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Abstract

In this note we study the high frequency diffraction due to the junction
between the biconical wave launcher and the cylindrical portion of the antenna.
We also study the early time breaking effect on the radiated electromagnetic
pulse due to this junction. The high frequency solution is obtained by employ-
ing the geometrical theory of diffraction and then the early time solution is
derived by taking the inverse Fourier transform of the diffraction solution.

We obtain early time diffraction coefficients corresponding to each of the
junctions where the bicone joins the cylinder. These coefficients are compared

to those that appear in a previous note.
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I. Introduction

A method for achieving the desired early time behavior of a pulse~
radiating dipole antenna is to employ a biconical feeding sectiontlj. This
,system is depicted in figure 1. 1In this note we investigate the effect on
the radiated pulse of the edge formed by the joining of the bicone to the
cylindrical portion of the antenna. Since we are interested in the diffraction
effect of an edgelat high frequencies, it is reasonable to employ the geometrical
theory of diffractionEz]’E3]. This method yields high-frequency corrections to
the geometric optics solution. A quantitative error bound has not been estab-
lished for solutions obfained B&lthis method; ﬂéweﬁer, numerous comparisons
between exact and experimental results with geometrical diffraction solutions
have supported its validity. Eventhough the high frequency solution itself is
of interest, our primary interest is in the early time solution which exhibits
the -effect of the edge on a pulse. We obtain our early time solution by taking
the inverse Fourier transform of the geometrical diffraction solution. A
quantitative validity time for which such a solution is a good approximation
can not be determined. There is no way of determining this time duration even
if we knew that the geometrical diffraction method gave the exact high frequency
asymptotic solution; however, in appendix A we establish that there is a finite
length of time for which the asymptotic solution obtained by this method is a
good approximation to the exact sclution. In that appendix we compare the
approximate and exact solutions for the problem of scattering by a perfectly
conducting wedge.

We believe that this procedure yields a good approximation to the exact
early time asymptotic solution and that it accurately predicts the brezking
effect of the edge for a short but finite length of time. The form of the
solution is a quite tractable function of the bicone angle, the radius of the
cylinder, and the observation angle. Because of this, one can readily study
the edge breaking effect as a function of these variables.

The problem studied in this note was also studied by BarnesEé] by a
method we will refer to as the aperture integration method. 1In appendix B
we again study the problem of scattering by a perfectly conducting wedge by

the aperture integration methed. It is found that the aperture integration



method yields'aﬁgood approximation to .the exact solution for an extended
period of time; however, our method yields the exact early time asymptotic
solution. This study also supported Baum' s‘contention (private communication)
that the exact solution is always larger than the one obtained by the aperture
integration method. Our contribution to the time dependent solution of this
pulse radiating antenna is ‘the prediction of the diffraction coefficients
which describe the breaking effect of both the upper and lower edge on the
pulse radiated by this antenna. We present tables and curves which summarize
these early time diffraction coefficients. In the tables we also present .
Barnes's coefficients and in our set of curﬁeswwe plot a ratio that indicates
the percentage difference between our coefficients and those of Barmes. This
ratio is small corresponding to the break from the upper edge, but 1s appreciable

for the second break corresponding to the lower edge.
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“#'IT. Pertinent Aspects of Geometrical Diffraction Theory

Those asoects of the geometrical theory of diffraction which are used
in our problem are the following:
1. A wave is any quantity that satisfies a Helmholtz equation,. scalar or

vector, and it can be expressed as

U = A(r)expliky(x)] | (1)

SRS

In our problem U will be the magnetic field and A will be a vector. e

=
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g
2, Rays are the orthogoual trajectories to the wave fronts wtr;v;lconstant.
3. The field at any point in space is the sum of the fields associated with
the rays passing through that point. The phase of the field on a ray is
agssumed to be k times the optical length of the ray measured from some
reference point, where the phase is zero, to the observation point. The
amplitude is assumed to vary in accordance with the principle of conserva-
tion of energy in a narrow tube of rays. The direction of A is perpen-
dicular to the ray and in a homogeneous medium this vector slides parallel
to itself along the ray. Finally, in such a medium all rays are straight
lines. '
The preceding three numbered statements have been extensively used in ordinary
geometrical optics. A significant statement in the geometrical theory of
diffraction is that these same rules can be used to assign a field to each
diffracted ray. For our problem a diffracted ray is one that 1s produced
when an incident ray hits an edge. When applying this thecry to edge
diffracted rays, one must answer the following two questions. Into what
direction can an incident ray be diffracted? What "coefficient" should the
field on an incident ray be multiplied by in order to describe the initial
behavior of the field on a diffracted ray. For the vector case of interest,

this "coefficient" 1s a matrix. Both of these questions will be answered as

we discuss our particular geometry.
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III. The Direction of the Diffracted Rays
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Con51der the geometry deplcted in figure 1 The antenna of interest. is
the one obtained by imagining the figure to be rotated about the z axis. The _
jagged lines are used to indicate that the antenna extends between z tending
to f», The surface at r = b corresponds to our source and we consider that
the electrlc field is specifled on this surface in such a way that it corresponds
to the electrlc field of the TEM mode of an infinite biconical antenna. In this
note we assume that b is vanlshlngly small. With this source the magnetic. .,
field that is generated is the TEM magnetic field and this is used to defiq%?”v
the fleld incident on the upper and lower edges, P U and PL' Our problem is .
o) Independent so we chose ¢ = 0 in figure 1. The rules governing diffracted
rays are such that for our problem all diffracted rays will remain in the
¢ = 0 plane, Shortly this rule will be given in more detail. If our observation
point P lies in this plane then it is only those rays associated with the
incident magnetic field that lie in this plane that can be diffracted into the
direction that allows them to pass through P. For the TEM magnetic field,
the associated rays are all radially directed and consequently they strike
the junction between the bicone and cylinder at a right angle. The general e
rule for determining the direction of the diffracted rays for this angle of
incidence is as follows. Imagine a plane that contains the incident ray and -
that has as its normal the vector that is tangent to the edge at the point of
incidence. All diffracted rays will lie in this plane and they will be radial
lines with their origin at the point of incidence. When the angle of incidence"
is other than 90° a more general rule for determining the direction of the
diffracted rays is necessary. Since it is not pertinent to our problem we
will not state it in this note; however, it can be found in reference 3.
Referring back to figure 1 we can trace out the path that diffracted rays must
take in order to pass through P. The ray associated with Ei(PU) strikes the
edge at PU and gets initially diffracted into four directions that could allow
a diffracted ray to pass through P. The ray we first consider is the one

associated with H1 This ray is the one that is directly dlffracted into a

direction that causes it to pass through P and the correspondlng field, Hl

will be seen to decrease the most slowly with increasing frequency of all those




diffracted fields associated with PU' The frequency dependence of any singly

diffracted ray is k—;5 times the incident field. A second direction that allows

a ray to pass through P is along the straight line from PU to PL. After it

strikes PL it can be diffracted so as to pass through P. The field associated

with this double diffracted ray just discussed is gé. We can now see that the

ray directed from PU to PL can initiate an infinite number of rays that pass

through P. For example the next case is that of the triply diffracted ray

U L U
the initial diffraction at PU is back toward our source surface Sb The

traveling from P_ to P_ to P to P. The third direction to be considered far
uncertainty of how to handle the contribution to the total field due to th:[sh.12
ray places a limitation on our analysis. We may handle this in either of two
way. One is to calculate the time, tc’ that this contribution would arrive

at our observation point and to state that our solution could have validity

at most up to this time. Another possibility is to assume that the source is
designed to absorb the field associated with this ray and its effect is never
felt at P. The fourth direction we consider is from PU onto the walls of the
bicone so that the diffracted ray can be reflected so as to pass through P.
This effect is indicated by ER and is treated in detall in the appendix. To
summarize, the diffracted field that passes through P initially started at

