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Abstract

In this note we compare

when a finite biconicalpulse

In the process of making this

the early time breaking effect on a radiated

antenna is either capped or left uncapped.

comparison we also determine the high

frequency diffraction effect for each termination. This problem is studied

by first employing the geometrical theory of diffraction to obtain the high

frequency solution and then the early time solution is derived by taking

the inverse Fourier transform of the diffraction solution. Our results

are summarized by a set of diffraction coefficients that are graphically

presented.
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I. Introduction

A pulse-radiating biconical antenna has the property that the early time

behavior of the pulse can readily be controlled
~z,g

. The first instant that

the time behavior of the radiated pulse deviates from the time behavior @f the

impressed voltage is the instant when the effect of the end of the bicone is

felt at the observation point. In this note we compare the effect of two

different terminations of the bicone on this initial time deviation. One

termination is to cap the bicone with a perfectly conducting plate and the

other is to leave the bicone uncapped. Because high frequency and early

time solutions are interrd.etedwe first direct our attention toward obtaining

high frequency corrections to the geometric optics solution of this problem.

Since we are interested in the diffraction effect of an edge, we employ the
:3]

geometrical theory of diffraction . Consequently, in the process of

obtaining our early time solution, we obtain the geometrical diffraction

solution for this antenna. This solution is of some interest in itself;

however, our primary interest is in ~he early time solution. We obtain this

by talcingthe inverse Fourier transform of the geometrical diffraction

solution.
[4]

The validity of this procedure is discussed in a previous note .

Our results appear as a set of two diffraction coefficients, one for the edge

nearer to the observation point (upper) and the other for the edge further

from the observation point (lower). Each of these coefficients is a tractable

function of the bicone angle, the radius of the bicone, the observation angle,

and another angle, R, which describes the angle of the termination. In this

note.we consider in detail only the two values of Q that correspond to the

capped and uncapped terminations. A similar analysis to the one contained
[4]

in this note appears in a previous note ; however, the value of Q was

restricted early in the analysis causing the final expressions for the

diffraction coeEf5cients to have a more restricted use than those derived

in this note.

We summarize our results by a set of four diffraction coefficients,

both the upper and lower coefficients for each of the terminations considered.

The coefficientsfor the capped termination are plotted versus the observation

angle for four d~~ferent bicone asgles. Also plotted is a ratio indicating



d

e the percentage difference in the diffraction coefficients for the capped and

uncapped terminations. Finally$ on the same graphs we also present the time

that the effect of the terminations will be felt at the observation point.
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11. High Frequency Diffraction Field Calculation

The antenna geometry of interest is depicted in figure 1. Our problem

is @ independent so that we can consider @ = O in this figure. Not shown in

this figure is the method for terminating the cones. Two different methods

for terminating the cones are considered. One is to cap them with a perfectly

conducting plate and the other is to leave them uncapped. We assume that the

antenna is driven at the common apex of the cones in such a manner that the

TEM mode of an infinite biconical antenna is generated. The magnetic field

of the TEM mode is used to define the field that is incident on the upper and

lower edges, PU and PL. For this Lncident field, the associated rays are

all radially directed and consequently they strike the edge of each cone at

a right angle. In this situation, the rules governing diffracted rays are

such that an incident ray in a constant @ plane generates diffracted rays

that remain in this plane. A detailed discussion concerning the direction

of the diffracted rays can be found in reference 3. We are only interested

in the singly diffracted rays that pass through our observation point P,

The procedure for determining these rays is also discussed in reference 4

and that procedure will now be applied.

We attach right handed coordinates (TU, NU, BU) and (TL, NL, BL) at

PU and PL and resolve our incident magnetic field into these coordinates

(see figure 2}. Our incident magnetic field is given by

~i(Pu) = ~i(PL) = 11;
4

where

V(u)foei~Cd
h=

2dZo sin 8

(1)

(2)

(3)

(4)

f. = {2 ln[cot(Oo/2)]}-~



.

k= I.O/pE
00 (5)

and V(u) .isthe voltage difference between the two cones as measured along

a radial arc. It shoul~ be noted that h is half of the total TEM bicone

field. The reason is that the total field is equally devided between the

incident and reflected fields and it is only the incident that enters into

this calculation.

We now resolve the field incident on PU as

H.(PU) = - hiU
—1

and the field incident on P as
L

~i(PL) = h’iL

The reason for the difference in signs is that ~ = - ~
A

u $
and T ‘

L
=a.

