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Abstract

In this note, the possibility of minimizing the total inductance of an

N loop ~ sensor is considered by numerically determining the optimum spacing

between the loops. This technique invol;es formulating a set of simultaneous

non-linear equations for the loop separations using the maxima-minima theory

with constraints, and then solving these equations using a multi-dimensional

Newton Raphson algorithm.

The numerical results presented here include the coil positions for up

to 20 coils for various a/h values, and curves of the minimum mutual inductance

of these coils shown as a function of the a/h value. In addition, difference

curves showing the difference between the mutual inductance for uniform loop

spacing and the minimum mutual inductance are presented.
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I. Introduction

Consider an electromagnetic sensor designed
●

change of a magnetic flux density, B. A sensor

N loops of wire forming a coil of length 2h and

to measure’the time rate of

of this type might consist of

radius a, as shown in Fig. la.

Assuming that the load connected to the sensor is purely resistive and constant

in time, the Th&enin equivalent circuit of the loaded sensor can be represented

by Fig. lb.
(1)

As given by Baum , the load voltage in the frequency domain is

written as

-- ..- +=. ‘.--— .

V(s) = sB(s)AeqR/(R+ s~], (1)

where A is defined as the equivalent area of the coil. For frequencies u
eq

such that

~<<~ = R/L,
o (2)

this relation simplifies to give

V(s) s sB(s)A
eq

which is equivalent to the relation

V(t)= ;A
eq

in the time domain for an initially relaxed sensor.

For the collection of N co-linear coils, the equivalent area is given

approximately by

A = Nva2
eq

so that the load voltage as given by Eq. 4 can then be rewritten as

v(t) = Nma2~.

(3)

(4)

(5)

(6)
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Figure 1. Diagram of ; sensor showi?g the pertinent
dimensions (a) and the Thevenin equivalent
circuit of the sensor with a resistive load (b).



From chi~-last relation it isobvicms that bv increasin~fti:number af~— .—,.. .—-— —.——z —-------.—___

of the coil, the sensitivity of the sensor can be increased. It must be
..L— .

remembered, however, that the frequency range over which Eq. 6 is valid is,.-

turns
.

limited by the constraint of Eq. 2. As N is increased, the inductance L is
,..

also increased, and hence the bandwidth decreases, giving a distorted time

response at the output of the sensor.
.

In the practical design and construction of B sensors, it is necessary to

limit the physical size of the sensors. In the case of N coaxial loops, the

maximum separation between any two of the loops is limited by the design

constraints. )loreover,the choice of the number of “loops,N,n$Ly be dic;”ated..
by the sensitivity of the electronic equipment used to measure the voltage

across the output. With these parameters assumed to be fixed, the problem

reduces to that of obtaining the maximum bandwidth of the system. From Eq. 2

it is seen that this is equivalent to attempting to minimize the inductance

of the N loops with the total length of the sensor coil specified.

Baum(’) further defines an equivalent volume of the sensor in terms of

its electrical properties. In comparing this equivalent volume to the physical

volume, a figure of merit is obtained which depends

of the N loop sensor. Minimizing the inductance in

equivalent to maximizing the figure of merit of the

inversely on the inductance

this problem is therefore

sensor.

In this note, the determination of the optimum separations for minimum

inductance of N loops is carried out by formulating and solving a system of

non-linear equations using maxima-minima theory with constraints. This same

problem has been attacked in a different manner in another note by Lee and

Latham(2) . There , the current distribution in the azimuthal direction on a

conducting cylinder of length 2h and radius a when immersed in a quasi-static

magnetic field was found via an integral equation solution. This current

distribution is then used to approximate the locations of the N loops. Whereas

this technique is valid for very large numbers of loops, the accuracy decreases

as N becomes small. The present direct approach for finding the optimal loop

separations will be more accurate for relatively small values of N.
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. . H. Determination of the Loop Separations for Minimum Inductance ,

In attempting to minimize the inductance of the N loops of Fig. Ia,,tk’e
‘?

maxima-minima theory for functions of many variables is utilized(3). The

constraint that the N loops are to be positioned between the limits x = -h and

x = h is included through a Lagrange multiplier. The solution of the resulting

system of equations is then determined numerically on a digital computer.

