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Abstract

The proximity effect is studied of a perfectly conducting plate on the

response of a perfectly conducting sphere

wave or a step-function pulse. Numerical

and time response of the charge densities

totai current crossing the equator.

illuminated by a monochromatic plane

results are obtained for the frequency

on the poles of the sphere and of the ““
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In this note we examine

or a step-function pulse with

parallel-plate simulator. In

I. :ntr~du~tio~.

the interaction of a plane electromagnetic wave

a perfectly conducting sphere within a two-

particular we focus our attention on the special

case where the sphere has a diameter much smaller than the plate separation

and is situated close to the bottom plate. We idealize this problem by

completely removing the top plate. In a future note we will consider the two-

plate interaction problem. The interaction of a test object within a two-

parallel-plate simulator with an incident wave has been studied before in both

the static and dynamic regimes. The test object has been taken to be a

cylinder of finite length (Ref. 1, 2, 3, 4, 5, 6) or infinite length (Ref. 7).

Returning to the special problem where the sphere is situated above a perfectly

conducting plate and is illuminated by an incident wave, we can use the method

of images to arrive at the interactio~lproblem involving two perfectly conducting

spheres of equal radius. Studies of the multiple scattering of an incident wave

by two spheres exist in the literature (see for example Ref. 8, 9, 10,11). The

e

quantities of interest in these studies are the scatteredfield and the back-

scattering cross section. In this note we are primarily interested in the

proximity effect of the plate on the sphere. Thus, in studying this effect

we can select some specific quantities the knowledge of which requires a

relatively simple formulation. These quantities are the charge densities on

the north and south poles and the total current crossing the equator. The

knowledge of the charge densities at these points furnishes information about

the local interaction in the immediate vicinity of the plates, whereas the

knowledge of the current provides an overall picture of the effect of the

plates on the interaction problem. Our formulation consists of deriving an

integral equation for the @ independent component of the current density. The

angle @ is the azimuthal angle in a spherical coordinate system with the z axis

piercing through the south and north poles. The quantities of interest

previously mentioned, that is, the charge densities on the north and south

poles and the total current can be derived from a knowledge of the @ independent

current density.

In section 11 we give a formulation for the general interaction problem

e
involving a perfectly conducting body within a two-parallel-plate simulator.
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This is done by deriving an integral equation for the current density on the

conducting body. Next we specialize to the sphere case and we present an

integral equation for the $ independent current density. Finally, we remove

the top plate aridfocus our attention on the one-plate problem. We solve the

integral equation in the frequency domain numerically on a computer, and we obtain

the time response to an incident step-function pulse by numerical Fourier

inversion. In section 111, we discuss the interrelationship between high and

low-frequency behavior to early and late,-timebehavior. In section IV we discuss

the plots of the quantities of interest in the frequency and time domain and

ascertain the importance of the proximity effect of the plate.

b
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11. Formulation of the Problem

In general one has to solve the problem of the scattering of a plane

monochromatic wave by a conducting body positioned between two parallel

conducting plates of infinite extent (Fig. 1). An integral equation approach

for the current induced on the conducting body is feasible through the use of

a dyadic Green’s function satisfying appropriate boundary conditions on the

plates. We start from the pair of equations

(1)

vxvxG-k2G=ud(r- ~’) (2)
= == —

where J; is the current source for the incident field and & is the unit dyadic.
J. —

The Green’s function ~ is assumed to satisfy

n x curl G = () on the plates— =

If we apply the vector Green’s theorem for the pair (1) and (2) we obtain

~
[H(r’) . v! x VI x G(rf;r) - v’ x V’ x H(r’) “ G(r’;r)]dV1—— =—. —— ————

!
= [(~’ x H(r’)) o curl G(r’;~) + (~’ x curl H(r’)) ● Q(~’;Q]dS’—— _—

s
——

where S = S1 + S2 + S3 + S4 + SB as indicated in figure 1. We first-note

(3)

(4)

that

(~’ XEJ) “ curl~=-~” (~’ XcurlQ). We also recall that ~’ x curl H = O—

on a perfect conductor. Using these facts and (l), (2) and (3), (4) can be

rewritten as

H(r) - yi(~) =
I

[(~’ x Q “ curl ~ + (n_’x curl ~) . G]dS’—— =

s3+s4

(5)



where

The integral over S3 + S4 vanishes due to the radiation condition and (5)

reduces to

H(r) = gi(~) + I [g’ x II(r’)]—— ● curl ~(~’;~)dS’
SB ‘–

(6)

We can now remove the source Ji to infinity to obtain a monochromatic plane

wave as our incident field with the ~i field parallel to the plates. Equation

(6) can be converted to an integral equation for the current density

K(r) = n x H(r) in the usual manner by letting r approach the surface of the——— ——

body.