PU and was directly diffracted to P, multiply diffracted to P, or singly or
multiply diffracted and then reflected to P. Clearly the same discussicn

applies for the ray that is initially diffracted at PL.
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: TV. High Frequency Diffraction Field Calculation

: : et ) cabtoang
First we attach right handed coordinates (TU, Ny BU) and (TL’ N., BL)

at PU and PL (see figure 2). We will resolve our incident magnetic field

into these coordinates. This field is given by

T T R () = Hy(B) = hay (2) |
where ‘
V(w)foeikd
h = 2d sin 6 2 ()
o 0O
£ = {2 1afeot (s /2)T} 7 (&)
d = N X a’ (5)

zZ, = Ml k= w/uoeo (6)

and V(w) is the voltage difference between the two cones as measured along a
radial arc. It should be noted that h is one half of the TEM bicone field
rather than the total field. The reason for this half factor is that the
entire TEM bicone field is equally divided between the incident field and the

reflected field and it is only the incident field that enters into this cal-

culation.
We now note that %U = - §¢ and %L = é¢. For this reason we resolve the
incident field on PU as follows
= - 1T 7
H () hT, (7)
and
= hT. 8
H, () = hT, (8)



We are now ready to obtain the singly diffracted fields that pass through P, )
The field coming directly from PU is

Hy = Ay, )E(s K Dy (ay,B5vy) « B, ) ®
where
"" (10)
A(8,s) = |1 - (s/a)cos &
N : c
f{s) = s—%eiks (11)
= 12
Dy = By (12)
g = Asin Am in/4 (13)
Vo
-1 | (14)
o= (1 + eo/n)
U+V 0 0
Eﬁ =t (U + V)cot v sin 8 (U - V)cos o cos B (U - V)sin o cos B (15)
(U + V)cot vy cos B (U - V)cos o sin B8 -(U - V)sin ¢ sin B
-1 (16)
U = (cos Am = cos A{m - B + a))
V = (cos xm + cos rA{m - 8 -~ a))_l (17

The dyadic D is obtained by solving the canonical wedge problem. We obtained
this quantity by slightly modifying the dyadic for an electric field geometric

[5].

diffraction analysis contained in a recent paper by Senior and Uslenghi



are well knowntzg: The calculation of A can

-

The remaining factors Afk .
sometimes be very_ difflcglt, however, because of the symmetry of our exc1tation

and of the bicone this quantity was comparitively easy to obtain since our
diffraction caustic was always the axis of the cylinder. For a more detailed '~

discussion of-A see reference 3. The ordering of the rows and columns in

W. is T The anéle between the incident ray and the negative BU axis

=1 U’ NU’ BU'
is oy and the angle between this axis and the line joining PU and P is 81.
The angle between this line and AU is 61. The length of this line is S
These Quantities are depicted in figure 2. The angle Yy is between the

tangent to the edge at P, and the incident ray. Explicitly these factors are

U
1
s; = (r2 + d2 - 2r(a sin 8 + L cos 6»6 (18)
a; =T - Q (19)
r sin 6-a
T - arctan(L_r v e) L >r cos 8§
£, = (21)

r sin e—a)

>
r cos 6-L r cos 8 L

arctan(

§, = g—+ T (22)
T, = arctan( i_:izoz_g ) (23)
¥, = % (24)
w—eo
2= (25)

Similarly the singly diffracted ray from PL is



Hy = A(5,,8,)E ()K", (0,8,,7,) + B, (2) (26)
where A and f are .defined in (11) and (12). 2L has the samé definition as
EU except now the rows and columns are associated with TL’ ﬁL’ ﬁL' The angles

e, and 82 are measured with respect to the negative B, axis and 62 is measured

L
from the A, axis. Explicitly these quantities are

L

. .59 = (r2 + d27+ 2r(L cos & - a sin e))% (27)
it .,‘;,;;,. o . R Lk D Lasaaud

B, =Q + %+ (29)

2 2%,
52 =7 - 52 (30)
_ I+r cos &
g, = arctan(;fgzg—gzg) (31)
Yo =% (32)

We now consider the field diffracted from PU to P. to P. First we consider

L.
the diffraction from PU to PL and having direction TL. It is
' = s .
BY(P) = 485,80 E(s)K D, (0g,8,5,7,) + H, (B) (33)

and this is in the --TL direction. We introduce the subscript i because the

diffracted ray is now an incident ray on P The arguments of the quantities

L’
that appear in (33) are

63 =7/2, Sy = 2L, aq = ag, 83 =Q + 7, Yy = w/2 (34)

16
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Now to go from PL to P we can use (26) with gi(PL) rep%ﬁcedrpy -Hi(PL) and , [

- & wddoat

e H

R

> replaced by Q. Explicitly

D (2,8,,7/2) + [-(65,5,) (s )k D, (25,85, * K, (®)](35)

Hy = A(éz,sz)f(sz)k D

It should be noted that H, is the first doubly diffracted field we consider

3
and it is O(k—l). To obtain the field diffracted from PL to PU to P we first

consider the diffraction from Pirzbhfﬂ. This is éiven by

U
1
' = —Z .
and this is in the -%U direction. The arguments that appear in (36) are
64 = 7/2, s, = 2L, Gy = ay = oy, 84 =Q+m, oy, = w/2 (37)

As before the field then rediffracted to P is

H

- . -4 .o - ) :
H, = (81,80 E(s )k Dy (2,84,7v;) L a(8,,8,)f(s )k 2L<a4,84,y4) gI_i(PL)](BB)

Now there are a set of rays that are best discussed for a particular
geometry. These are the rays corresponding to a diffraction and a reflection
before they pass through P. We will now present the fields corresponding to
these rays for a special case that was also treated by BarnesEA] in detail.

