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above a perfectly

homogeneous electro-

The cz?aci.tance and mean charge separation of two identfcal cylindrical

posts are c.dculated for di~ferent separations between the cylinders and

different diameter-to-length razios of the cylinders. The induced charge

density on the end caps is also graphed for two values of the post?s ciiameter-

to-length ratio and for several values of the plate-to-post separation. .-~. .. .,.,:-,.-~.,=.+.:=;...._—,,:..=,-,,
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A’bstract

The induced charge distribution on a cylindrical post

conducting plate is obtained k-hen the post is i~.ersed in a

static field parallel to the axis of the post.
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1. Introduction

In previous notes
(2,3,4)

the eleetromagneeic interaction of a two-

parallel-plate simulaeor and a post inside

note and a subsequent one are devoeed to a

where the post is very close to one of the

From the theory of images it follows

action of a post and a ground plane we can

of two cylindrical posts. In this note we

it has been studied. The present

closer investigation into the case

parallel plates.

that instead of studying the inter-

study the electromagnetic interaction

will study in detail the electrostatic

interaction of two cylinders, whereas the dynamic interaction will be,treated

in a subsequent note. In addition to calculating the surface charge density

induced by a homogeneous electric field on the post, we will calculate the

capacitance and the mean charge separation of two identical right c$incular

cylinders. These latter two quantities characterize the low-frequency behavior

of two cylinders when they are used as an antenna.

In section H we formulate an integral equation for the charge density

on two equal cylinders with a common axis. This integral equation is then

solved numerically in section 111 by making use of the Gaussian quadrature

formula. The numerical results are given in graphical form for (1) the

capacitance of two cylinders, (2).the mean charge separation, and (3) the

surface charge density and total charges on the end caps of the two cylinders.
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11. Integral Equation for the Charge Density

Consider two identical, perfectly conducting, charged cylinders, S+ and

s -, having a common axis and immersed in an electrostatic field (see figure 1).

The potential, ~(~), outside the cylinders is given by

$(Q = @inc(Q + Q+(Q+ Q’-(Q (1)

where

4t(@= C;l ~ G(r,r’)cr+(~’)dS’
s+ ‘- -

G(r,r’) = (4T15-~’1)
-1

——

IS+(l)and u-(~) are the charge densities on S+ and S-, respectively, and @lnc(~)

is the potential of the incident field. In the q-symmetric case with two

oppositely charged cylinders> (1) can be reduced to

[1
a

@(@ = @in=(p,z) -!-(Trs)-1 L(p,z,p’,d)o(p’,d)dp’
o.

0

I
b

I

a
+ L(p,z,a,z’)c(a,z’)dz’ + 1L(p,z,p ’,b)o(p’,b)dp’

d o

where

L(p,z,p’,z’) = N(P,p ’,Z - Z’) - N(P,P’,z + Z’)

N(p,p ’,g) = ; k(p/p’)% K(k)

k = {4pp’/[(p +p’)2+<2]#

and K(k) is the complete elliptic integral of the first kind
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~

‘R/2 -%
K(k) = (1 - k2 sin2$) d$.

o

The requirement that the potential be a constant,t@o,on each cylinder gives

us the following integral equation for the charge density

inc

[J

a b

@o=@ (P,z) + (lwo)-i L(p,z,p ’,d)a(p’,d)dp’ +
I

L(p,z,a,z ’)a(a,z’)dz’
o d

I
a

+ 1L(p,z,p’,b}u(p’,b)dp’, (P,Z)ES+ (3)
o

Putting @‘nc(p,z) = O and introducing the normalized charge density s(P,z),

S(f),z) (4)= ao(p,z)/(co@o)

we have

/

a

f

b
L(p,z,p ’,d)s(p’,d)dp’ + L(p,z,a,z’)s(a,z’)dz’

o d

I
a

+ L(p,z,p’,b)s(p’,b)dp’ = w (5)
0,

The capacitance, C, between the two cylinders is then given by

c = cQaS (6)

where

/

a

/

b
ST= [s(p’,d) + s(P’,b)lP’~P’ + T s(a,z’)adz’.