In this note we are interested in some field quantities which do not

require a detailed knowledge of K(r). Our conducting body is a sphere of——

radius b (Fig. 2); we want to calculate the electric field or equivalently

the charge density on the north and south pole and also the total current.

These quantities only depend on the @ independent component of the current

density K(r) and consequently we will seek a formulation for this component.——

K(6) is directed along the 6 direction and it only depends on the $ independent—
ikx

component of the incident magnetic field IIi= - Hoe The $ independent
~Y ‘

magnetic field has a @ component only and satisfies the following equation

2
la

‘~ (rH@) +
[

la—— — —
2 36 sin 0 a6 1

(sin 0H4) -1-k2H$= O
r a-f r

or

(L+k2)H$ =0,

where the meaning of L is obvious. We first notice that

a2
L=V2-

1 1
r2-2—

sin2f3 r sin28 a$2

(7)

(8)
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‘e where V2 is the Laplacian operator. In view of (8) we understand that

u = H,ei$ satisfies the scalar Helmholtz equation

(V2+k2)u= O

Next we introduce a Green’s function GI satisfying

(V2+k2)Gl = - 8(r_-~’)

with a boundary condition

aG1

57=0
on the plates

Applying Green’s theorem for the pair (9) and (10) we arrive as before at

the following equation

(9)

(lo)

(11)

From Maxwell’s

H@ (where P is

satisfy iwcoEp

equation -iuc E = V x g, the @ independent components E and
P

the polar radius in a suitable cylindrical coordinate system)

= (3H4/3z) and consequently

aH
J.=o
a.z

on the plates (13)

V x H in spherical coordinates we find iucorE8 = (3/3r)(rH ),If we express -iuc$ = _
o

i.e.,

-$ (rHd) = O on the sphere (14)

In view of the boundary conditions satisfied by the field ~ and GI (12) can

be rewritten as

J 1
u(Q = ui(Q + u(~’) ~~ (r’Gl) dS‘ (15)

‘B r’=b

7



where dSf = b2 sin O’dO’d@’. The $ independent $ component of the incident
i.kx

magnetic field -H~e is

~

2?T
& (-H*) ●e)e ‘kr ‘in * Cos $ d+ = -

0(%+

Multiplying now both sides of (15) by (1/2m)e-l@ and

with respect to @ we obtain

H4(r,f3)= - iHoJl(kr sin 8)

iHoJl(kr sin 0).

integrating from O to 2Tr

The Green’s function GI is an even function of $’ - $ and consequently

Equation (16) now reduces to

where

~

2Tr
G = dvcos +G1(r,6,r’,6’,$)

o

We now bring r onto the surface of the sphere and (17) is converted in the

usual manner into an integral equation for Ke = - H (b,6).
4

j

n
;K8(8) + = i.ll(kbsin 6)H0M(6;@’)K6(@’)d6’

0

with

M(e;e’) =-b sine’
[% (rf%)]r,=b

(18)

(19)

(20)
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and G is given by (18) with r = b. The Green’s function GI can be computed by

the method of images and is given by

co

‘kRlm ~
ikR ikR

E x(

2m

1

3m
Gl(b,O,r’,6’,*) =

e -t-
:nR2m + ~TR3m

(21)
4mRlm

m=-m m=o

with

1

[

‘i

‘lm
= (2ms+z’ -z)2+p2+p’2-2pp ’

1
Cos +

[

15,2
‘2m = (2ms+2hl -z’- z)2+p2+p - 2pp’ Cos +

1
(22)

1

[

5

‘3m
= (2ms+2h2+z’ +Z)2+P2+P’2- 2PP’ Cos *

1

where z = b cos 8, z’ = r’ cos 0’, p = b sin 6) p! = b sin 6’! hl + h2 = S.

