) - 2PA sinA($-7r)’

(31)

I

I

1’

1,

f’
1

II

,.
,!

II
i,

I

(2) For $1 > 1$0
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1

!,

,!’
‘,!!,
!)[
‘,

ho=l- $ tan
-1

J.

-(1-02A)Cosml+r)
(l+p2A) sin~(~l-m) - 2p~ sin~($-r)

(32)

where for both cases above the value of the arctangent i.staken
to be in the interval between O and m.

linequivalent expression for ho which holds for any direct-
ion of incidence has been developed by Friedlander by the use
of Green’s functions.2 In Friedlander’s notation

ho = ~ tan
-1

.[

sinh KC Sin K7r
cosh K~ COS ICm- COS K(6-00)1

+ ~ tan-l
[

sinh K~ sin KIT
cosh Kg COS KIT- COS K(e+eod

where

c -1 Ct - -1
= cosh ~ = cosh -c

a is the wedge angle

(33)

(34)

(35)

(3i.sthe polar angle as measured from one face of the
wedge

e. is the angle of incidence of the incoming plane wave
(see figure 4)

Again the arctangent is evaluated in the range from O to IT.
.-.

Friedlander’s notation is easily related to that of Keller
and Blank.
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(30=fjl-oo

(36)

(37)

(38)

(39)

and the expressions can be shown to be equivalent by consideri-
ng that cosh-l~ = ~ implies

-c= cosh 5

sinh ~ ={cosh’ - 1

Therefore, from equation

P
1= =

‘r+ (T2-1)
1/2

Thus

(1-p2A) = 1 - e-2KE
:

12

1
cosh C + sinh ~

=Ze-”g sinh KC

(l+p2A) = 2e-Kg cosh KC

Upon substi.tutimg these expressions into

(40)

(41)

(42)

1

I

I

,,

ji

,

(44)

I
the Keller and Blank I

formulas equation 33 & shown to be equivalent to both equa-
tions 31 and 32. I

I

The Friedlander expression for ho (equation 33) is found t

to be easier to work with than the Keller and Blank expressions I

(equations 31 and 32) are, and therefore will be used through-
out the rest of this note.

i
.,. 1.,.,, .......... .. . ;~;”:.,:,:.,;:-:”;--- -:1..<.-; i-- 1. - . -. ~

Using the method described in reference 3, we can find the
electric field from the Maxwell curl equation I
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+-

vxii =&g

Now put

~=~=h>
Ho o 0

(45)

(46)

(47)

and since

the above curl equation reduces to

When we define T s et/r equation 49 becomes

which, when written in cylindrical coordinates gives

ae

‘e ah. a~ ahO

T7=-rF=-rETr

Thus

(48)

(49)

(50)

(51)

(52)
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J
T ah.

e. (T) = — dr’ + Cl
r

~ ae

J
T

e (T) = a~ ahO

‘e 1

-rnmd~1+C2

128-13

(53)

(54)

where Cl and C2 are functions independent of T whose values are
determined by the requirement of continuity across the circular
sector defined by T = 1. Also note that since we are integrati-
ng a partial derivative with respect to T the integrals must
be considered along a path of constant f3.

Now consider
the i.ntegrandsof
ho, one obtains

the partial derivatives of ho appearing in
equations 53 and 54. Using equation 33 for

+

In

sinK(8-eo)

2 2
.[coshK~ COSKIT- CoSK(e-eo)] + sinh K~ sin2K?’r

SinK(o+Oo) . .1 (55)
[coshK~ COSK~ - COSK(e+eo)]z + sinhzK~ sinzKnj - -

-r ~[COSh_l(~)] = , ~ (56)

d~” - 1

[

COSKIT- cOshKC COSK(e-eo)
sinK7r

[coshK~ COSKIT- COSK(&eo)]2 + sinh2K~ sin2K7r

COSK’7i- coshKC COSK(e+eo)

1 (57)
[coshKe COSK~ - COSK(9+eo)]2 + sinh2K~ Sin2KIT

evaluating eor and eoe; the integrals were calculated
numerically. No particular problem occurred in evaluating

I
I

I
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but difficulties appeared with the convergence of the numerical
integration of ‘-

ah.