Consider the N loops each of radius a and having positions xi (i = ICCON)

to be located coaxially as shown in Fig. 2. Assuming that the loops are

connected in such a way that the mutual inductance between any two of them “is
.p

a positive quantity”,the total induc&nc&’ of the s~”stemmay be Mitten as
—.==..=.-

L=NLo+~~Mij
i=~ j=l
i+j

(71

where Lo is the self inductance of each loop and M
ij

is the mutual inductance

between the i= and j~ loop.

The mutual inductance M.. between two identical loops may be expressed
lJ

as a function of the separation of the two as
(4)

M(dij) = Ba[(~-k)K(k) -~E(k)]

where

‘=4%7
ij

and

=x
‘ij j - ‘i”

(8)

(9)

(10)

The value d is the separation of the two loops and the functions K and E are
ij

the complete elltptic integrals defined as



x

Figure 2. N identical loops of radius a which are to be spaced
within the region x = -h and x = h so as to minimize

the total inductance of the coil.
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~

T/2
K(k) = (1

-+- kz Si112$) do
o

J

m/2
2$

E(k) = (1 - kz sin+) d+.
o

These are investigated in Refs. (5) and (6),

In order to minimize

sufficient to minimize the

the total sensor inductance L of Eq. 7, it is

total mutual inductance, ~, where

NN

(11)

(12)

since the term NLO ,is independent

the independent variables in this

i+j

of the loop positions. Instead of regarding

problem as being the loop locations themselves,

it is convenient to treat the separations between adjacent loops as being the

independent variables. By defining

‘1=X2-X1
=x-x

‘2 3 2
.
.
.

‘N-1 = ‘N - ‘N-1

(13)

it is seen that there are N - 1 unknown separations to be determined. The

separation d.. between the i“ and j“ loop may then be expressed in terms of
lJ

the z values as

‘ij =
Zi+z + ‘“”z.

i+l J-~”

It is then possible to write Eq. 12 as

(14)

(15)



\ has been employed ta.chenge the jwhere the “f-a-c-~-th-a-t“M ‘-=‘M-’ “--’
ij ji

l+ Ntoi+l+ N’, T%is total mutual inductance P$ is then to

subject to the constrain that

N-1

s z. =2h

i=l 1“

which is the requirement–that the total coil length be equal to

Using standard techniques
(3), a Lagrange multiplier A and

.. .3. .)-‘.. .+,: -–-, ..
F are intr;duced,where

1A..,-.a~z.’..:,.iG=:!..’ -.r- .: ---- i.

F(Y,A) = ‘~ ~M(zi+O*e ‘j-~
i=l j=i+l )+ G ‘c 2h)9

summation from

be minimized”~-~

- -5 ~-,

(16)

2h.

a new function
“73m

.*hnll

(17)

The vector z represents the independent variables Zl, Z2,0*OZN-I.

Finding the unconstrained minimum of this equation is equivalent to

finding the minimum of Eq. 15 subject to the constraint of Eq. 16. This is

achieved by taking derivatives of F with respect to the unknowns z and A

and setting them to zero. Doing this yields the following set of N non-linear

equations

?5 ~(zi+zi+l+Q*o ZL+”O” zj_l)+~ =(), L= 1,2,...1-1

i=l j=i+l L

and (18)

N-1

Xzj.-2h=0i=1
It is obvious that for k < i and L > j - 1, the derivative 3M/~zL in Eq. 18

is zero, since M does not depend on these values of ZR. Hence, the limits of

the summations may be modified to yield

25 ~(Zi+Zi+l +””” Zi+””” Zj-l)+A=O, L=1,2, ***N-1
i=l j=~+l t

and

N-1

~lzi-2h=0.