The current I(e) is given by

J
2Tf

1(8) =
o “(’’+)b ‘in ‘d+”

If we expand K6(e,$) in a Fourier series, then we see that 1(6) only depends

on the @ independent component of K8(0,1$).Thus,

1(6) = 2mb sin 0K6(0) (23)

The current density o at a given point (6,$) does depend on $. For 0 = O,n we

should obtain the same value for o no matter what o is, and o cannot depend on

$ at these two points. Thus, a at 6 = O,n coincides with the $ independent

component of the charge density. It can be obtained through the continuity

equation

1
,iuo = ~ (sin 8K8)

b sin 0 3%
(24)

where K6 and o are the $ independent current density and charge density

respectively. First we calculate o at e = 0. We rewrite (24) as



.

~ aK8
+ Cc?s@

iuu=— — —
b ae sin 0 ‘6“

As 6+0,

aK6
Cos 6
_iZYFKe’5T

and (24) becomes

e=0

.LL u
o =.— —

ub ae e=()

K6 is zero at 8 = O, therefore,

or

6=0

(25)

(26)

●
From the numerical computation point of view (25) or (26) cannot give accurate

results unless (19) is numerically integrated using a large number of zones.

We can improve the accuracy by calculating a as an integral over KG. If we

combine (19) and (25) we obtain

H

~

‘lr
o = 2$+ N(6’)K#3’)d6’

o

where

[
N(@t) +-&- M(6,9’)

16=0

Noticing that Ho/Eo = (Eo/vo)2, i.e. Ho/c = EOEO (27) becomes

J
‘n

a(e=o) = 2SOE0 + N(e’)Ke(e’)de’
o

(27)

(28)

(29)
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For a given accuracy of K8 the charge density u(f3=O)calculated through (29)

is more accurate than u given by (26). To calculate a(fl=n)we use (29) with

the 6 dependence of K6 reversed. The result is equal to -u(e=m).

In this note we will consider the case of one plate only (Fig. 3), and

in a future note we will study the two-plate problem. The formulation is still

the same except that GI is considerably simplified. Instead of (21) we now

have

‘kRlo ‘kR30
Gl(b,6,r’,6’,~) = ~mR

10
+ :nR30

(30)

where

[

1‘5

‘1o = (z -z’)2+p2+~’2-2pp’ Cos+
1

[

%

’30
= (2h2+z’ +Z)2+Q2+~’2- 2~p’ cos~

1
(31)

z =bcose, z’=r’ cose’, p= bsine, p’=r’ sini3~.

Whenr’ =b, e =e’ thenR
10

= 0, and the Kernel in (17) is singular. This

is an integrable singularity and in the Appendix we show how to treat this

singularity in order to perform the integration numerically on a computer.

11



.

111. Low, High-Frequency and Late, Early-Time

For a plane wave of low frequency the wavelength is

Behavior

much larger than the

radius of the sphere and we have a quasi-static situation. Consider now a,step

pulse illuminating the sphere. At late times the pulse has well enveloped the

sphere and the induced charges have again settled to a quasi-static state. Thus,

we expect the current and charge “densitiesto’asymptotically reach their static

values at late times. This value is zero for the current. For a plane wave

of high frequency the wavelength is much smaller than the radius of Ehe sphere

and the interaction has a local character. The current density and charge

density are 22 x Hlnc and 22 ● ~
inc

— in the illuminated region and zero in the

shadow region. We are interested in the values of the charge density at @ = O

and m, i.e., right on the shadow boundary. Fock (Ref.10) and others (see for

example Ref. 11) have worked out the values of the current density in the transi-

tion region. ‘nc($,$)G(&) whereThey have found that in this region, &(e,$) = ~

g is negative in the illuminated region and positive in the shadow region. At

L = 0, i.e., on the shadow boundary G(g) = 1.3990 whereas for g large and

negative (\:\ > 3)G(&) N 2 and for & large and positive (.Z> 5)G(&) ~ 0. In

view of (26) the same considerations are valid for the charge density at 0 = O a

and also 0 = r. Thus, the value of a(6=0,m) is 1.399JsOE0 as kb + ~. Consider

now a step pulse incident upon the sphere. As the front comes in contact

with the sphere the interaction has local character. Thus, the charge densf.ty

at the poles (at t = O+) should assume the high frequency value 1.3990 SOEO.

Notice that the presence of the plates does not change this value. The total

-14current varies as k and goes to zero for either kb + ~ or t = O+. This can

be seen by examining (19).

12
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Iv.