That case corresponds to a = 5 meters and L = 10 meters so that 80 = arctan %,
0 <6 < 7/2, and it is necessary that the diffracted ray start from PL’ strike
the upper cone and then get reflected to P. The singly diffracted and reflected

contribution is
= - .
HS = A(és,ss)f(ss)k D](az,BS,ﬂ/Z) H.(PL) (39)

and the doubly diffracted and then reflected contribution

H

B, = A(Sg,8) (s )k Dy (2,85,7/2) + [-H{(P;)] (40)

11
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where gi(PL) is,giyen in (33). The de;e;m?gatioi o% 55255, and 85 appears _ .,

o =

in the appendix. They are

65=1r/2+1{1—60,85=21r-$2—1p (41
where
d+r cos(BGo—S)
¥ = arcos( ) (42)
s
5
Sg = (r2 + d2 + 2rd cos(ééo -76))% ' (43)

In the appendix it is also shown that H. and H. contribute to the total diffracted
field if the observation angle & lies between 81 and 82 where they are given by

1
L+((r2—L2)ﬁ~a)cos 28

el = arcos = = (44)

and

6, = 360 (45)

For this reason we introduce the function P(Gl,ez) given by

P(el,ez) = U - el) - U(s - ez) (46)

where U is the unit step function. Finally, the total diffracted field through
-1, .
ok 7) is

= Hpay = - By R Ey o+ Hy - H R P(0,0,) Hy + By (47)

The negative signs in front ofg_1 and §4 are due to the fact that the final

dyadic multiplication involved EU and TU = - éé. It should be noted that all
of the terms on the right hand side of (47) are directed along §¢. The only

components of and QL which were used in obtaining (47) were (U + V)TUTU

Dy

and (U + V)%L%L. It might appear that the vector nature of our calculation

12



was superfluous since only the ¢ component of the magnetic field was fvgrknkdhoD

RS- REL S

involved in our calculation. It was necessary to treat vector magnetic fields

rather than only the $ component since h,a satisfies a vector wave equation

¢ ¢
but h¢ does not satisfy a scalar wave equation. We are interested in EeD
and we obtain it from HD through
v x HDa¢ = - iwsogD (4§)

which implies -

BH“D
iweoEeD T HD (49)

1
In order to calculate EeD to only as high an order in inverse powers of k2
as we are permitted in order to be consistent with our calculation of HD
we will consider only part of the radial derivative term in the right hand
side of (49). That is
L £(s,) = 1ki(s,) Pi_o 1 £(s,) (50)
ar i i’ 3r ZSi i
and it is only the first term on the right hand side of (50) that can be used

in computing SHD/ar. This leads to

asl 832 882 asl ass 856 -
Eop = Zo| By 37 T Hy 3y T Hy g T Hy 3y tEGG, >[#5 5r T Hg 3% ] (51)
where
98
1 _r-(a sin 9+L cos 98)
= (52)
o or . s
1
832 r+ﬁ coéé‘;a siﬁ'é
ar = ~ (53)
s ,
2
855 r+d cos(36 -8)
o
= (54)
ar s

5

13
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Combining our results we obtailn ?

V(m)foelkd

3 iks
Bep T T sin 5, D) CsUBlepB Ksy) e

1 %%
or

ik52 as

-1 °S,
+ A(éz,sz)g(al,ez)(ksz) e T

iks, 3s :
5 -1 dk2L U2 %20
+ Bglay, + 1A(S,,5,)8(@,8,) (2Ls,) 7k e e TS

-1 ikor kS 88

_1
+ Bglay,2 + WA, ,5)8(0,8)) (s A et

or

as iks5

+P(81,92) -é—]-:—e A(SS,Sr)

1 -} -1 ik2L
x [glapbs(ks) " + glo],0 + Mg(R,8) (2Ls) 'k e Jp(55)

where for convenience
g(a,B) = U +V (56)

with U and V defined in (16) and (17). Equation (55) is the final expression
for EBD for a calculation through O(k_l).

The quantitative validity of (55) has not been established. Even if we
know that (55) is the correct asymptotic expansion through O(k—l) we could
draw no conclusions concerning the length of time the inverse Fourier trans-
form of (55) is a good approximation. We determine an upper bound in the
region 7/2 = © > Go by comparing our results with those of Barnes[4]. We
believe that the exact solution is always larger than that obtained by Barnes
and the time at which the inverse Fourier transform crosses Barnes solution
is the maximum validity time for the solution cbtained by the method employed

in this note. The general argument concerning Barnes's solution being lower

14



than the exact solution was supplied by Baum (private communication). Briefly
it_}§7;E§F %f;gygwapprop;}gpe;Gggen‘s_func;;on is used, then the exact radiated
field can be expressed as the integral over the cylindrical aperture used: in:
Barnes's note. The exact radiated field would be obtained if the exact aperture
electric field were employed; however, Barnes employes only the incident electric
field. It is argued that the exact aperture field is larger than the incident
field so that the exact radiated field i1s larger tham the one calculated by
Barnes. There are some subtleties that could be studied concerning this
argugent, two in particular, are the occurence of the time derivative of the
aperture field and the consténcy of the sign of the time dependent Green's
function. It is not possible to perform a precise study of Baum's argument

for the bicone problem because we are not positive of how the edge diffraction
effects the aperture field. Instead we study the analogous problem in two
dimensions where we have the exact wedge solution available. This study is
performed in the appendix and it completely supports Baum's argument. Another
feature of the wedge study is that eventhough the solution obtained by employing
only the incident field in the aperture is always lower than the exact field,
the degree of approximation to the radiated field that one obtains is excellent.
This observation supports the possibility that the solution obtained by Barnes
might have an extensive range of time for which it is an excellent approximation.
Our contribution to the time dependent bicone solution is for very short times
after the breaking effect of-the edge is felt at the observation point. In

the next section we will determine the early time asymptotic solution which

describes the breaking effect.

15



V. Early Time Asymptotic Solution N -

To determine the most reliable early time asymptotic solution we consider
the inverse Fourier transform of only the first term in (55) or for the special
obgervation angle 6 = 7/2 the first two terms in (55). It is first necessary
to specify the form of V(w). We are interested in the case V(t) = VboU(t),

where U(t) is the unit step. For this case

' Viw) =V

e |-
VS
T
o]
S

bo

We need only consider the inverse Fourier transform

plet Lo tksy B In/h 2 8 e 8y (58)
W V);T‘ (o] (o4

where c is the speed of light. We now take the inverse transform of these two

terms to obtain

£V, Q( ¢ 3 i
B~ -9 bo {(__L)’ﬁ 2 - tl)%‘U(t* - £)A08,,8,)g(ey,8;) Sr_l

6D 2a_ S1 Jr
) * L % 35,
+ () ;;: (t - tz)zU(t - tz)A(SZ,SZ)g(al,BZ) 3T (59)
2 L
where
Q= 3—%’_‘———“ cep=ex107, = 10%e - D (60)
T

The physical meaning of these t's will now be discussed. The time after the
first signal arrives from the origin measured in nanosecconds is t*. When t*
equals £ and t2 the corresponding contributions arise from single diffraction
from PU and PL'

In order to compare our results with those of BarnesEé] we approximate
(59) for the case r >> d. When this is the case we obtain the following

simplifications

16



et BI_= Q+ 6, Bz = Q+nr -0, 61 = 52 * /2 +-9 e

AG;58)) = AGSy,s,) = [(x/a)sin 6177, - 6D

cltl =d-asin6 - L cos 9, clt2 =d-asinf + L cos ¢
and when the following quantities appear as multiplicative factors they are.
approxinated as

as 3s
-5 5 ..k 1 "2 . o
(sl) = (S ) = r ’ 8r - ar = 1 (6&.)