(19)



:In attempting to

represented by Eq. 19,

3M/~zk in terms of the

r

determine Ehe solution (Z,A) of the N equations ,~.:f~~
3

,
it is necessary to first express the derivatives ,

complete elliptic integrals which can be readily

calculated. From Eq. 8, it iS seen that aM/azL may be expressed as

[ 1~ (zi+ ● *. Zj-l) =pa - (2+ I)K(k) +2 E(k) + (~-k) K’(k) -~E’(k)~
L k’ k’ E

(20)

where Kt and E’ represent the functions aK(k)/ak and aE(k)/~k respectively

and k =
[
1+ (Zi+zf+l+ ● “* ZE+ “*” Zj-l 1)2/4a’ -? Expressing these

derivatives in terms of the K and E functions themselves as in Jahnke and

Erode(5),and noting that from Eq. 9

(zi+zi+~+”’”z.-l)illc=_
azg *

(2a)2k3

the derivative may thus be expressed as

(21)

(Zi+”””z J ‘K(k) ‘_k’
*(zi+ ””* zj_l) =*

‘[k3 k2+2 1E(k)
L k (1-k’)

where i < $ < j - 1.

An alternate approach would be to use a finite difference

evaluate these derivatives. In this manner, the derivative may

(22)

technique to

be written as

M(zi+zi+l+.oo(ZL+E)+” ”” Z._l)-M(Zi+Zi+l+” ““(ZL-E)+**.Z.-l)

*(zi+ ‘“” Zj-l)s

!?,
‘E

(23)

where iSE<j - 1 and c is some quantity much smaller than any of the separations

Zi. These derivatives, either calculated by Eq. 22 or estimated by Eq. 23, are

then employed in Eq. 19 to numerically determine the solution (ZZ,A).

Once the positions of the N loops have been found, the total inductance of

the sensor can be determined. Assuming that each loop consists of a wire of

radius b and permeability P1, the self inductance of a loop is expressed as(8}

(24)
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‘1;

;’

‘(k=;~(~:,,
. . . ..

As in previous equation%a is the loop

space surrounding the sensor and K and

in Eq. 24 correspond to the inductance

arises from-the internal-inducta”nceof

b))%/(2a - b) (25)...,

radius, p is the permeability of the

E are elliptic entegrals. The first term

of the loop, whereas the second term

the wire of the loop.

For bla”very still, k is nearly unity so the approximations
....’ ,e’-

. ... +... .

,, . . ,:

[ 1235 .!

K(k)#ln4/(1 - k )

(26)

E(k) s 1

yield on approximate expression for Lo in the form

Upon calculating the correct value of the self inductance of a single

as well as the total mutual inductance from Eq. 12, the total inductance of

~ sensor can be determined via Eq. 7.

(27)

loop,

the

,.,,,,



111. The Numerical Solution

In solving the set of N non-linear simultaneous equations i19La rnultf-

dimensional Newton Raphson technique is used.(3) Basically, this involves

expanding the non-linear functions to first order in the independent variables~...
about some initial trial solution, and then determining a new solution by

solving the resulting N linear equations. This process continues until.ehe’

solution has converged sufficiently. The computer program used for this.. -2,::
purpose was a standard subroutine supplied by the Control Data Corporation... . ...: ------- .&.- ..... ...... ..-,.

The calculation of the ellip~ic integra~s defined byEq. 11 may be rapidly

done using an eight-term approximation given by Hastings(7)● With these

expansions, the errors in the calculated elliptic integrals are at all times

less than 1.5 xIO
-8

in magnitude.

To begin the iterative solution, it is necessary to first guess an

initial solution (?ZO,AO). For the initial spacing vector %., it is convenient

to consider all of the coils as being equally spaced. Hence, Zi = 2h/(N - 1)

for all i. For the value of the Lagrange multiplier, it was found that by

choosing A. = pa/zl, the solution would converge to the solution for minimum

inductance

are used.

approaches

physically

fairly rapidly if the finite difference expression for the derivatives

If, however, the exact derivatives of Eq. 22 are used, the solution

that of a maximum value of the mutual inductance. This corresponds

to there being a loop at each end x = th and the rest clustered -

about the point x = 0. Clearly this solution is not desired, so the finite

difference technique was subsequently employed as it converges to the minimum

solution.

It was also observed that the numerical solution does not converge for

large values of alh. In addition, the maximum a/h value for which the solution

is convergent decreases as N increases. This behavior may be attributed to the

use of the finite difference expression for the derivatives ~M/~zg, or perhaps

due to the Newton Raphson solution itself. This lack of convergence limits

somewhat the range of applicability of this technique, but as mentioned before,
(2)

another method is available for treating the case of many loops. As a

result, the problem of extending the range of convergence of this method has

not been pursued further.