We present plots of the

current. The pole closest to

and the other pole as T (top).

dividing them by COEO or by the

current is denoted as I and the

space value. Thus, we give the

Discussion of Plots

charge densities at the poles and the equator

the ground plate is designated as B (bottom)

We normalize the charge densities either

appropriate free space value. The equator

normalizing factor is either bHo or the free

following plots

Figure 7 UB(t)/coEo versus et/b

Figure 8 laB(u)\/c E versus kb
00

Figure 9,10laB(U)l/CoEo versus kb, expanded scale

Figure 11 oT(t)/&oEo versus et/b

Figure 12 \“T(u)\/&oEo versus kb

Figure 13 I(t)/bHo versus et/b

Figure 14 \I(u)I/bH versus kb
o

Figure 15 max oB(t)/soEo versus 6/b where max oB(t) is the maximum value

attained by oB(t) in the time domain

Figure 16 Cm(B) versus d/b where Cm(B) is the ratio of the maximum uB(t) for

a given 6/b to the maximum oB(t) for 6/b = m (free space)

Figure 17 maxluB(u)l/coEo versus 6/b where maxlaB(u)\ is the maximum value

of \UB(W)I corresponding to the first resonance

Figure 18 Cr(B) versus 6/b where Cr(B) is the ratio of the

for a given 6/b to the maximum loB(w)\ for 6/b =

Figure 19 OB(U = O)/coEo versus 6/b where OB(U = O) is the

Figure 20 Cs(B) versus 6/b where C~(B) is the ratio of the

OB for a given 6/b to the static value of IJBfor

maximum laB(u)\

= (free space)

static value at

static value of

B

6/b = ~ (free space)

Figure 21 through Figure 26 are the same as 15 through 20 except they refer to

the charge density at T

Figure 27 maxlI(w)//bHo versus 6/b where max\I(u)l is the value of II(u)I

at the first resonance

Figure 28 Cr(I) versus 6/b where Cr(I) is the ratio of the value of I for a

given 6/b at the first resonance to the value of I for 6/b = m

(free space)at the corresponding first resonance. ,



No plots of max I(t) versus 6/b or

percentage differences between the

small (< 7.5xj.

The zero time for the charge

C (1) versus 6/b are given because the
m
maximum values of I for various 6/b are

densities is taken as the moment of the

arrival of the step pulse wavefront at the center of the sphere and the zero

time for the current is the moment of contact of the wavefront with the sphere.

The effect of the ground plate or equivalently of the image sphere occurs at

a retarded time depending on the quantity of interest and the gap size. The

computation of the retardation times are given in Appendix B. For the pole

B the ray that travels the least time is the one that suffers a specular

reflection-at a point on the surface of the image sphere (Fig. 4 and 5).

In Appendix C we give a proof that any deviation from the specular reflection

path results in a longer retarded time. A direct specular reflection path

is not feasible for either the points on the equator or T. For the current

the least time path consists of a specular reflection off the image sphere

such that the reflected ray will be tangent to the real sphere plus an arc

path along the surface =f--thelatter sphere (Fig. 6). To obtain the minimum

time path for point T, at the top of the sphere, we should add an arc of 90°

to the current path.

In the frequency domain the presence of the ground plate can have a

pronounced effect on the amplitude of the charge density [aB(u)~ but a less

pronounced of the first resonant frequency. The corresponding effects on

IoT(ti)I and \1/(u)\ are much less pronounced for the amplitude but comparable

for the first resonant frequency; however, the presence of the ground plane

can cause some additional secondary resonances which are not present in the

free space

The reason

effect can

wavelength

.

‘

w

case. These resonances appear to be predominant for loT(u)laml lI(u)lonly.

is that additional resonances for laB(u)l due to the proximity

only occur for large kb at which the gap can be comparable to the

and at large kb the amplitude tends to settle down to the high

frequency limit which is independent

the resonances would appear as minor

make two remarks with respect to the

of the presence of the ground plate, i.e.,

perturbations. Finally, we would like to

time response of the sphere. First, the

time at which the quantity of interest (charge density or current) reaches its

14
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peak value has only a slight dependence on the gap size. Second, the time

interval from the peak to a value which has a percentage difference from the

final (static)value less than 4% is short compared to a thin cylindrical

structure (see for example Ref. 2) and is given by At ~ 10b/c. This last

estimate refers to the charge densities since the current settles down to

zero for large et/b.
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Appendix A