Using the fact that the geometric optics field is

T Vbofo *
®ec.0. = F%r 7 1 Taim UE) 62
we can express the total field Ee = EeD + EGG.O. so that
rEe'~ rEl + rE2 (64)
where
v, £ ¢, sin 9 L
_ bo'o T 1 2 ® Yol
rE; = 3305 [P(eo, )+ Q——pF—) g(@,8)(t - ) U(t tl):] (65)
and
v, £ c, sin 8 L
_ boo 1 2 * L %
TE) = sino U7z slapB) (e - e )" Ut - t)) (66)

When 8 # m/2 then Ee'~ El'

g(al,Q + m/2) so that

When 6 = 7/2, then £ =t and g(al,Bl) = g(al,Bz) =

C 1. 1
~ 1+ 2060 glag,0 + D" - e ue” - ) (67)
rEe VbOfO Ta 1° 5 1 1

17



It is desired to compare (65), (66) and (67) with the solution obtained by

Barnes. It is convenient to rewrite these equations as

v, £ 2¢, sin 9
_ _boo Ll 1 1 3 * b *
rE) = 3o g l:p(eo, 5) - (————————a ) AI(GO,G)(t tl) u(t tl)] (68)
v, f 2c, sin €
_ bo o 1 % * e *
rE) = = T oin @ ( S ) Az(eo,e)(t tz) U(t tz) (69)
and for 6 = w/2
2c, % 4
2 1 T * *
'I:Ee vbofo[l - (T) Al(eo’ = - tl) Ut - tl)} (70)
where
A sin xeo
Al(eo’e) = Cos Keo—cos pY:. 1)
A sin Keo
AZ(eo’e) = cos Reo-cos A(m-8) (72)
8 -1
A= (1) (73)

The corresponding expressions derived by Barnes are exactly the same as (68),
(69) and (70) with Al(eo,e) replaced by 31(60,8) and AZ(BO,S) replaced by
B

2(90,8) where

sin 60
Bl(eo’e) = Cos So—cos & 74
and
sin BO
By(6,,6) = (75)

cos § +cos §
o)

It is very important to note that for n/2 2> 6 > Go, Bl(eo,e) > Al(eo,e),
while for 0 < 6 < 8 _, IAl(eo,e)l > ]BI(BO,S)]. This shows that our solution is

initially larger than the one obtained by Barnes, as required. For the special

18
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case that was treated in detail by Barnes, a = 5 meters and © o arctan .
we can gain some additional information about the length of time our asymptotic
solution could be a good approximation. For this case we can see when Bur8‘> ™
asymptotic solution crosses Barnes total solution. For the observation angle,

8, equal to .7 7/2 we drop below this solution in approximately 1 nanosecond

and for 8 = 7/2 we drop below his sclution in approximately 3 nanoseconds. For
8 = .lm we are always above Barnes's total solution so it imposes no time

" limitation. It is expected that the difference between A (e »6) and B, (9 N
is monotonically related to the length of time that it would take our solution
to cross Barnes's total solution in thelreglon /2 =26 > e . For many cases

our asymptotic solution will drop below Barnes's solution before t = tz.

The reason that we present the asymptotic solution that begins at t, is that the
breaking effect predicted by this solution would be valid even though the

level at which the break occurs is not accurately determined.

Tables 1 through 4 summarize the breaking effect at t; and t, as predicted
by our theory and that of Barmes. In these tables we present the new quantities
DAl’ DBl’ DAZ’ and DB2 as well as t1 and t2 for different values of a, eo,and 0.
These new quantities are defined as i

D, =oalA, |, D, =a|B, |, D, =caA,, D, = aB (76)
1 L7 By L7 7y 2

where

2c, sin 8 &

) - a7

1
Teryd

and in terms of the D's, (68), (69), and (70) can be equivalently written as

Vbolo Lk 5 * T
vV, £
_ _boo * \5 *
rE] =TI DAl(t - tl) Ut - tl) 0 <8 <8, (79)
v, £
. __boo * % e z
rE, = - ;3¢ D, (t -t Ut - t,) 0<8=3 (80)

2
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Barnes's corresponding solutions are obtained b? replacing Day by DBy and DAZ
by DBZ' A schematic plot illustrating the early time breaking effect described
by (78),_(79), and (80) is contained in figure 3.

In table 5 we tabulate the ratios P1 and P2 which are given by

A -B

171
P, =2 (81)
1 A1+Bl '

and
A -B dama ¥D o

2 "2
P, =2 (82)

2 A2+B2

These quantities are a measure of the relative correction to the asymptotic
solution found by Barnes corresponding to the first break due to the upper edge
and the second break due to the lower edge.

Table 1 corresponds to a = 1, and it is of special interest. By noting
(76) and (77) we see that the value of any D for a # 1 can be determined from
the D corresponding to a = 1, simply by multiplying by a-%. If we rewrite the

last two equations in (61) as

c,t

151 aesc eo - sin 8 - cot eo cos 8) (83)

c,t

180 = a(ecsc 80 - sin 8 + cot eo cos 6) ‘ (84)

then we see that the value of t; or t, for a # 1 can be obtained by multiplying
the appropriate t for a = 1 by a. Tables 2, 3, and 4 are included only for
convenience. Because the values of the D's, tl’ and t2 for a = 1 can readily
be used to compute these quantities for any value of a, we plot these quanties
in figures 4, 5, 6,7,ard8. Specifically we plot DAl’ DAZ’ Pl’ PZ’ tl and t2
versus the observation angle, 6. Each figure corresponds teo a different value

of the bicone angle, 80

20



cea da reo amie VI, Discussion of Results e B
¢ First we will discuss the validity of our frequehdY’dependent‘soldfibﬁﬁa&ﬁ

expressed in' (55). TIts accuracy is limited for two reasoms. One is that’'z "7

quantitative error bound has not been established for solutions obtained by ’
geometrical diffraction calculations. A second is that the effect of diffracted
rays striking the source region is neglected. The first difficulty is somewhat

compensated by the fact that numerous comparisons between exact and experiffental

results with geometrical diffraction solutions have supported its validity. ® °*

The-second  limitation can- be handled in either of two ways. One is to examine’ *
the source région and determine its effect. The second is most easily viewed
in the time domain. It is to determine the time that this secondary source
contribution would reach our observation point and let this serve as a time
limitation beyoﬁdwwhicﬂ we discard our solution. -

The accuracy of our time dependent solutions (78), (79), and (80) is
limited by another consideration. There is no quantitative procedure which
determines the time duration that the inverse Fourier transform of a high
" frequency asymptotic expansion is a good approximation. In appendix A we
establish that there is a finite length of time for which such a solution is
a good approximation. Because of this our early time asymptotic solution can
be used to describe the breaking effect of the edge formed by the junction of
the bicone and the cylinder. This early time behavior is described by two
coefficients, one corresponding to the junction nearef to the observation
point and the other corresponding to the junction further from the observation
point. The early time dependent behavior is obtained by multiplying these
coefficients by the square root of the time duration beyond the first instant
the effect of the junction is felt at the observation point.