o d

The mean charge separation of the two cylinders, ha, is defined as

ha = 21Tf1
{1 [a[ds(p’,d) +bs(p’,b)~p’dp’ +,~zrs(a,z’)adzr
o \

(7)
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A knowledge of C and ha enables us immediately to determine the low-

frequency characteristics of the two cylinders when used as an antenna. The

normalized capacitance, S, defined by (6) and the mean charge separation of-.,*.............. .-_-_.=-.-,

the two cylinders are graphed in figures 2 through 5, from the numerical

solution of (5) which will be discussed in the next section,

The charge distribution on two cylinders having no net charge but

immersed in a homogeneous electrostatic field directed along the common axis

of the two cylinders can be obtained by solving equation (3) with

c

~inc
(P,z) = ZEO

and

-~
u(p,z)dS = O.

s+

The normalized charge densities Sl(p) and S2(P), defined by

S1(P) = (EOEO)%P ,d)

s,+) = (coEo)-lddd

are graphed in figures 6 through 9 for various values of d/a and h/a = .1, .02.

The normalized total charges on the end caps of the post, QI and Q2, defined by

~

a

Qn = 2Ta-2 psn(p)dp, n= 1,2
0

are graphed in figures 10 through 11 for a wide range of values of d/a and h/a.

—
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111. Numerical Results

Equation (5) was solved numerically by making use of the Gaussian

quadrature formula. For\p-pJ\+\z- z~ \ + O the integrals on the left

hand side of (5) can be approximated by the following sums

\

a ‘1
L(p,z,p ’,d)a(p’,d)dp’ = ~ L(P,Z,P!,Z’)S(P;>Z;)IWj,

o j=l Jj

= <1 + ~j(Nl)]/2, z! = d, Wj = arj(Nl)/2
‘; J

I
b ‘1+N2
L(p,z,a,z’ )o(a,z’)dz’ s Z L(P,Z,P; ,Z;)S(P&;)Wj,

d j=NI+l

= a,
‘; ‘z; =d+Eb -

(N2)]/2,- d][.1+ tj_Nl

= (b-d)r (N2)/2
‘j j-Nl

=Jl+g j_M+l(N3)j/2, Z; = b,
‘i

‘j
(N3)/2

= arj-M+l

where

M= NI+N2+1

N=NI+N2+N
3

(8) o

The abscissas, #j(n), and weight factors, r. (n), in the Gaussian integration
J

formula using n sample points on the interval (-1,1) are given by (7) e
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Pn[:j(n)l = O

rj (n)”= 2/{[1 - $~][p~(&j )12}

where Pn(g) is the Legendre polynomial of degree n. Approximating the left

hand side of (5) by the sums (8) and setting the sum thus obtained equal to

v at N points (p.,z<) we form a system of equations for determining S(P,Z)
J.J.

at N points ‘(p~,z~). Because L(P,z,P’,z’) has a logarithmic singularity at
JJ

P -P’ = z - z’ = O and because we want the set of points (Pi,Zi) to coincide

with the set of sample points (P!,z!)Iin the Gaussian integration formula,
JJ

we proceed as follows. For 1 < i s Nl,we have

I

a

~

a

L(&zi,p’, d)s(p’,d)dp’ = S(pi,zi,p ’,d)s(p’,d)dp’

o 0

ra
+ 1R(pi,zi,p ’,d)s(p’,d)dp’ (9)

o

where

S(p,z,p’,z’) = -+ “

/(p+p’)2+(z-z’)2

ln[(p - Q’)2+ (z - Z’)23

R(p,z,p ’,z’) = L(p,p’,z,z’) - S(p,p’,z,z’)

Note that R(p,z,p’,z’) is finite and

R(p,z,p,z) =~ln8p - N(p,p,2z)

Moreover, assuming that

[s(!3,2) -
2

s(p’,z’)lln[(p - p’) + (z - z’)21 = O

at p - 0’ = z- z’ = O we have approximately
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I
a

uf3i,zi$P‘,d)s(p’,d)dp’
o

L(P ,.2,fl.,Z.)S(~.,Z.)W.
iij~ 3J3

j=l

[
+ R(Pi,Zi,Pi, ~ iz )W + Sl(pi)

‘1
- z Sbi,zi,clj, zj)wj S(P ,2)

j+i 1 ii

where

I
a

S1(P) = <Inlp - p’ldp’~ p+p

In the same way, we get for NI + I < i < NI + N2

~

b ‘I+N2
L(pi,zi,a,z’)s(a,z~z~- Z ‘(pi$zi,Pj 3zj)s(P.,Z.)W

d j+i JJj

j=Nl+l

[
+ R(pijzi>pi}zi)wi + s2(zi)