,. )
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IV. Computational Results

Using the numerical technique previously discussed, the optimum locations
●

for three to twenty loops in a B sensor has been determined. The a/h ratio

varies from .2 to 20. for relatively small numbers of loops and, for reasons

alreadymentioned, the maximum value of a,/hdecreases with increasing N. The

IOOp locations, given by xi, are presented (in numerical form) in Table 1. In

311 cases, only the non-trivial loop locations have been reported. For example,

IOOpS 1 and N are always located at x = --hand x = h, respectively. Moreover,

the individual loop locations are symmetric about the x = O point. This implies

that less than N/2 values must be specified for determining the locations of

the N loops. Note also, that if N is odd, there is a loop at x = O. This loop,

like those at x = th, is not included in Table 1.

From the loop position data, it is seen that for a fixed N, the loops

tend to cluster about the ends x = th as the a/h ratio increases. This same

type of behavior was noted by Lee and Latham.
(2)

The minimum possible mutual inductance of the sensor is plotted in Fig.*

3 as a function of a/h for various values of N. Notice that the mutual inductance

is normalized with respect to the quantity Ln= p~a2N2/(2h) which is the total

inductance of a coil of N loops as determined by assuming that the magnetic
(4)

field within the coil is constant. Letting MT stand for the minimum mutual

inductance, the normalized quantity ~lotted in Fig. 3 as a function of a/h

‘s ‘hen % = ‘T/Ln= ‘T(2h) /pTa2N2”
It is interesting to compare the differences between the minimum or

optimum mutial inductance, MT, and that obtained for a uniform distribution of

loops in the sensor , which is denoted by ~. Figure 4 show’s the relative

percent.difference between these two quanties defined as (~ - MT)/~ x 100%.

This relative difference is plotted as a function of a/h for the various values

of N. It is seen that

a/h = 2, and that this

increases.

the difference curves have a peak in them at approximately

difference tends to increase as the number of loops

Figure 5 represents the maximum possible percent difference as a function

of the nurnbet~bf’loop-s,N.’ ~Cle”atIjiY’the data”!gi+bn-rin tKis c&v’61is’’fOr”fi”nteW~’”’!

values of the abscissa only; the curve connecting the data points has been

included only to show the trend in the difference as N increases. In Ref. 2,



.

. .

the maximum difference was found to be alput 5.6% for the I.intitingcase of N

being very large, From Figure 5 it is seen that the difference is still growing ‘j

after N = 10 and it is not inconceivable that the difference might approach this

value in the limit. The errors involved in using a uniform distribution of loops

instead of the optimum distribution is relatively small, due to the fact that

the inductance can be shown to be a variational quantity. ThaC is, a first

order change in the loopsoperations produces a second order change in the

14

inductance. This property has been studied in Ref. 2 and will not be discussed

further.



EMP 1-11 133-15

Table 1. Non-trivial* locations (xi/h) for N loops

in a ~ sensor for various a/h values.

/h .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 4.0 10.0 20.0
N i

4/ 3 1.339 .345 .355 .366 .377 .386 .394 .401 .406 .411 ●433 .444 .446

51 4 1.509 .524 .542 .560 .575 .588 .598 .606 .612 .617 ,641 .652 .654

6 ; .205 .213 .223 .232 .239 .246 .251 .256 .259 .262 .276 .283 .285
.613 .634 .658 .678 .694 .706 .716 .723 .729 .734 .754 .763 .764

57 ~ .343 .358 .375 .390 .402 .413 .421 .427 .433 .437 .457 .466 .468
.682 .709 .735 .755 .770 .782 .790 .796 ,801 .805 .821 .828 .830

5 .148 .155 .163 .170 .176 .181 .185 .188 .191 .193 .203 .208 .209
8 6 .442 .464 .486 .504 .519 .,531.540 .547 .553 .558 .579 .589 .591

