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Abstract 

In this note we consider the low frequency interaction of a half toroid 
EMP simulator in the vertical position and a perfectly conducting half prolate 
spheroid resting on a perfectly conducting ground. In particular, we calculate 

the magnetostatic.field on the surface of the spheroid and compare it to the 
case of the spheroid immersed in a homogeneous magnetic field. 
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LOW-FREQUENCY MAGNETIC FIELD INTERAC?ION OF A 
HALF TOROID SIMULATOR WITH A PER.FECTLY 

CONDUCTING HALF PROLATE SPHEROID 

ABSTRACT 

In this note we consider the low frequency interaction of a half toroid 
EMP simulator in the vertical position and a perfectly conducting half prolate 
spheroid resting on a perfectly conducting ground. In particular, we cal- 
culate the magnetostatic field on the surface of the spheroid and compare 
it to the case of the spheroid immersed in a homogeneous magnetic field. 
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I. Introduction 

In this note we consider the low frequency magnetic field interaction 
of a half toroid EMP simulator in the vertical position with a perfectly 
conducting half prolate spheroid situated on the ground. The geometry of 

this simulator has been described in a previous m* note The effect of a 
hemispherical perfectly conducting body or a half infinite cylinder, on the 
low frequency magnetic field of the half toroid was investigated in notes 

120 (Ref. 2) and 124 (Ref. 3) respectively. 
The ground will be taken perfectly conducting under the same set of 

assumptions that were made before. (See for example Refs. 2, 3, 4). We 
can then apply image theory to reduce the problem to that of the magnetostatic 
interaction between a circular loop of radius a and current I and a coaxial 
perfectly conducting prolate spheroid. The major and minor axes of the 
spheroid will be denoted by 2c and 2b respectively. We will calculate the 
current density on the surface of the spheroid and compare it to the situation 
corresponding to b/a +- 0, 1/2a = const., i.e., when the spheroid is immersed 
in a homogeneous magnetic field Ho = 1/2a. For a fixed finite value of the 
radius of the loop "a" the limiting cases b/c + 1 and b/c + 0 should correspond 
to the problems investigated in notes 120 (Ref. 2) and 124 (Ref. 3) respectively. 

We present plots of the normalized magnetic field h = (2aH)/I where H is the 
magnetic field on the surface of the spheroid (equal to the current density) 
versus z/c with the ratios b/a and c/b as parameters. Plots are also given 

of A = (H - H->/H- where II, is the magnetic field on the spheroid when the 
incident magnetic field is homogeneous and equal to I/2a, versus z/c with b/a 
and c/b as parameters. Finally, we plot h versus b/a at z/c = 0 and .5 with 
c/b as a parameter, and the maximum value of A over the spheroid versus c/b 
with b/a as a parameter. 
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II. Formulation of the Problem 

In this note we consider the case of a half toroid simulator in the 

vertical position. Our test body is a perfectly conducting prolate hemispheroid 
of major and minor axes 2c and 2b respectively situated on a perfectly conducting 
ground. Applying the method of images we can reduce our problem to that of a 
circular current loop of radius a engulfing a full spheroid (Fig. I). 

Spheroidal coordinates 5, n,4 are best suited to the present geometry and 
w'e will characterize the circular loop by n = n7;, and 5 = 0, and the test body 

by n = rile The family of surfaces 5 = const are hyperboloids of revolution and 
are orthogonal to the family of the spheroids n = const. All surfaces are 
confocal with a focal length f = (c2 - b2)"; (Fig. 2). The connection with the 
Cartesian coordinates is 

-l<frl 

x = f (n2 - l)(l - iz2) cos I$ 

Y = f (n2 - l)(l - E2) sin CJI 

(1) 

As f -f 0 the spheroidal coordinates reduce to spherical ones as 5 = z/fn + z/r = 
cos 8, q + r/f. Finally, the relationship between no, n1 and a, b, c is 

(2) 

For the situation depicted in figure 1 both the incident vector potential (due 
to the circular current loop) and also the induced or scattered vector potential 
(due to the induced current on the spheroid) are +independent and have only a . 
4 component. The incident vector potential Ai"' is (Ref. 5) 
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odd 

where 5, = 0 and Pi(E)(E I; l), QL(n)(l 5 n < -> are the associated Legendre 
functions of the first and second kind. A suitable expression for the scattered 
vector potential As' is (see Appendix) 

4 

A;c = n=l f snP~m2&l), ,r) ’ n1 (4) 

To calculate Sn we must satisfy the boundary condition of a vanishing normal 
magnetic field on the surface of the spheroid, i.e., Hn = 0. The curl equation 
H = - p,' V x A in spheroidal coordinates is - 

[ 

a(p)‘ a (p) 

. 