‘I+N2

1-~ S(pi,zi,pj,zj)wj s(p.,z.)
j+i JJ

(lo)

where

J
b

S2(Z) =
- Inlz-z’l

dz ‘

d=

Thus, we can form the following system of algebraic equations for the

integral equation (5)

(11)

~ Lijsj=n, l<i <l?
j=l
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where

‘ij
= L(p ,2 ,P ,Z. )W ,

iij Jj
j+i

‘1

‘R(pi>zi, pi, ~z )Wi + sJPi) - ~ S(~i,z~$Oj>zj)wjy

j#i
j=l

‘1*N2
L = ‘R(Pi,Zi,Pi,Zi)Wi + s2(zi) -
ii z s(Pi,zi,Pj,zj)wj,

j+i
j=N1+l

—

[

N

R(Pi, Zi, Pi, Zi)Wi + Sl(Pi) -
$

s(Pi,zi,Pj,zj)wj, M$i <N.-

ji
j=M

The system of equations (12) was solved on an electronic computer (CDC 6600).

A comparison of our numerical results with Smythe’s (5,6) was made and agreement
-4

within a relative error of 10 was found for the capacitance of one isolat:ed

cylinder. The capacitance between two cylinders is graphed in figures 2 arid3.

The dashed curves in figure 3 is the capacitance obtained from the Kirchoff

formula given by
(1)

SS na/d + ln[8na(l + h/d)/d] - 1 + (4mh/b)ln(l + b/h) (13)

Figures 4 and 5 are plots of the mean charge separation of two cylinders. The

charge density and total charges on the end caps when the two cylinders are

immersed in an incident electrostatic field are plotted in figures 6 through 11.
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Figure 1. Electrostatic interaction of one cylindrical post and a perfectly
conducting plane,(A) and electrostatic interaction of two cylindrical
posts (B): two equivalent situations.
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Figure 2. The capacitance of two cylinders,
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Figure 3. The capacitance of two cylinders.
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Figure 4. The mean charge separation of two cylinders.

13



100

. ..— ...

f

d J I ill 1 1 4 I I I i II 4 1 t 4 1 b 1 II i I i i 1 1 J f i I i 8 1 t I II

10 =

1-

Ja

.1-.

4

.01 -

1 1 1 I !1 1 I I 1 ! I ! ! I ! t Y ! I t ! ! I I ! I ! 1 t I II [ ! I 1 I ! ! !

,01 .1 L/A 1 10 100

30

10

3

1

.3

Figurs 5. The mean charge separation of two cylinders,

14



—.—

a/h=. l

d/a=.01

.1 .

103 ‘ } I I I i I I I I I I

102 -

‘1

10

.3

co

1 I ! I 1 ! I 1 ! I ! I
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

pla

Figure 6. Charge distribution on the lower end cap of the cylinder.
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Figure 7. Charge distribution on the lower end cap of the cylinder.
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Figure 8. Charge distribution on the upper end cap of the cylinder.
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Figure 9. Charge distribution on the upper end cap of the cylinder.
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Figure 10. Total induced charge on the lower end cap of the cylinder.
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Appendix
.=

Although the capacitance of a freely charged right circular cylinder has

been calculated by Srnythe(’”) and the electric polarizability tensor of a

(7)
circular cylinder has been calculated by Taylor we will here include some

graphes and tables of the capacitance and induced charge on one cylinder. The

following quantities have been claculated: (1) the equivalent radius, re, c)f

a right cylinder defined as the radius of a sphere having the same capacitance,

C, to infinity as a right cylinder, (2) the total charge, 00, induced on one

end cap and (3) the charge density, so, at the center of each end cap when t:he

cylinder is immersed in a homogeneous electric field, Eo, directed along the

axis of the cylinder. In figure 12 we have graphed re, re = C/(41TCo),as a

function of h/a, 2h and a being the length and radius of the cylinder, respectively.

Figures 13 and 14 are plots of Qo/(coEoa2) and so/(soEo), respectively. In table

1 we have tabulated the same quantities as those graphed in figures 12-14.

Table 1

hla

o

,005

.015

.050

.150

.500

1.500

5.000

15,000

50.000

rela

.637

.646

.658

.692

.768

.969

1.400

2.508

4.986

11.911

Qo/(soEoa2)

3.142

3.198

3.298

3.552

4.119

5.600

8.860

15.488

34.124

98.452

s
o

1.000

1,002

1.008

1.048

1.133

1.392

3.863

8.269

21.423
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Figure 12. The equivalent radius of a right circular cylinder.
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Figure 14. The induced charge density at the center of one end cap.
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