7 .733 .764 .790 .809 .822 .832 .839 .844 .848 .852 .865 .870 .871

6 .259 .274 .288 .300 .310 .318 .324 .330 .334 .337 .353 .361 .362
9 7 .517 .544 .570 .590 .606 .618 .627 .634 .640 .645 .665 .675 .676

.771 .804 .830 .847 .859 .867 .873 .877 .881 .883 .894 .899 .899

~

,116 .123 .129 .135 .139 .143 .146 .149 .151 .153
.347 .367 .386 .401 .414 ,424 .432 .438 .443 .448
.576 .608 .635 .656 .671 .683 .692 .699 .705 .709
.802 .836 .860 .875 .885 .892 .897 .901 .904 .906

7 .209 .222 .234 .243 .252 .258 .264 .268

11 : .417 .442 .464 .482 .496 .508 .516 .523
.624 .658 .686 .707 .722 .734 .742 .749

10 .826 .861 .883 .897 .905 .911 .916 .919

7 .095 .101 .107 ,112 .11; .118
8 .286 .304 .320 .333 .344 .352

12 9 .475 .504 .529 .548 .563 .5”75
10 {663 .700 .728 .748 .763 .773
11 .847 .880 .901 .913 .921 .926

13

8
9
10
11
12

,8
9

14 10
11
12
13

.175 .187 .197 .205 .212

.350 ,372 .391 .407 .420

.524 .556 .582 .602 .618

.696 .734 .762 .781 .795

.864 .897 .915 .926 .932

.081 .086 .091 .095

.243 .259 .273 .284

.405 .431 .452 .470

.565 .600 .627 .648

.724 .763 .790 .809

.878 .910 .927 .936

*
Two loops are located at x/h=tl
another at x/h=O if N is odd,
and the others at the values
?X /h as given here.
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Table I. (Cent’d.)

N

9
10
1.1

15 12
13
14

.2 .4 .6

.151 .161 .170

.302 .322 .338

.452 .481 .505

.601 .637 .665

.748 .787 .814

.890 .921 .936

9 .071 .075 .080
10 .212 .226 .238
11 .353 .376 .395

16 12 .493 .524 .550
13 .632 .670 .698
14 .769 .809 .834
15 .901 .930 .944

T
10 .133 .142
11 .265 .283
12 .397 .423

17 13 .529 .562
14 .659 .698
15 .788 .827
16 .910 .937

18

19

20

10
11
12
1,3
14
15
16
17

.063 .067

.188 .200

.312 .333

.437 .466

.561 .596

.684 .723

.804 .842

.91.8.944

T
11 .118 .126
12 .237 .253
13 .355 .378
14 .472 .503
15 .589 .626
16 .705 .745
17 .818 .856
18 .925 .949

T

11 .056 .060
12 .168 .180
13 .280 .300
14 .392 .419
15 .504 .536
16 .615 .652
17 .724 .764
18 .831 .868
19 .932 .954
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Figure 3. Plots of the optimum or minimum
coil shown as a function of a/h

normalized mutual inductance of the
for various numbers of loops, N.



(1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

)

a/h

Figure 4. Plots of the percent difference bekween the optimum mutual inductance
and the mutual inductance due to a uniform loop spacing shown as a
function of a/h for various numbers of loops, N.
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5. The maximum percent difference between the optimum mutual
inductance and the mutual inductance due to a uniform loop

spacing, shown as a function of the number of loops.
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v. Conclusion

,

“)
A technique for determining the optimum 10cations of N loops which &ake. ..— . .. . . .. . .-—-....,’”’ -t ,,.

up a B sensor has been discussed. By requiring that the total mutual inductance

of the coil be a minimum, a system of non-linear simultaneous equations may be

formulated and solved using a multi-dimensional Newton-Raphson technique. This

method was found to be convergent for small a/h values and for loops, but did

not converge sufficiently for large a/h ratios with many 100pa.

A table showing the’optimum loop loca~ions has been presented, as well as

curves of thp normalized minimum mutual inductance for various N and a/h values.
->/

The percent difference in the mutual inductances
-.

that is encountered in using

the uniform spacing instead of the”optimum spacing iS also displayed, and it is

noted that this difference is less than 4% for up to ten loops.

. .

.

20
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