The kernel M(6;6’) given by (20) can be rewritten as

(A-1)

where

[

’30 bB30
MI(6,8’,$) = - b sin @‘ G1o(~+~ ikR1o) + G30(1 + ikb ~ 12)

—. — (A-2)

30 ’30

and

‘WIO ‘W30
e

‘Lo ‘—
, G30=&

4TR10 30

’30
= b~2(’n2/b)cos9’ +I+cos 6 cos 6’ - sin6 sin~’ cos$l,

1

=tib(l-
’10

cos 6 cos Ot - sin9 sin6* Cos +)<, (A-3)

2
bE(2(h2/b) + cos 6 + cos ~’) + ‘in26 + ‘inZ*’ - 2 ‘in 6 ‘in g

f Cos @~.
’30 =

We understand that the only term singular at 6 = 6’, $ = O islkR1()
- l/2b sin O’Glo = - l/2b sine’(e /4rRlo). We treat this term as follows.

First we define

~b sin 6’GI0 +M2(e,@’,$) (A-4)
Ml(e,e’,v) = -

and rewrite (19) as

i’1

H N

2T

+K6(6) -+b
I

‘de’

o ‘e(”) - ‘e(’) o ““ ‘Os ‘G1* ‘in e

= iJl(kb sin O)Ho
(A-5) 0’_,
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Thus, we have to evaluate

separately. Define

(A-6)

(A-7)

and

A= (1
+

- Cos 8 Cos e’)

(A-8)

B=
sin e sin e’
1-COS 9 Cos e’

Thus,

1

j

‘r ‘kRlo
cos ye 1

11= dq =
%2(2) mA O (1-B Cos & %2(2) nA

12

To cast 12 into a form suitable for numerical integration on a computer we

subtract the singularity at 0 = e’ and perform the remaining integration

explicitly, i.e.,

‘i’r

~[

‘kRlo

]J
IT

CC3S$e 1 d+
12 = d$ +

O (1-B COS $)% (1-B+(B/2)~2)% o (1-B+(B/2)V2)4

(A-9)

(A-IO)

and

~

‘n
do

13 =
o (1-B+(B/2)*2)~ H=(+)%in .($)$ + (+ + 1 - B)*

1
- + ln(l -

!
B) (A-11)

That last term in (A-1O) is singular and to perform the 0’ integration we have

to subtract this singularity out. Following a similar procedure as before we

finally arrive at the integral equation

17
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7r

-J[
82*.,2

ln(l -
1

c0s6c0sef) -hT C@‘
o

- m h(62 + 7T2)- 26 tan‘1~+201ne+2(m

\

- 6)ln(n - 6)

H1=
‘m * Ke(e’)

1
- Kc(e) In(l - B(e,6’))df3’

I
‘Tr

\

Tr
+2 dO’Ke(e’) d$ cos YM2(6,6’,~) = iJl(kb sin 6)H0

o 0

where M2(0,01,Y) has been defined in (A-4). All the integrals involved in

(A-12) have nonsingular integrands and they are suitable for numerical

integration on a computer.

(A-12)
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Appendix B

1. Retardation time for OB

Referring to Fig. 5 we can easily establish the relationships

(lB)cos ~+b sin 13=b+28

(lB)sin ~ = b COS6

In view of (B-1), (B-2) and (B-3) can be rewritten as

(lB)sin 26+ bsin6=b +28

- (lB)cos 26 = b COS ~

Combining (B-4) and (B-5) we can derive the following

1+~1+8(1+28/b)L
sin ~ =

4(1+26/b)

relationships

&

(B-1)

(B-2)

(B-3).

(B-4)

(B-5)

(B-6)

1 J(lB)/b= 1-1-(1+26/b)z- 2(1+26/b)sin @ - (B-7)

Recalling that the zero time for the charge density at B is taken as the moment

of arrival of the wavefront

normalized retardation time

~= (lB)-(12)
b b

at the center of the’sphere we understand that the

is

=*(l+cos 2@=+ COS2B

[

%
=( I-sin@

1+26/b)
1 + (1 + 26/b)2 - 2(1 + 28/b)sin @

1

19



The angle ~as given by (B-6) ranges from 90° (d/b = 0) to 4.5° (d/b = m).