The same form for the breaking effect is predicted by BarnesEa] who uses
an aperture integration method. 1In appendix B we again study the problem of
scattering by a perfectly conducting wedge by using the aperture integration
method. A comparison of that solution to the exact solution indicates that it
can yield a good approximation for an extended time duration; however, the
method employed in this paper yields the exact asymptotic solution. In tables |

through 4 we present our diffraction coefficients as well as those derived by
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Barnes. These are presented for both the upper and lower edge and the time
that these contributions will first be felt at the observation point ig also
tabulated. These quantities are presented for different values of the cylinder
radius, a, the bicone angle, eo, and the observation angle, 9.

In table 5 we tabulate PI and P2 only for different values of 8 and 60
because these quantities are independent of a. As previously discussed, by
noting (76), (77), (83), and (84) we can see that the data presented in table
l, a =1, can readily be used to compute the D's and t's for any a. In
figures 4, 5, 6, 7, and 8 we plot DAI’ DAZ’ Pl’ PZ’ s and t, fora=1. We
plot these quanties versus 8 and each figure corresponds to a different value
of 8, The plot of DAl is cut off near the boundary between the illuminated
and diffraction region. The reason for this is that the geometrical diffraction
solution diverges at this boundary. It is seen that in general, the percentage
difference between our solution and that of Barnes is smaller for the break
corresponding to the nearer edge, Pl’ than it is for the break corresponding
to the further edge, P2. It is also noted that P1 has a minimum for @ = 60,
while P2 decreases monotonically with increasing 6. Another general feature
is that for most observation angles, the break corresponding to the nearer
edge is sharper than the break corresponding to the furthér edge.

In conclusion, the solution obtained by Barnes using the aperture
integration method has the potential for being a good approximation for an
extended period of time; however, the solution obtained in this note offers
an improvement in describing the asymptotic early time breaking effect of

the edges, especially from the further edge.
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Appendix A. Comparison of the Exact and Approximate Wedge Solutions

e T

Consider a plane'wave step function incident on a peffectly conducting
wedge with the geometry defined in figure 9. The notation in this appen&ix

was chosen to agree with that used in a previous note that treated the time

[[6

dependent wedge problem for ¢1 = . The polarization of the incident wave

is such that the magnetic field is directed along the positive z axis. For
comparison with the singly diffracted bicone problem we can restrict our

interest to /4 < ¢ < m/2 and 4, =7 - ¢ . When ¢, = T - ¢ we can write
o 1 o] 1 o

down the ‘soTution for the total magnetic Fileld using ‘THe work of Keller and '
Blank[7] as )
H = ha
- z
where
] 2x
1 +(1-p"")cos k(w—¢1)
h=1-—arctan T T (Al)
(I4+p ") sin A(w—¢1)—2p sin A(7-9)
1 —(l—p2k)cos K(ﬂ+¢1)
+ ;-arctan 5 X
(1+0 ") sin A(ﬂ+¢l)+20 sin A(m-¢)
and
-1
2 5
_fet . oety?
o—[r+<<r> 1)] (A2)
¢ -1
=L oy
A= 5 (1 - ) (A3)

where t is the time after the incident wave hits the tip of the wedge. The
arctangent is defined to lie in the range between 0 and 7. Actually (Al) is
valid for ¢o < ¢l.s T - @O. We now compare (Al) with the solution one obtains
by taking the inverse Fourier transform of the geometrical diffraction theory

solution. For this case the geometrical diffraction solution is precisely the
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high frequency asymptotic solution to the wedge diffraction problem. What
we are testing in this case is completely a mathematical problem involving
the asymptotic properties at high frequencies and early times of an exact
Fourier transform pair. It is intended that inferences can be made regarding
the early time behavior of electromagnetic problems which are solved by taking
the inverse Fourier transform of the geometrical diffraction theory solution
when the true time behavior is not known.

In order to present the geometric diffraction solution we consider the
incident field slightly bounded away from grazing along the lower portion of .-t
the wedge. That is ¢1 =q - ¢o - ¢ and we are interested In the 1limit as ¢

goes to zero. For this angle of incidence we can, by making a suitable change

L8]

of coordinates, use the results in reference to express the diffracted
field as
. in/4 |
hD(w) - A sin Ame elkr[(cos AT — cos A{m = ¢ + ¢1)) L
V2rkr
+ (cos Am + cos A(m - ¢ - ¢1))—1]hi(w) (A4)

where hi(w) is the Fourier transform of the incident field evaluated at the
tip of the wedge. WNo matter what the angle cf incidence is, the value of hi(w)

for an incident plane wave step field is

=i
Combining (A4) and (A5) and taking the inverse Fourier transform we obtain
hD(g) =-£% A(sin MVEUE) (cos Am - cos A(m - ¢ + ¢1))—1
+ (cos Am + cos A(w - ¢ —'¢1))—l] (A6)

where £ = (t - r/c)/(xr/c) and U(g) is a Heaviside step function. Physically
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£ is the time after whlch an, observer would first sense the electromagnetic

field and it is measured in unlts of r/c. The total field an observer would

~

sense is either 2 + h or hD depending on whether the observer were situateq rn
the illuminated region (m - o, < 8 < 2r - 9 ) or in the shadow region

(¢O < ¢ <7 - oo). We add 2 to the dlffracted field rather than 1 to account :
for the reflected fileld. Earlier we mentioned that the incident angle was

T - ¢ - € rather than 1 - ¢ We did this to emphasize that in using the
’geometric theory of diffraction it is only the Fourier transform of the

e 2V -GN

incident field, hi(w), which is used in the expression for hD(w). If € were

L%

equal to zero then it would appear that the field incident on the tip were
Zhi(w) rather than hi(w). It is only when we consider the field incident on _
the tip to be hi(m) that we obtain agreement with the exact solution for high
frequencies and early times. We present plots of the approximate magnetic
field given by ha(E) =2 + hD(E) since we are in the illuminated region and

of the exact magnetic field he(g) given by (Al) with

2 35, ~1
o= (E+1+E +28)%) (A7)

A comparison of ha(g) and he(g) is contained in figures 10 and 11. Figure 10
corresponds to ¢o‘= 60° while figure 11 corresponds to ¢O = 75°. Both figures _

contain a comparison of the ha(g) and he(g) for ¢ = 1500, 1650, 180°. It is
seen that ha tends to be a better approximation to he with increasing oo and
o

To relate the wedge and bicone geometries consider figure 12. If_we are
observing at a distance r such that r >> 2L, then s and r are approximately
parallel and ¢ is related to the bicone observation angle, 8, as ¢ = oo + 8.
To give a numerical example of the data contained in figures 10 and 11 we
consider oo = 75° and & = 90°. For this case there is less than a 5% differerce

between the exact and approximate wedge solutions for £ < .4.
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Appendix B. Comparison of the Exact Wedge Solution With the
One Obtained by Integration Over the Aperture
Consider a perfectly conducting wedge of angle 202 with a plane wave pulse
propagating parallel to one side of the wedge. The polarization of the incident
wave is such that it is parallel to the edge. The geometry is depicted in

figure 13.
dep
H = 2U(t -—) = H (B1)
Zincident ¢ %3
where p is the two dimensional radius vector and
a = —[ax sin a + ay cos o (B2)
and
o =20-7 (B3)

where t ig the time after the field first reaches the edge. In the frequency

domain

g =2 7 (B4)