&
lrd”

-1

(58)

due to the fact that the denominator of the integrand goes to
zero at the lower limit of the integral. One can avoid this
problem by integrating over c instead of T’. Since

E
-1

= cosh ~ (59)

‘r = coshc -

Thus

#

When written in this form, the rate of convergence of
gral, using Gaussian quadrature numerical integration
was areatlv increased. The numerical convergence was

(60)

(61)

(62)

the inte-
techniques,
worst

alon~ [e ~“(lol= m (i.e. the boundary line b;tween various sha-
dow and reflected regions); along that line the integrals are
accurate to 10-4. Elsewhere, accuracy exceeds 1o-6.

III. The Interior Bend

The case of the interior bend is shown in figure 5a. The
interior bend is just a special case of the more general wedge
diffraction formulas developed in section II where now the
wedge angle is

..
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(63)

and the incoming pulse is traveling at the angle

7r- 40

From symmetry considerations, a
alonq the bisector of the wedge

(64)

conducting plane can be placed
without disturbing the fields.

Thus-we have the appropriate diffracted fields fo= the interior
bend by substituting the above expressions in the diffraction
formulas derived for the wedge.

Since the interior bend was discussed in reference 3, the
field expressions will simply be listed here in a slightly
simpler form. The subscript I will be used to indicate fields
referring to the interior bend.

From equation 33

-1
~ tan [ sinhK~ sinK7r

‘I=n coshK~ COSKm - SlnK8 1

+ * tan-l[ sinhK~ sinKn
coshK~ COSK’7T+ SlnK61

where we have used the fact that

since K = IT/b. Similarly, from equations 53, 54, and 62

J
-cahl

‘Ir = ~ ~d=’ + C1l

(65)

(66)

(67)

J
E.(T)

’16 = o
cosh~ .(68).. .~d~+C2 ,: .,.,:,,. ,.,,

I’ ““”

where for the interior bend



II
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I
1

128-16 EMP 1-11

{

[l+coscx] sin (0+ j) - sins cos (0+ ~) fore<%

%1 = (69)

sin(tl+~) fore>;

{

‘inu ‘in(e+3 + [l+ COSCL] cOs’e+ ~ ) fOre<~\2

C21 =
cOs(e+ ~) f0rf3>~

(70)

while from equations 55 and 57

ahl
-~ sinhK~ sinK7r

[

‘COSKe

[COShK~ COSKIT- SinKe]2 + sinh2K~ sin2Kr

+
COSKe

[coshK~ COSKIT+ sinKe]2 + sinh2K~ sin2Kr 1
(71)

I ahl
~ sinKm

I [

COSKIT- coshKC sinKe
r=7r [coshKC cosKn - SinKe]2 + sinh2K~ sin2K1’r

+
COSKT + coshK5 sinK6

( 1 (72)
[coshK~ COSKIT+SinKe]2 + sinh2K~ sin2Kn

In reference 3 the fact that the electric field goes to
zero as one approaches the apex of the interior bend was used
to change the range of integration of the integrals giving eIr
and e16, thus avoiding numerical problems involved in integrat-
ing the expressions near T = 1. Using Friedlander’s notation
we were able to numerically integrate the appropriate $unctions
near ~ = 1 and thus did not use the limiting forms of eI as T
goes to infinity. In fact, for the exterior bend the electric
field goes to infinity near the bend so that such limiting
forms are not even available for the more general case.

The expressions for hr, eIr, and e16 were evaluated numer-
ically and contour plots of the values of various field compo-
nents within the diffracted region are attached (see figures 8-

1 17). [Note: For all calculations the polar angle e was used
since f3is measured from one face of the wedge and is indepen-
dent of any coordinate system. However for all the attached
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graphs the incoming wave is assumed to be propagating along the
x-axis and polar angles are listed in terms of $, the angle as
measured from the x-axis.]