1 
voHn = - 

hEh4 I 

where 

h4 
= f[(n2 - l)(l - F2)1", = p 

Recalling that A = A = 0 we obtain 5 n 

(5) 

(6) 
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vOHTj 
-1 a = - - (h+A4) 

h&, aE 

~.IH =0 
09 

The boundary condition Hn = 0 can now be written as 

[ 

ah 
$A4+h 

aA 
e$) =o 1 n=y 

If we require A+(rl = nl) = O,(8) is satisfied since A 
4 

is then constant on 
the surface of the spheroid and consequently (a/aS)A$ = 0. Applying 

A4 =A? (nl) + A;%,) = 0 

we can find with the help of (3) and (4) 

'n = + ll,ICh,2 - I)(1 - ~~~1~ 2n+l P~(o)Q~ho)P~(nl) * 

n2(n+l) 2 
Q&Q) 

i.e. 

/ 
A;= = $ u,IC(n~ - 1) (1 - Q3h f 2n+l P;(O)Q,lh,)P,L(n,) 

n=l n2(n+l)2 Q&) 
P;(S)Q)d 

odd 
In this note we are interested in the tangential magnetic field along the 

(7) 

(8) 

(9) 

surface of the spheroid H 
5 . This component is equal to the current density K 

(P 
. 

ah aA 
T$ AO -I- h9 2 

I 11'17 1 

,I 

(10) I’ 

Due to the boundary condition Ag(nl) = 0 (10) reduces to 
I' 

(11) 
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Performing the differentiation we obtain (setting 5, = 0) 

x f 2n+l 
2 P;(So)Q;(no)+E) 

n=l n2(n+l) 
odd 

P;(nl) aQ$) 1 Q&) an ,,=s, 
(12) 

1 

Using the Wronskian relation 

P&I $, Q;(n) - Q;(n) $, P;(n) = nh+l) , 
n2-1 

we can rewrite (12) as 

(13) 

Using (2) we can see that (ni - - ,)Q = a/b. In the Appendix we show 
that as b/c -t 1, (13) reduces,as it should, to the corresponding expression 
for a sphere. We want to compare HE; given by (13) to the situation a/b + 03 
and I/2a = const, i.e., when the spheroid is immersed in a homogeneous magnetic 
field H? 

. 
= 1/2a. To find H, = HF + Hi we consider (13) in the limit 

a/b + Q) with b and c finite. Recall that 

Q;(n) = 
3- 

- 2r$12 - 1)" (n+s)l (n+2s+l)! 
.io s'(2n+2s+l)' n-n-2s-2 . . 

AS a/b -t EQ then r\ 0 = (c2-b2+a2)4/(c2-b2)% + 03, and 

(14) 

Q;(11,) - - 
rl& 

2nn n!h+l)! n-n-2 = _ 2n n!(n+l)I -(n+l) 
0 (2n+l)I 0 (2n+l)I no l 

0 

Also notice that as n + ~0 
0 

(15) 

(16) 
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-n+l From (13), (14) and (15) we see that the term involving no is no and 

consequently the only nonzero contribution comes from n = 1. The final 

result is 

(17) 

We can arrive at (17) by solving the problem directly, and this is done in 
the Appendix. 

In this note, the two quantities of interest are 

2aH 
h=+ 

(18) 

We plot h and A versus z/c with the ratios b/a and c/b as parameters. For 
the case of the infinite cylinder (c + 00, b finite) we plot h and A versus 
z/a with b/a as a parameter. We show in the Appendix that as c/b + ~0 then 
H, + 1/2a. Thus, hco = 1 and A = h - 1. We also plot h versus b/a at z/c = 0 
and .5 with c/b as a parameter, and the maximum value of A over the spheroid 
versus c/b with b/a as a parameter. For a given finite value of the radius 
of the loop "a" and as b/c + 1 or b/c + 0 our plots coincide with the 
corresponding plots considered in notes 120 (Ref. 2) and 124 (Ref. 3) 
respectiveJ.y. / 
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IT.1 l Numerical Calculations 

The calculation of H , given by (13), involves the knowledge of 

P:(E) (El g 1) .and Q:(n) (1 s n < -1. From the numerical point of view it is 
advantageous to evaluate these quantities using the recursion formula 

nP n+l(x) = (2n + l)xF,(x) - (n + l)Fnwl(x) (19) 

~ I 
I 

t 

I 

,’ j 

where Fn(x) is either Pi(c) or Q:(n). 
A recursion relation like (19) is useful only when the errors that may 

be propagated in the evaluation process do not grow relative to the size of 
the wanted quantity. Such a process is called stable. For the associated 