The analogous approach to that of Barnes[4] is to represent the magnetic fileld
in the region y < 0 as an integral over the plane y = 0 and by then reducing

this integral so that it is only over the "aperture" or non-conducting portion

of this plane. First we write

— N . t _ 1 1
H = f ay [sz G - GV szdx

S
aperture

. Iy . te t t
+ 2, [sz G - GV Hz]dx (85)

S
conductor

and use the fact that
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L, ¥d

y

as well as a Green's function that has the property

éy + V'G=0fory'=0and - = < x' - (B7)

Using (B6) and (B7) in (B5) as well as the fact that E_= 0 for x' < 0 we

obtain

H = dx'E G = 1w [ dx'E G (B8)
X X

o |
aperture ‘0

The G that satisfies (B7) is

A AN D L b e I S N AR L e y'>2]‘/2>} (39)

We now approximate the EX that appears in (B8) by just the incident field.

That is
2Z 1 =ik x' sin «
E ~ E =7 cos aH = cos ¢ e © (B1(H)
X X, o z,
i i
Substituting (B9)rand (B10) in (B8) we obtain
o 1 ~-ik x' sin a
2
Hz<9”w) = [ dx'Hgl)(ko[(x - x')2 + y2] )ieo cos aZOe ° (B11)

e}

To obtain the time behavior take the inverse Fourier transform

1 ® -iwt
Hz(g}t) =5 J—m HZ(Q,w)e duw (B12)
Using
L ( H(U(k Rye 0t 4, - 228 < U(et - R) (B13)
27 Jow © e} ki 555
Vet =R
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we can express (Bl2) as ;)

i T - _:. ‘
H = 2 os J d; U(t-(R-x' sin a;/c; - (B14)
T o (e“(t+(x' sin a)/c) -R7)"*
where
2 | 2.
R=[(x-x""+y7] (B15)
Equation (Bl4) could also be derived by substituting the time dependent .

e

representation of Ex given in (B10) into a general formula derived in a previous

£9]

note "~. The unit step function in (Bl4) is unity as long as %y < x' < Xy where
=1 ) 2 717
X, = (Cosz) [T - (Tz - (p2 - cztz)cos @) ] ~ (Bleéa) B
-1 i
X, = (cosz) [T + (T2 + (p2 - cztz)cosza)zj (B16b)
T=1x+ ct sin « (B17)

After changing variables we can write (Bl4) as

W
H, = %j L=y (518)
Wl (l_g )2

where

2a—T
X cos (319)

w2 = W(xz), W, = W(xl), W(x) =

L
(TZ-(pz—czt:z)coszc:tfi

1
Equation (Bl9) is meaningful only if W, and Wl are real, i.e.

T2 - (pz - cztz)cosza > 0 (B20) ' )

The smallest value of t that allows (B20) to be satisfied is denoted to and

is given by

28



¢ = lylcos a=x sin « ‘Liﬁzfjm

[¢) c

Another critical time occurs when X, = 0 since for larger t, zero is still _
the minimum value of x'. The time corresponding to Xy = 0 is denoted by £y and

it is found to be

[N - S

£, = p/e C (B22)

Returning to (Bl8) we now write » e een

W W
2 {72 dk 2 172 dg
H =[U(t -t ) -U(t - t,)] —-J ——T + U(t - t.) —-I —=2——  (B23)
z o 1 W Wl (1_g2>2 1" W(0) (1_52)%

It is easy to verify that Wl = -1, Wz =1, and

-T
W(0) = - (B24)
(T -(pz-czfz)cosza)12

In the illuminated region (fig. 5)

T >0 for £t = tl (B25)

and in the diffraction region

T < 0 for t, <t <-——t§L—— and T > 0 for ——lﬁi——-s t (B26)

1 ¢ sin « ¢ sin o

so finally we have in the illuminated region

. 2 . T
= —_ —_ - _I —_ —_ d
Hz 2lu (e to) U(t tl)J + U(t. cl)[l + — aresin T3 5 %] (B27)
(T7=(p " =c "t cos o)

and in the diffraction region

H =10 - t,)[1 +-£ arcsin( T —) (B28)
Z 1 b 2 22 2 =
(T7=(p"=c "t )cos )

Equations (B27) and (B28) are our final solutions and we will examine them in
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the early time and the late time asymptotic limits. Before we do this it is
significant to note the functional dependence of the solution expressed in j
(B27) and (B28) on t, %X, and p. If we aefIHE"eETb = 1, redefine a coordinate
system so that our z axis corresponds to a new y axis, and define an angle 4%
so that x = p cos ¢, then our new H_for t > 1 would be a function only of =
and .cos ¢. This situation now exactly conforms to the case treated by Baum in
a previous note[gj. Whenrthis component has only this functional dependeﬁée,
he shows how to readily determine all of the remaining field quantities.
We 'will now refer our wedge geometry to a coordinate system that 1s more
appropriate to the bicone problem. See figure 14, In this coordinate system

Mer Uiw

and for 6 > 60 and t > t; (B27) becomes for early time

1 ,/2¢ . %
B~ 2(1 —F/—p—'B'E) (829)
sin eo
B = cos 6 ~cos 8 (B30)
o
T=t - t1 (B31)

The early time geometric diffraction solution which is necessarily the same

as the early time exact sclution which is given by

1
3

H~2(1—l/2—cm) (B32)
z T 0
A sin AGO
B cos Aeo—cos A8 (833) .
1
A= T (B34)

l+60/ﬂ

Further details concerning the exact solution can be found in references [ 6]
and [7]. It is significant, first, that A # B and secondly that in the
illuminated region A < B. This shows that the field just calculated imme-
diately drops below the true field. In the diffraction region, 8 < 60, the

approximate solution behaves like
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_ 2 TE g |
H, ~ = v - |B|T | (B35)

while the exact solution behaves like iLin

and in this region |A| > ]B‘ .
For large values of t both the exact and approximate solutions have an

asymptotic behavior that is independent of 6 and consequently independent

of whether or ﬁdéfwe are observing in eifher the 1lluminated or diffraction

region. For large t the approximate solution behaves like

- - 8
0
Hz- 2(1 - 7;) (B37)
and the exact solution behaves like
7 6o 1
HZ- 2(1 - —) — (B38)
1—(eo/n)

which is larger for any 60 of interest. These results support Baum's claim
that the exact solution is always larger than the one obtained by using Barnes's
method. 7 '