Iv. The Exterior Bend

A. Exact Expressions

To apply the solutions of the wedge problem to the diffrac-
tion by an exterior bend, we simply let the incoming pulse
travel parallel to one side of the wedge; i.e. eO = 6 (see fig-
ure 5b). Thus

COSK(e~f)o) = ‘COSKe (73)

since K = lT/fl. Let the subscript E refer to fields for the ex-
terior bend.

Because COSK(e+6) = COSK(e-B) , equation 33 reduces to

h; = -1
# tan [

sinhK~ sinKTr
COShKc COSKIT + COSKf3 1 (74)

Note however that hfigoes to 2 at r = ct for (3> m - u rather
than 1 as indicated in figure 5b. lihythis occurs can easily
be seen by considering figure 3b in the limit as the direction
of propagation of the incoming wave becomes parallel to the
lower edge of the wedge. When the incoming pulse direction is
almost parallel to the edge, we get a reflected pulse giving a
boundary condition of h = 2 at r = ct over much of the boundary.
However, when the direction of incidence is actually parallel
to the edge, no reflected pulse appears, requiring hE = 1 on
the boundary. Simply dividing equation 74 by 2 will give us
the required boundary condition without changing the fact that
hE satisfies the wave equation and the appropriate boundary
conditions on the conducting surfaces of the wedge. Thus

As before, we write
. . .

..’ .

J
T’ahE

—dr’ + Cl
‘Er = ~ ae E

(76)
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(77)

where now

{

o forO < 6 < n- a

CIE =
(78)

sin(f3-T+a) for 6 > IT-a

I
o for O < 0 < IT- a

C2E =
(79)

Cos(e-lr+a) for e > IT-a

ahE ~ sinhK~ sinKT sinK9

[coshK~ COSKIT+ COSKe]2 + sinh2K~ Sin2KIT
(80)

ahE
SiIIKITICOSKIT + coshK~ COSK6]

w=:
(81)

[coshK& COSKT + COSK6]2 + sinh2K~ sin2KTr

hE, eEr, and eEe were evaluated numerically and contour plots
of the various field components are attached. Also, for the
exterior case, plots of the field components versus T are pre-
sented for various bends and angles of observation. (Such
plots for the interior bend appear in SSN #47--see figures 18-
35 for the exterior bend.) These graphs are useful in that
they give the time domain waveforms that would be seen on an
oscilloscope monitoring the fields at a given point near the
bend. [Note: The field strengths on these graphs are actually
plotted versus T* = T - COS$ where @ = 6 - IT+U (see figure 5b)
since an observer at (r, $) first sees the incoming pulse at
T* = o.]

B. Special Cases

In general, the integrals in the expressions for the elec-
tric fields must be evaluated numerically. However, in the
special case that the wedge angle goes to zero, i.e. the case
of a perfectly conducting half-plane, we can find analytic ex-
pressions for both the electric and magnetic fields. This case
is particularly interesting in that the half-plane corresponds
to the edge of a ground plane or the end of an unterminated
parallel plate wave guide, and the diffracted fields at the
edge of the half-plane describe the effects as a pulse travel-
ing along the ground plane or wave guide hits the edge.
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When the,wedge angle goes to zero

K
1=-
2

(82)

Thus

COSK’T = o

sinKn = 1

and the expression for hE simplifies to

Therefore,

Using equations 76 and 77 and the identities

2Ecosh~ ~ 1 + 2sinh ~

we find for a = O that

(83)

(84)

(85)

(86)

(87)
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(90)

J
~(T) l+2sinh2~)cosh ~

1 e (
‘E~ = ~ Cos ~

COS2 ~ + sinh2 ~ ‘5 + C2E
(91)

o

If we make the change of variables

equations 90 and 91 become

f

U(T)
2.0 U2

‘Er = ~ ‘~n ~
du + Cl

COS2 ;+U’
o E

J
U(T)