+
The

field corresponding to the singly diffracted ray coming from PU is denoted

e

:, and the field diffracted from P~ is denoted IJ2. The theory leading to

t!.~expressions for H
–1

and ‘d
–2

is discussed in reference 4. The explicit

expressions are

dn !

~2 = A(62,s2)f(s2)k‘% QJa2,s2,Y2) ● HJPL)

A((S,S) = /1 - (s/a)cos 61-+

f(s) = s
+ eiks

(6)

(7)

(8)

(9)

(lo)

(11)



k = 1/2(1 - Q/T)-l

[.

IJ+v o

~= (U + V)cot y sin ~ -(u - V)cos a Cos e

(u +V)cot y Cos b (u -V)cos a sin s

(L3)

(14)

o

(u - V)sin a cos S1(15)
-(u -

1
V)sin a sin 6

u= (Cos Ai’r- Cos A(m - B+a))
-1

(16)

v= (Cos /i’ri+ Cos A(7r- ~ - CX))-l

& is defined by considering the rows and columns of Q to be ordered as—

iu, iu, ~u and~L is defined by considering them to be ordered ~L, fiL,~L.

It now remains to define al, ~1, 61, yl, and S1 as well as ~
2’ 62’ 629 Y2Y

and s .
2

These quantities are depicted in figure 2. In this figure we allow

for a general termination angle O and the dashed lines used to define Q

correspond to a hidden cone of metal if Q < m/4 - 0./2. The capped bicone

corresponds to Q = 7r/4- co/2 and the uncapped bicone corresponds to Q = O.
[41The problem treated in a previous note , that of the bicone feeding a

cylinder corresponds to Q = (T - 8.)/2. The formulas presented in that note

are not valid for a general Q because Q was set,equal to (m - eo)/2 before

general results were presented. The expressions now presented are valid for

a general Q.

(18)

(19)
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e r sin O-a
lT- arctan(

L-r cos 9)
L>rcoso

1 =
r sin 8-a

arctan(
r cos 0-L)

rcos O>L

61
= lT/2+ T1

‘1 = arctan( r ‘In ‘a )
[L-r cos el

Y1 = lT/2

‘1
=(r2+d2- 2r(a sin e +L cos e))%

62 =3~12+C2-f2-eo

L+r cos @
{2

= arctan(
r sin e-a)

Y.2= lT/2

‘2
= (r2+d2i-2r(L cos e -a sin~))+

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)



All of the quantities needed to determine 111and &z as given by (8) and (9)

have now been defined. The diffracted field corresponding to ~1 and ~2 is

~=’H;4= A .
- ‘Ia$ + ‘2a4

(31)

We obtain the diffracted electric field through the relation

v x %$ = - ‘W’0E6D%
(32)

or equivalently

In order to calculate E8D to only as high

++lD (33)

4
an order in inverse powers of k

as we are permitted in order to be cons~stent with our calculation of
%

we will consider only part of the radial derivative term in the right hand

side of (33). That is

as.
~f(si) = ikf(si) & - + f(si)

i

and it is only the first term on the right hand side of (34) that can be used

in computing 3HD/~r. This leads to

r as. as.1

1 ~+H2#
‘6D = ‘O - ‘1 ar

J

where

r-(a sin W-L cos 9)

‘1

r+L cos 9-a sin 9

‘2

(35)

(36)

(37)
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Our resulting expression i,s

V(u)foe
ikd

I

iksl hl
E=

-% ~
B A(6@g(a@l)(ksl)

9D 2d sin 0 F
o

iks2 8S2
-% e

+ A(62,s2)g(a2,62)(ks2) X7 }

where

= 2(COS All+ Cos A(Q - B))
-1

g(a,13)

and the remaining quantities have been previously defined.

(38)

(39)



111. Early Time Asymptotic Solution

To determine the early time asymptotic solution for E6D we take the

inverse Fourier transform of (38) for the case where

v(w) = Vboih (40)
4

This corresponds to V(t) = Vbol_J(t),where U(t) is the unit step function.

Substituting (40) into (38) we see that we need only consider the inverse

Fourier transform
-.

F-l(k-+ iks % ‘=’4(2/K)(t - s/c)%J(t -i/we ) = c e SIC> “1

where c is the speed of light. Performing the inverse Fourier transform of

(38) we obtain

foVboQ

I
(c&1)?2PK)(t* -

asl
E - Za tl)+ u(t* - tl)A(~l,sl)g(al,61)ar6D

as
+ (cl/s2)%2/fi)(t*- t2)% u(t* -

2
t2)A( *,s2)g(a2,62)~

1 *

where

Jzi’

of these

from the

(41)

(42)

-9 *
c1

=C x 10 , ~ = log(t - rfc) (43)
,.

t’s will now be discussed. The time aftm the

origin measured in

corresponding contributions

nanoseconds is t*. Whn E*

arise from single diff~astion

The physical meaning

first signal arrives

equals tl and t2 the

from PU and PL.