Another interesting result was obtained from doing this test problem,
It is that the same factors A and B, which naturally arose in our test problem,
also appear in the bicone problem. We expected A to appear simply from the
geometric diffraction theory comstruction; however, the appearance of B from
Barnes's asymptotic evaluation of an integral that contained a different Green's
function from that of the test problem is an interesting result. Specifically

for the bicone problem, Barnes's early time solution can be written as

v, £ 1
bo o 1 2c sin 8.2 | % a
By ~ Tin g [1- ~ (— ) Bt u(ty]l e > 9, (B59)

and
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1
):'1‘3B ~ Vbofo = (m—e—) |B|T U(x) o8 < ¢ (B40)

where T is the time after the first diffraction effect is felt. The geometric
diffraction solution is the same as (B39) and (B40) with B replaced by A.
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. Appendix C. Geometrical Considerations for Reflected Rays _:rs gng

In figure 15 we depict that part of the bicone that is necessary to

discuss the mechanism which allows rays to be singly or multiply diffracted
and then reflected so as to pass through P. Whether or not we are concerned
with singly or multiply diffracted rays is immaterial to the analysis contained

in this section. Once the edge at PU or PL is struck by an incident ray, which

may itself be a diffracted ray, then P, and P act as sources for diffracted

rays. Figufels corresponds to a constant ¢ plane; however, for our geoéefifﬁgf
considerations we can imagine that the geometry in this figure is cylindrical
and extends to infinity in a direction perpendicular to the paper. This

amounts to the lines OPU and OPL

PL representing line sources. If a ray emanating from PL is going to be

reflected from OPU and pass through P then it must be possible to draw a line

from the image of PL to P that intersects OPU. That is PiP must intersect

and this is the physical point on the

representing rectangular mirrors and PU and

OP. The point of intersection is PR
mirror struck by the ray emanating from PL and reflected to pass through P.
The same discussion is applicable for the rays emanating from PU. Because

of the symmetry of our antenna we chose to restrict the observation angle, 6,
to lie between 60 and 7/2. In order for a ray from PU to be ;eflected from
OPL and pass through P-it is necessary that the image point PU lie on or belocw
the line OPH. It can be shown that this is possible only if eo > /6., Since
arctan % < 7/6 we have no reflections from OPL to consider. We now return to
reflections from OPU. The minimum value of 6 for an observation point P'
which receives a reflected ray ig denoted by 91 and it is depicted in figure
15. P' is any point on the extension of the line PEPU and 61 is the angle
between OP' and z axis. The explicit expression for 61 is given in (44) where
r is the length OP'. The maximum value of 8 for an observation point P"

which can receive a reflected ray is denoted by 62. P" is any point on the
extension of the line PEO and 62 is the angle between OP" and the z axis.

The calculation of 81 and 62 is straightforward using figurel5; however, the

calculation of & 85, and 8¢ is facilitated by modifying figure 13, If we

55
rotate PRP and OP about the line OP, then we obtain the triangle depicted in

figure 16, First we note that‘s5 = PLPR + PRP = PLP and that once we determine
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the angle 1, the evaluation of Sg and ¢ becomes elementary. It can be shown
that t =7 + 6 - 360. S is now determined by the law of cosines to yileld
(43) and ¢ given in (42) results from projecting OP to align with OPL and
then applying the definition of cosine. Once ¥ is determined, 65 and 85
follow from (41).

It should be_mentioned that for certain values of 80 it 1s possible for

a ray emanating from either PU or P. to get multiply reflected and then pass

L
through P. It can be shown that this is not possible if 6 < /4 and this

is the situation that was treated in detail in this note.
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Figure 1. Antenna Geometry.
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Figure 2. Appropriate Diffraction Coordinate Systems.
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Figure 12.

Ll

Relationship Between Wedge and Bicone Geometries.
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Figure 14, Relationship Between Wedge and Bicone Coordinates.
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Figure 16. Simplified Geometry for Determination of Reflection Parameters.
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D
A

4693
1.0846
21.7090
14907
.2314
.1429
L1175

.2825
4722
.8326
2.51868
.4828
.2518
.1983

.2036
.3142
<4542
1.4196
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.4403
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.1582
.2360
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L1372
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o

D
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.2105

.1972
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<4431
1.4053
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.3018
.5902
3.0144
1.0003
.5950

. 1257
.1857
. 2456
<4255
1.0258
3.0929
1.0266

gt
datdr

- Table 1

a=1

= arctan .5

D
Ay
.0188
.0276
.0354
.0513
.0707
.0982
1175

77260/ﬁ =,

.0271
. 0404
.0524
.0780
.1109
.1608
.1983

ZSO/W =

.0352
.0531
.0698
.1070
.1586
L2454
.3192

ZGO/W =

.0439
L0671
.0897
<1429
. 2246
.3893
.5658

ZGO/W =

.0505
.0779
.1054
.1737
. 2892
.5733
. 9905
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D
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.0232
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L0416
.0579
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.1042
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.0520
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.1735
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.0501
0720
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.0949
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.2569
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.0776
<1125
<1436
<2143
.3291
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1.0266