1 e (1+2U2)
‘E~ = ~ Cos ~ du + C2

Cos :+u~
o

E

The above integrals over u are easily evaluated giving

[

. E

( )]2 . esinh~-cose -ls=tiZ +C
‘ER = ~ ‘In ~ 2 ~ tan

e lE
Cos —2

(92)

(93)

(94)

(95)

(96)

~ tan‘Ee = IT ‘l(~)+$cos ~~inh$- cos ~tan_l(-)]

+C
2E (97)
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.i

I

where in both equations 96 and 97 the arctangent is evaluated
between -IT/2and 7r/2.

c. Early-Time Diffracted Fields

Although it is not readily apparent how to find analytic
expressions for the electric field integrals for an arbitrary
bend angle, one can find certain asymptotic expressions for the
fields for certain ranges of T.

I

The early-time diffracted fields are described in the re-
gion just inside the diffraction boundary at T = 1. As T ap-
proaches 1,

,!

I

~ = cosh-l~ = [2(T-1)]1/2 (98)

Since g goes to zero as T approaches 1,

coshK~ = 1 + *+ 0(54) (99)

(loo)

(101)

and
:,
1

:1
,1
1,
i:= g +0(52) (102)

approximations near T = 1, one can write

+ 0(C3) “

,,

!i
1’

1,1

Therefore, using these
from Equations 75, 76,

tan
-1

1

Kc sinKn
22
KcCOSKT + COSKe + ~ COSKIT

Kg sinKn
22 + 0(E3)
K<COSKIT+ COSKe + ~ COSK~

(103)
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~2E2

[

COSKIT+COSK6+ ~ COSKe
●

1

+ 0(E4)

[COSKIT+COSK8] 2+K2E2 [l+ COSKIT COSKe]

(104)

aeE ah

+ ‘Tl3- $ sinKw
{

Kg sinKe

1

+ O(E3)
[COSKIT+COSKe]2+K2E2 [l+cosKwcosKf3]

(105)

Since in the region near T = 1

(106)

one can analytically integrate equations 104 and 105 giving

-1 c

‘E~ ()
= C3g + C4tan ~ + C2E .+0(~3)

-1 ~
‘Er ()

= c6~ + c7tan ~ + c~E + 0(~4)

where CIE and C2E are defined in equations 78 and 79

SiIIKIT [COSKIT + COSKe + K
2

COSKe]

C3 ‘m 1 + COSKIT COSKe

sinKn
C4 = -C3C5 + 2

7i[l+COSK7T COSKe]l’

COSKIT + COSKe
C5 =

K[l+COSKIT COSKe]ln

(107)

(108)

(109)

(110)

(111)

.——..—
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sinKn sinKO
C6 = IT[l +COSK7T COSKe]

(112)

C7 = “6C5

where the arctangent
in the range between

term
-7r/2

in equations
and 7T/2.

(113)
.

107 and 108 is evaluated

Since ~ is small the tan-1(~/C5) term in both equations
~11107 and 108 can be approximated by the first few terms of its

series expansion, provided C5 is not also near zero.
case, we just get

E
‘E~ ()

‘C3~+c4~+c2 + 0(E3)
E

K sinKT= /~- + c
lTICOSKIT+COSKe] 2E

‘Er
= C6E + C7($) - %)3 + CIE + 0(’4)

C6
‘ ~[2(T-1)13’2 + c1

3C5 E

Note that whe~ we expand the arctangent in this way,
component of eE just varies as the first power of ~;
~. The r-component on the other hand varies as
the first power terms cancel.

In this

(114)

(115)

the e-
i.e. a
53 since

Now consider what happens when C5 is small. From equation
111 C5 goes to zero as”e approaches m - a. This is just the
value of e which marks the boundary of the shadow region, and
when we are actually on the boundary T = 1 at f3= IT- a we are
at the point where we get a discontinuous change in the field
magnitudes from zero to one. If we consider the actual limits
as~+l

lim
T+l

we see that

I
o for O < e < IT-U

‘Ee = C2E =
(116)

cOs(e-~+~) forf3>T’-a
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1
0 for O<ec n-u

lim eE = Cl = (117)
~+1 r E sin(e-r-u) for 8 > 7r- a

except when
can write

e IT-= u (i.e. C5 = O). As C5 approaches zero, we

(118)
c5+()- \L31 L

lim tan-1 E

()q= %
f3<n-a (119)