We are often interested in considering observation points such t%t

r >> d. When this is the case we obtain the following simplification

f31=T+0-fJ-60, s2=2~-0-s2-eo (44a)



*

+,s1) = A(62,s2) = [(r/a)sin 6]-% (44b)

cltl = a(csc 8 - sin e
o

- Cos e cot O.),

(44C)

clt2
= a(csc 9

0
- sin 0 + cos e cot 6.)

and when the following quantities appear as multiplicative factors they are

approximated as

(45)

Using (44) and (45) in (42) we obtain

Vbofo

‘E6D {- m ‘l(t* - tl~% ‘(” - ‘1) + J32@* - @ U(t’ - t*)}
(46)

where

A sin AT
2C1 >2

‘1 (= IT(cosATr+cosA(f&f31)) y ‘in ‘)

L sin an
2C1 +

‘2 = T(cos AIT+COSA(Q-f32))& ‘in ‘)

(47)

(48)

f /sin 8 because it corresponds to the undisturbedI:esingle out the factor Vbo o

infinite bicone electric field. This field should be added to Eon in the

illuminated region, 0 > 6..

compare these quantities for

to the case where the bicone

Our results are contained in DI and”~2. We

the case where the bicone is capped, Q = Tr/4- 0./2,

is uncapped, fl= O. We denote these quantities as

‘lC = Dl(f2= IT/4 - 0./2),
‘lU ‘D@=O)

‘2C = D2($2= ?r/4- 0./2),
‘2U = D2(0 = O)

(49)
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and we plot the magnitudes IDICI and [D2CI versus 8 far four different

values of 0 Because the values of DIU and D2U are close to the values
o“

‘Ic
and D

2C
we plot the ratios

‘M-DIU
‘1=2 D~C+D~U

and

‘2=2

to indicate the percentage difference

~2c-%J

‘2C+D*U

of

(50)

in the breaking effect due to capping

(51)

the bicone as compared to leaving it uncapped. Specifically we plot \Dlcl,

ID2J, p~$ P*5 t~, and t2 versus 0 for 0 = 30°, 45°, 60°, and 75°. The
o

quantities IDICI, \D2cl, tl, and t2 are plotted for a = 1 because the value

of these quantities for an arbitrary value of a can then readily be calculated

by multiplying IDICI and ID2CI by a-% while tl and t* should be multiplied

by a.
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Iv. Summary of Results

..

0

In figures 3, 4, 5, and 6weplot lDIC\, ID2CI, Pl, P2, tl, and t2

versus 8 for a = 1 and 0 = 30°, 45°, 60°, and 75°. We plot PI and P2 to
o

indicate the differencein t~ diffraction coefficients for the two terminations

because the actual difference is difficult to depict graphically. Despite

the fact that lDICl, ID2CI, Pl, and P2 are all absolute magnitudes, using the

following information one can readily determine the actual values of DIC,

‘2C’ ‘lU’ and D2U from these magnitudes.
‘oth ‘lC and ‘lU

are positive for

0 < 0 and they are negative for 0 > 00 while D2C and D2U are negative for
o

all 0. ForO<O o, DIC ~ Dlu while for 0 > 0 IDIC! < IDlu\. Correspondingo’
to the effect of the lower edge we note that lD2C\ < ID2UI for all 0. The

signs and ordering of these diffraction coefficients lead us to conclude

that the capped termination causes an initially larger total field than the

uncapped termination. In the diffraction region, 0 < 0., we have only the

diffracted field and at tl the field corresponding to the capped termination

initially becomes larger because D
lC > ‘lU”

In the illuminated region,

$ > 8., and at t~, again the total field corresponding to the capped termination

initially stays larger because lDlcl < IDIUI and a smaller diffracted field is

subtracted from the geometric optics field in this region. This shows that the

breaking effect of the capped termination in this important region is less than that

corresponding to the uncapped termination. These cases are depicted in figure

7. The deviation caused by the lower edge is always less pronounced for the

capped termination whether or not we are observing in the illuminated or

shadowed region. In either region the field is positive at t2 and a larger

diffracted field must be subtracted from this field corresponding to \D2ul

because ~D2U~ > ID2CI for all e. The difference between the two terminations

tends to decrease as the bicone angle increases.
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