Legendre polynomials an increasing n recursion process is stable; however, 
this is not the case with the Qln's. The opposite is true, i.e., the process 
is stable for decreasing n. For this type of calculation the knowledge of the 
two starting values of the Qi is required. For a given n the Qi's decrease 

rapidly with increasing n. This observation allows us to apply Miller's 
algorithmE6' which suggests that we set Q,l = 0 where N is the starting value 

for n and assign to QN an arbitrary small value, say M. Using the recursion 

formula for decreasing n we arrive at a value for Q: which depends linearly 
on Pi. Knowing the exact value for Qi we can now find the true value of any Qi 
by multiplying by Q/M where Q is the exact value for Qi. In applying the 
above procedure we encountered the following difficulty. As n gets larger 

the Qln's decrease progressively more rapidly with increasing n. Assigning r 
to Qi the lowest possible value that the computer can register as nonzero we 
may, depending on n and N, arrive at an intermediate Qi with a value larger 
than the maximum allowable number that the computer registers as finite. 
Luckily we can overcome the difficulty just described, by noting that the 
series for H 5 converges faster for larger no 's and consequently for large 

nO9 where the difficulty is pronounced, we can only consider a small number 

of Qi's to arrive at a finite Qi. 
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Appendix 

I. Derivation of equation (4). 
SC The scattered vector potential A = Ai'io satisfies Laplace's equation, 

but AT 
I  1 

does not, i.e. 

V2Asc - 1 
4 f2(n2-l)(l-c2) 

A;' = 0 

where 

V2Asc = 
9 

Consider now u = Ai' e f@ . The Laplacian of u is 

v2u = $ [ (1 - c2) g] + & [(n2 - 1) e] + (1-;;-;;2el) 9 
In view of (A-l) and (A-2) we see that u satisfies Laplace's equation and 
consequently 

u = 1 1 [AlPi f A2QI(5)][A3PI(~) + A4Q:(n)][A5eim' + A6eeim"l 
nm 

(A-1) 

(A-2) 

(A-3) 

SC i$ Recalling that u = A+ e , we understand that m = 1. Furthermore, Ai" must 
be finite at 5 = 1 and at infinity (n + a>; this implies that A2 = A3 = 0. 
Finally, in view of (3) for the incident vector potential we need only consider 
odd values for n. 

II. Equation (13) in the limit b/c + 1. 
In this limit (2) gives nl + a, no + = and we can use the asymptotic 

expression for Q:(x), 

Q;(x) - - n! (n+l)! 2nx -(n-l-l) 
X+-= (2n+l)! 

We also notice that 
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p2=f= t--s CJ 

'Ilf 

and (13) can be written as 

HE (n I a no Q, --- 
= '1) + 2% fnl nl n=l c (A-4) 

odd 

We have ~-11/n, = c/(c2 - b2 + a2)% = c/a, fnl = c and (A-4) becomes 

Hg(r = b) + -& 1 ,g$ P;(o)P;(cos 8) cyl 

odd 

(A-5) 

Equation (A-S),as we expected, is equal to -He which corresponds to the situation 
of a perfectly conducting sphere surrounded by a circular current loop. 

III. A perfectly conducting prolate spheroid in a uniform magnetic field. 
inc If the uniform magnetic field is g . = Hoiz then it can be derived from 

a scalar potential @ lnc = - Hoz = - Hofen = - HofPl(c)Pl(n). The spheroid has 
its major axis along the z axis and the scattered scalar potential should have 
the form Qsc = M,  (C)Q, (n> l 

W/an = 0, which ;ieldi 
The boundary condition is Hn(n = nl) = 0, i.e., 

A = fHo 
(d/dnYQ [ 1 (d/dn)Ql n=n 1 

. 
The total potential Q = Qsc + Ginc is then given by 

and H = - 
5 l/+ (a/x.) @a If we calculate the field at n = nl we can use the 

Vronskian relation 
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to finally obtain 

HE = - Ho 
Pi (51 1 1 

(A-6) 

,iiN 
It 

61f-E~)~ (n;d Q; (n$ 
: j 

/J 

where P:(S) = (1 - E2)'(d/dE)Pl (0 and Q:(n) = (n2 - &d/dn)Ql l 

II 
We can easily / :i/ 

show that as c/b + 1 (the spheroid becomes a sphere) (A-6) gives H 5 = (3/2>Ho sin 8 ';/I 
and as c/b + Q) (either c = 03, b finite which is the cylinder case or b = 0, i.e., 'i /I 

I /!, 
no spheroid) HE = Ho as it should. ,,j ii II I’ I’ 



I FIGURE 1, The Current Loop,Prolate Spheroid Geometry. 
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FIGURE 2. Prolate Spheroidal System of Coordinates. 
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