C5+O+

From equation 108 it is easily seen that eEr goes to zero as we
approach e = IT- u from either side along the circle T = 1.
The case for eEO is slightly different since C2E is not contin-
uous across the line 6 = IT- a and C4 does not go to zero there.
Upon considering C4 it can be seen that

lim C4 = * (120)
e+-n-a

Thus

{

1

C2E + z
for e < IT- a

lim eE =
~+1+ e 1
e+n-a C2E - z

for e > IT- a

(121)

and since

{

o fore <7r-a

C2E =
(122)

cOs(e-r+~) for e > IT- a

eEe goes to the limit of 1/2 as we approach the limit from
either side of the line e = IT- a; i.e. along the line eEO goes
to a value half way in between the values at T = 1 slightly
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away from the boundary of the shadow region. Thus , along El=
m- u equations 107 and 108 reduce to

‘E~ =
-E=.[2(T-1)]1/2 + ++ O(E3)
T sulK7r ,

l[2(T-1)]1/2 -!-O(E4)
‘Er = IT

(123)

(124)

Figure 6 shows a plot comparing equations 114, 115, 123,
and 124 to the numeric solutions for a = T/2. The rate of con-
vergence shown in this figure is typical of that of other wedge
angles a. As expected, the expressions in equations 114 and
115 converge rather slowly to the numeric solutions when e is
near m - a.

D. Late-Time Diffracted Fields

For late times the diffracted fields approach the static
limit. Thus , since late times correspond to large T (i.e. the
region near the bend) , the electric field will go to infinity
as one approaches the apex of the interior bend. We are iQter-
este~ in obtaining an approximate expression for how both eF
and hE vary in the region near the bend.

Now, for large T,

E
-1

= cosh
-2

T = 10g(2T) + O(T )

Thus

.
sinhK~ = ~[exp(K log 2’c)-exp(-K log 2T)]

.
coshK~ = +[exp(K log 2T)+exp(-K log 2-c)]

sinCe 1/2 : K : 1 and K log(2T) = log[(2T)K]

(125)

(126)

(127)

(128)
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,’

,1

I

‘1

‘1

Thus, from equation 75, for large T

hE = -1 sinKn
~ tan [a]

= K
’27%

(129)

Note that this is just half the large T limit on hI as derived
in SSN #47. This factor of two difference occurs because we
normalized the hE field in equation 75. However, hE for large
T still goes to the expected limit of 1 as u approaches IT (i.e.
limit of no bend in plane).

To find large T asymptotic forms for eEr and eEe one must
find a way to approximate the integrals in equations 76 and 77.
First consider eEr. Equation 76 can be rewritten as

J
T ahE

‘Er (T) - eE”(0) = ~d-d
r 1

J
E(T)

= sinh~fr(~)d~’ = Ir
o

(130)

where fr(~) = ahE/ae. Now &he integral Ir can be written as an
infinite series by continually integrating by parts. One ob-
tains

afrm a2fr(0
Ir = fr(~) cosh~ - a~ sinh~ + cosh~

a~2

a3frm
-~sinh~ + ...

For large T

+ O(e
‘2K$

(131)

(i32)
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Thus

128-27

anfrm
= (-K)nfr(~)

aEn

and the series for Ir becomes

Ir = fr(~)[~ e~]~Kn (134)
n=o

But since K < 1 we have a simple geometric series which can be
summed. ‘

m

z
n
K ‘r%

n=o

Thus

lr ‘ (A): ‘inKm ‘in”’ ‘(l-K)E + 0(e(l-2K)’)

1-K 1-2K.l+; sinK7TsinKe(2~) + O(T )

One can similarly expand

J

C ~hE

le=o
— d~

CoShe a~

and obtain for large T

l-K
‘T& ● ~ sinKn COSKe(2T)

1-2K
le

+ O(T ) (138)

Thus it can be seen that eEr and eE~ just vary as T1-K as T be-
comes large. Since K < 1

(133)

(135)

(136)

(137)
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(139)

Note that

(140)

If one considers the more general problem of diffraction at any
sharp edge, a set of edge conditions describing the field vari-
ation as one approaches the edge cap be derived from energy
conservation considerations. Jones4 has derived such edge con-
ditions and they match the variation with r given above.