2. Retardation times for I and CT

Referring to Fig. 6 we can easily establish the following relationships

$=Tr/2-2$ (B-8)

bsin~+(23)cos $+bsin f3=2b+26

b COS ~ = (23)sin $ +b COS fI

In view of (B-8), (B-9) and (B-IO) can be rewritten as

b cos 26+ (23)sin 2B+b sin 6 = 2b + 2d

b sin 26 = (23)cos 26 + b cos 6

Combining (B-11) and (B-12) we can derive the following

1+~1+16(1+6/b)(l+26/b)
sin ~=

8(l+2d/b)

~=
b

2{[1 + (6/b)2] - (1 + d/b)sin

(B-9)

(B-1O)

(B-12)

relationships

(B-13)

+
!3) (B-14)

Recalling that the zero time for the current iS taken as the moment of arrival

of the wavefront at point 4 the normalized retardation time is given by

~= ~+ (~2)+(23} = ++ (1 (23)
b b

-cosf3)+—
b

where $ = T/2 - 26, !3is givenby (B-13) and (23)/b by (B-14). The angle 6

ranges from 39.821° for 6/b = O to 45° for 6/b = ~.

20
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The retardation time for point T, at the top of the sphere, is

cT(T) -
b

~T(I) +T/2 - 1

We have added Tr/2to take into consideration the additional path of 90° and

subtracted unity to account for the fact that the zero time for the charge

density at point T is the instant of arrival of the wavefront at the center

of the sphere.

21
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Appendix C

The specular reflection path is the least

alternate path which deviates from the specular

AB (Fig. 4). We want to compare (IB) to (13) +

the relationships

.-l .-i m

time path. Consider an

reflection path by an angle

(2B). We can easily derive

(IB)4 = b’+ (26 +b)’ - 2b(26 +b)sin B

(2B)2 = bz+ (26 +b)2 - 2b(26 +b)sin(fl -1-A6)

We expand sin(ci- A@) and we consider terms up to order (A6)2

sin(f3+ A@ = sin ~ cos A@ i-cos @ sin A@

=sinB+A8cos6

In view of (C-3) and (C-1) we can rewrite

(2B)2 = (1B)2 - 2b(26 + b)A6 COS 6+

-@ sin 6 -1-OE(Af3)3]

(C-2) as follows

b(2d +b)sin 13(A@2+O[(A6)3]

(c-l)

(c-2)

(c-3)

or

I 1
+

(2B) = (lB) 1 -
2b(2~jb) ~os 13(A6)+ b(26+~) sin ~(A~)2 + 0[(&3)3] (C-4)
(lB) (lB)

kEmploying the binomial expansion (1 + c) = 1 + (1/2)c - (1/8)s2+ O*O

we can rewrite (C-4} as

1(2B) = (IB) 1 - b(26+:) COS 6(A~) + b(2*+;) sin 6(A6)2
(LB) 2(2B)

[112b(2&+b) 2-—
8

COS26(A6)2 -I-0~(A6)3~
(1E)2 I

(c-5)

From Fig. 4 we see that
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(12) A$= ?b sin F

(13) = (12)COS lj=

= b sin B(A6)

Combining (C-5) and (c-6) we find

L

2b sin y cos(Tr/2- B - f)

+; cos 6(A6)2 + O[(A@)3]

1(2B) + (13) - (lB) = b(A13)sin 8
26+b

1
-—cosf3

(lB)

(c-6)

[

+ ~ b(A@)2 ..s ~ + ~ sin @ - b(2d+b)2 COS2@
(IB)2 1

(C-7)+ O[(M)3]

From Fig. 4 we find that

(26 + b)cos 6 = (4B) = (lB)sin 6

This shows that & fixstorderterm A13is zero which is in accordance with the

principle of least action. Next we examine the second order term. We notice

that

(26 +b)sin B = b + (14)

(26 +b)cos S= (4B)

and (C-7) gives

(2B) + (lB) - (lB)
[

(14) b (4B)2
‘+b(Af02cos6+~+— -——(:B)

1
+ 0[(A13)3]

‘lB) (1B)2



Recalling that s < 7/2, (43) < (lB), (14) > 0 we understand that the second

order term is positive Ifwe choose a ray with a variation AB in the opposite

direction we can similarly show that the second order term is positive.

Thus, any paths that deviate from the specular reflection path by Ad correspond

to a longer time.
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Figure 3. A metallic sphere above a ground plate illuminated by a monochromatic plane wave.
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