Y
.3478
,0832
.0002
.3828

1.4579

3.1205

- 4.1231

.7569
.3910
<1419
.0158
.3910
1.2306
1.8005

1.2076
L7874
L4494
.0508
.0508
L4494
7874

1.7240
1.2657
.8650
.2748
0111
.0998
. 2748

2.1177
1.6380
1.2025
.5055
.0948
.0106
. 0948

£y
13,5260
12,7727
11.8885
9.8174
7.5153
5.2078
4.1231

8.4717
7.8197
7.1016
5.5390
3.9371
2.4525
1.8005

5.9949
5.3972
4,7681
3.4781
2.2512
1.2076

7874

4.4533
3.8937
3.3272
2.2288
1.2657

.5320

2748

3.6996
3.1613
2.6296
1.6380
.8219
.2611
.0948




D
A

.6637
1.5339
30,7012
.6940
.3272
.2021
.1661

.3995
.6679
1.1775
3.5592
.6828
.3560
.2804

. 2880
L4444
6424
2.0076
1.9656
.6227
L4514

.2238
<3337
L4498
.8643
4.2980
1.3751
.8001

.1941
. 2857
.3756
.6382
1.4938
4.3253
1.4008

D
By

.6611
1.5302
30.7057
.6998
.3341
.2099
L1743

.3939
.6601
1.1679
3.5716
.6974
.3725
.2977

.2789
4315
.6266
1.9873
1.9895
.6497
4798

.2105
.3150
.4269
.8347
4.,2630
1.4146
.8415

1777
.2626
.3473
.6017
1.4507
4.3740
1.4519

Table 2

a= .5

o = arctan .5

D
AZ

.0266
.0391
.0501
.0726
.1000
.1389
.1661

ZGO/W = 45

.0384
.0571
0742
.1103
1569
L2274
.2804

ZGO/W = .6

.0498
.0751
.0987
1514
$ 2242
.3470
4514

286 /w = .75
o

.0621
.0950
.1268
.2021
.3177
5505
.8001

ZGO/H = .85

L0714
.1102
.1491
. 2456
4090
.8108
1.4008

52

D
By
.0328
L0470
.0588
.0818
.1091
1474
L1743

.0512
.0735
.0924
.1297
.1760
.2454
L2977

.0708
.1019
.1285
.1831
.2555
.3766
.4798

.0929
.1342
L1704
. 2485
.3633
.5937
.8415

.1098
.1591
.2031
.3030
4654
.8640
1.4519

£y
.1739
L0416
.0001
.1914
.7290
1.5603
2.0615

.3784
.1955
.0710
.0079
.1955
.6153
.9002

.6038
.3937
. 2247
.0254
.0254
.2247
.3937

.8620
.6328
.4325
L1374
.0056
. 0499
.1374

1.0588
.8190
.6013
.2528
0474
.0053
0474

ty
6.7630
6.3863
5.9443
4.9087
3,7577
2.6039
2.0615

4,2359
3.9099
3.5508
2.7695
1.9686
1.2262

. 9002

2.9975
2.6986
2.3840
1.7390
1.1256

.6038

.3937

2.2267
1.9469
1.6636
1.1144
.6328
.2660
L1374

1.8498
1.5806
1.3148
.8190
.4110
.1306
0474

—



|

28/w

. « o e
QWU WN

OOV WP

'
P e o e e o « o
O WKW O W3 UWN

O W~ Ut N

D
&
.3318
. 7669
15,3506
13470
1636
.1011
.0831

.1997
.3339
.5887
1.7796
3414
.1780
L1402

1440
.2222
.3212
1.0038
.9828
.3113
2257

L1119
.1669
L2249
.4322
2.1490
.6876
.4001

.0970
.1428
.1878
.3191
L7469
2.1627
.7004

D
B

.3306

.7651
15.3528

.3499

.1670

.1050

.0871

.1970
.3300
.5840
1.7858
.3487
.1863
.1489

.1395
.2158
.3133
.9937
. 9948
.3249
.2399

.1053
1575
<2134
4174
2.1315
.7073
.4208

.0889
<1313
L1737
. 3009
. 7253
2.1870
.7260

Tablebav

a=2

D
)

.0133
-0200
.0251
.0363
.0500
.0694
.0831

ZGO/N =

.0192
.0286
.0371
.0551
.0784
L1137
L1402

ZSO/W =

.0249
.0375
.0494
.0757
.1121
.1735
. 2257

ZGO/W =

.0311
.0475
.0634
.1010
.1588
.2753
.4001

ZQO/W =

.0357
.0551
.0745
.1228
. 2045
.4054
. 7004

53

0 = arctan .5

<45

.6

.75

.85

- .0164

.0135
.0294
.0409
0546
.0737
.0871

.0256
.0368
. 0462
.0649
.0880
.1227
.1489

.0354
.0509
.0642
.0916
.1278
.1883
.2379

. 0465
0671
.0852
.1242
.1817
.2968
.4208

.0549
.0795
.1015
.1515
.2327
.4320
.7260

t
.6955
.1664
. 0004
.7655

2.9159

6.2410

8.2461

1.5137
.7819
.2838
.0317
.7819

2.4612

3.6009

2.4152
1.5749
.8988
.1015
.1015
.8988
1.5749

L4480
.5313
.7301
.5497
.0223
.1995
.5497

=N W

.2353
.2761
L4051
.0110
. 1896
.0211
.1896

=N W

)

27.0521
25.5454
23.7770
19.6347
15.0307
10.4155

8.2461"

16.9435
15.6394
14,2032
11.0782
7.8742
4,9050
3.6009

11.9898
10.7943
9.5361
6.9562
4.5025
2.4152
1.5749

8.9066
7.7875
5.6544
4.4576
2,5313
1.0641

.5497

7.3991
6.3225
5.2592
3.2761
1.6438

.5222

.1896



Table 4
a=>5

§ = arctan .5
(o]

28/m D D D D t t
Al Bl A2 B2 1 2
.1 . 2099 .2091 .0084 0104 1.7388 67.6302
.2 L4851 .4839 .0124 .0148 .4159  63.8635
.3 9.7086 9.7100 .0158 .0186~ .0011 59.4425
.5 .2195 .2213 .0230 .0259 1.9138 49,0868
.7 .1035 .1056 .0316 .0345 7.2897 37.5766
.9 .0639 L0664 .0439 0466 15,6026  26.0388
1.0 .0525 .0551 .0525 .0551  20.6154  20.6154
ZGO/ﬁ = ,45
.1 .1263 L1246 .0121 .0162 3.7843 42,3587
.2 L2112 .2087 L0181 .0233 1.9548  39.0986
.3 .3723 .3693 .0235 .0292 .7096  35.5081
.5 1.1255 1.1294 L0349 L0410 .0792  27.6954
.7 .2159 .2205 .0496 .0556 1.9548 19.6855
.9 1126 1178 .0719 L0776 6.1529 12.2625
1.0 . 0887 L0941 .0887 0941 9.0024 9.0024
ZBO/W = .6
.1 .0911 .0882 0158 .0224 6.0381 29,9745
2 . 1405 .1365 0237 .0322 3.9372 26.9859
.3 .2031 .1982 L0312 . 0406 2.2469 23.8403
.5 6349 .6285 0479 .0579 .2538 17.3904
7 .6216 .6291 .0709 .0808 .2538 11.2562
.9 .1969 .2055 .1097 .1191 2.2469 6.0381
1.0 L1427 .1517 1427 .1517 3.9372 3.9372
2eo/w = .75
.1 .0708 .0666 .0197 .0294 8.6200 22.2666
o2 .1055 .0996 0300 0424 6.3283 19.4687
.3 L1422 L1350 L0401 .0539 4,.3252 16.6360
.5 .2733 .2640 L0639 .0786 1.3742 11.1440
o7 1.3591 1.3481 .1005 L1149 .0556 6.3283
.9 L4349 LAhLT73 L1741 .1877 .4988 2.6602
1.0 .2530 .2661 .2530 .2661 1.3742 1.3742
Zeo/ﬂ = ,85
.1 L0614 .0562 .0226 0347 10.5883 18.4978
.2 .0903 .0830 .0349 .0503 8.1901 15.8064
.3 .1188 .1098 0471 0642 6.0127 13.1480
.5 2018 .1903 0777 .0958 2.5275 8.1901
.7 L4724 . 4587 .1293 L1472 L4739 4,1095
.9 1.3678 1.,3832 .2564 .2732 .0529 1.3056
1.0 L4430 .4591 4430 4591 4739 4739
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99

v

.0039
.0024
.0001
.0083
.0208
.0378

.0480

= arctan .5
o

P

.2082

.1830

.1601

.1200

.0868

.0596

.0480

20 /o
0

Py

.0139
L0117
.0081
.0035
.0211
.0452

.0598

.2865
.2510
.2185
.1618
.1148
0762

.0598

Table 5

.0320

.0293

.0248

.0102

.0121

L0425

.0610

.3478
.3029
.2618‘
.1900
.1304
.0817

.0610

.0578

.0524

.0349

.0082

.0283

.0504

.3972
.3426
.2928
.2059
L1341
.0753

.0504

.0589
.0293
.0112

.0358

.85

4240

.3627

.3067

..2093

1290

1. 0635

.0358

Lwih PIo

YoRLI

o
, B
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