Although equations 136 and 138 describe’ the behavior of
the electric field for large ~, the actual values of eEr and
eE6 approach these limits very slowly with increasing T due to
the logarithmic dependence of g on T (see equation 125). To
obtain an asymptotic expression that approximates the desired
integrals more closely it is necessary to obtain another term
in the asymptotic series describing the integrals. One way of
finding such terms is to consider the integral of the difference
between the actual integrand and the large T approximations;
i.e. write

E
= .([ 1

sinh~’ fr(~’) - ~ sinKn sinKe e(l-K)5’ d~’
o

J
EK

+ ii sinKr sinKf3e(l-K)E’d~’ = I + I (141)
o ‘1 ‘o

The second integral is just equal to the expression in equation
136. Since the first integral must go to zero as ~ becomes
large, it can be written as

. . .:
Ca

I J[ sinh~’ fr(~’) 1(l-K)~’d~,=- -~sinKn sinKe e (142)
‘1I E
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Here we use the large T approximation

3h-

128-29

sinKe
fr(~) = & = ; (143)

( * eKg); + ‘(+ eKE) -COSKIT COSKe

Upon substitution into equation 142 and simplification by drop-
ping certain unimportant terms, one gets

21c sinKn sinKeI =- ~ _K COSKITcosKe e~ ‘1-2K)
‘1

+ 0(eE(l-3K)) (144)

Similarly, the first order correction to the integral giving
eEfJis for large T

_2K sinKr
%1 = IT(l-2K) (cosKn+cOsKe)COsKm cosKe e5(1-2K) + 0(e~”(l-3K))

(145)

.

However, even including these first order corrections, the
asymptotic forms do not approach the numerical calculation of
the integral very rapidly. A graph showing both the asymptotic
approximations and the results of numerical integration is at-
tached (see figure 7). This graph is plotted for a wedge angle
of a = IT/2and gives a fairly representative idea of the rate
of convergence of the above asymptotic forms for large T. It
is apparent however that higher order terms in equations 144
and 145 ‘aredependent on K; since K qoes to 1 as the wedcre
angle approach~s
faster for small

v. Results

IT (no bend) the abo~e expressions conve~ge
bends.

The results
attached contour

of this note are primarily contained in the
plots of the various diffracted field compo-

nents in the region around the bend. However, a few of the
general characteristics of these contour plots can easily be
summarized.

For the interior bend, refer to figures 8-17 of this note
and to SSN #47. It is easily seen that the magnitude of hI is
enhanced everywhere in the diffracted region with the greatest
values occurring in the reflection zone of geometrical optics
(i.e. in the region @O ~ @ ~ 2$0). And in this reflected zone,
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hl increases to the limiting value of hI = 2 at the outer
boundary of the diffraction region (i.e. at T = 1) . It is also
obvious that the magnetic field becomes larger everywhere in
the diffracted region as the bend angle $0 increases.

The total magnitude of the electric field behaves quite
differently. eItotal is generally less than 1 for negative x,
while eItotal is enhanced for positive x, particularly in the
reflected zone $0 ~ $ ~ 2@0. eItotal becomes smaller as one
approaches the apex of the bend (actually goes to the limit of
zero) and the contours approach circular arcs near the apex.
This is expected since the fields go to the static limit in
this area. At the edge of the diffracted region, eItotal has
the limits

[

1 for2@o< @<n
limit el = (146)
~+ 1+ total 2COS$0 for $0 < ~ < 240

Thus the largest electric fields occur just inside the dif-
fracted region boundary when $0 < @ < 2$..

The x-component of the diffracted electric field is by it-
self a good measure of the amount of diffraction since the in-
cident electric field has no x-component. Also note that eIx
is negative everywhere in the diffracted region.

For small bends, eIy is almost the same as the total elec-
tric field since eIx is very small for slight bends. As the
bend angle increases, eIy becomes less than 1 over an increas-
ing area of the diffracted region. In fact, for @O ~ IT/4F eIy
is less than 1 everywhere in the diffracted region.

One should also note that eIx and eIy have the following

i limits at the boundary T = 1

1
-sin2@o for @o < (#l< 2($0

limit-el = (147)
T+l+ x o for2@o<$<7r

\

1 + cos2@o for $0 < @ < 2(f).
limit el = (148)
~+1+ Y1 for2@o<$<7r

. . . -

Now consider the exterior bend. (See figures 18-35. In-
cluded in these figures are both contour plots and graphs of
the fields as a function of time. Remember that the contour

.



EMP 1-11 128-31

plots describe the fields as a function of position at a given
time while the graphs give the fields at a given point as a
function of time.)

For the exterior bend, the magnetic field is less than the
incident magnetic field everywhere inside the diffracted region.
Why this is true can be seen intuitively from the-fact that the
diffracted fields fill a larger volume of space than the inci-
dent field would if there were no diffraction. The smallest
ValUeS of hE occur near T = 1 for @ < 0 since hE goes to the
limit O as T approaches 1 in the shadow region.

Now consider the diffracted electric field for the exter-
ior bend. The magnitude of the total electric field goes to
infinity at the apex of the exterior bend, rather than zero as
it did for the interior case; and eEtotal is greater than 1 in
the upper left hand portion of the diffracted region and less
than 1 elsewhere. These results are essentially opposite those
observed for eItotal.

The x-component of the electric field is again a measure
of the amount of diffraction since the incident electric field
has no x-component. Thus eEx is greatest in the shadow region,
but now it has its largest magnitude near the bend rather than
at the outer edge of the diffracted region as was the case for
eIx .

eE
5

is very similar to eEtotal-in the upper left hand part
of the iffracted region and it gradually becomes smalier as
one rotates around toward the shadow region where eEx becomes
more important in determining the total electric field.

The special case of diffraction at the edge of a conduct-
ing half-plane (i.e. a = O) is particularly interesting with
respect to the symmetry of the contour lines (see figures 33
and 34). The svmmetrv results from the fact that the incominq
wave is propaga~ing

Thus it can be
are similar in that
the bends vary more
preach the limit of
sheet. However the

parallel to the symmetry plane of the wed~e.

seen that the interior and exterior bends
the diffraction effects become larger as
from the flat plate, and both cases ap-
no diffraction for a planar conducting
reqions of larqest fields within the dif-

fracted area occur in &ssentially ~pposite areas for the in-
ternal and external bends.

VI. Summarv

We have calculated the diffracted field around exterior
and interior bends in a planar conducting sheet using an incom-
ing step-function pulse traveling parallel to one $dge of the
conducting plate. For a TEM type incoming pulse, H was found

:,
.;,,

,i,
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by solving the scalar wave equations, and ~ determined from ~
by use of one of Maxwell’s equations. Since the interior bend
case was discussed in SSN #47, the exterior bend was studied in
more detail here, with contour plots of the field strengths in
the neighborhood of the bend being calculated for both cases.
The application of these results to bends in a parallel-plate
wave guide is obvious, a special case of interest being the
limiting case of a half-plane; i.e. an unterminated wave guide.

1.

2.

3.

4.

J. B. Keller and
Pulses by Wedqes
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FIGURE 2, COMPLEX W-PLANE WHERE EDGES OF CONDUCTING
WEDGE ARE MAPPED ONTO REAL AXIS.
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I ZWo / WAVEr0=0

FIGURE 4, DIFFRACTION OF A STEP-FUNCTION WAVE BY A PERFECTLY
CONDUCTING WEOG~ FR!EIILANDER GEOMETRY
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