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The Effects of Constructing a Conical Antenna
Above a Ground Plane Out of a Number of Thin Wires

by :
Lt. Daniel F. Higgins

Abstract

Due to mechanical constraints many antenna structures used
in EMP simulation are built of sparse wire arrays rather than
solid sheets of a conductor. The effects of a specific config-
uration of wire conductors approximating a conical antenna
above a perfectly conducting ground are considered here. The
configuration studied consists of N thin wires spaced at equal
angles around the surface of a cone, the axis of which is per-
pendicular to a ground plane. - An equivalent solid cone is de-
fined and compared to the sparse N-wire cone. Also, paths for
constant impedance are calculated.
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I. Introduaction

The problem of TEM propagation from a conical antenna or
wave guide has already been considered in several places.l,2,3
The method of solution basically involves a transformation of
coordinates from a conical geometry into an equivalent cylin-
drical system where transmission line theory is applied. Pre-
vious work, however, has considered the conical conductors to
be solid sheets. 1In actual practice such solid sheets are
often approximated by rather sparse structures made of various
arrays of wires so as to ease construction, minimize wind load-
ing, and decrease the total weight of the structure. The pur-
pose of this note is to consider the effects of replacing the
solid conical sheets by a number c¢f thin wires running along
the conical surfaces. The potentials due to these sparse cy-
lindrical structures are calculated and an "effective conical
angle" is defined. This "effective conical angle" is the angle
formed by a solid conical structure having a transmission line
impedance equal tc that of the sparse structure. With the
sparse structure defined in terms of an equivalent solid struc-
ture, one can better design and calculate the response of the
more realistic structures used to approximate conical antennas.

This note deals specifically with N small wires spaced at
equal angles around the surface of a cone. The axis of the
cone is perpendicular to a ground plane which intersects the
apex of the cone (see Figure 1l). In order to make the fields
independent of the distance along the axis of the cone, each of
the small wires is first approximated by a thin cone and the
effect due to the wires actually being cylindrical is considered
later. The effective conical angle of such a sparse cone is
calculated and the data presented in the attached graphs with
the number and size of the wires as parameters.

II. Method of Solution

The method used for considering a TEM wave on a solid con-~
ical antenna above a ground plane involves treating the cone
and ground plane as the plates of a conical transmission
line.1/2,3 1If the spherical coordinates (r, 8, ¢) are used in
the conical system, an equivalent cylindrical transmission line
with coordinates (p, ¢, z') 1s generated by the transformations

p = 22O tan % . (1)

¢ =0 (2)

and




z! = r (3)

where 25 is an arbitrary constant. This transformation maps a
cone above a ground plane into a coaxial line since both the
cone and ground plane are surfaces of constant 6.

Now consider the case of N small wires whose centers lie
on a cone above a ground plane. If we apply the above trans-
formations, the ground plane will again map into a circular
cylinder and the center of each wire will map onto a point on a
cylinder coaxial and within the cylinder formed by the ground
plane. However, if the wires are cylindrical, their surfaces
are transformed into surfaces whose cross—-sections are functions
of z'., One prefers the cross-sections to be independent of z'
so that we only have a two-dimensional problem and the tech-
nigues of complex variable conformal mapping can be used.

Since it is assumed that the N wires are all thin, one can ap-
proximate each wire by a very narrow cone of half-angle 93.
[The effects of this approximation will be considered later.]
When transformed to the cylindrical system such narrow cones
have cross-sections independent of z', as desired.

Thus, the transformations in equations 1, 2, and 3 give us
an equivalent cylindrical transmission line consisting of N
equally spaced parallel conductors within a cylindrical conduc~
tor (see Figure 2). One must now find a potential distribution
such that the conductor surfaces match equipotential lines. To
do this one must first consider exactly what cross-sectional
shapes the thin cones approximating the wires map into.

Obviously, in the limit that 6] goes to zero the cross-
section just goes to a point. Thus, for small 91 one can ex-
pect that the cross-section of each wire could be approximated
rather well by a circle. Now consider describing the cross-
section more exactly. A cross-section at constant z' is equiv-
alent to the transformation of the cross-section of the thin
cone at a constant radius r. At a constant r, the surface of a
thin cone can be described in terms of 6 and ¢ and the trans-
formations in equations 1, 2, and 3 applied to obtain the cy-
lindrical cross-section. Consider a thin cone of half-angle 61
inclined at an angle 6o with respect to the z-axis (see Figure
3). A surface of constant r intersects the surface of this
cone along a circle. Let ap be an angle measured in the plane
of the circle from its center, where op is measured with re-
spect to a plane passing through the center of the circle and
the z-axis. The angle ap indicates the location of some point
P on the circle, and with sufficient effort, one can show that
0p and ¢p describing the point P are given by the expressions



sin® cosb., - sin€, cos® coso
5 = tan_l o 1 . el . o P, l' (4)
P coseO cosel + 2in o s:.nel cosay cosé,
where
o - tan_l[ sinb, sinay ] 5
P szn@o cosel - 51nel coseO cosocP

Thus we have descriptions for (6p, ¢p) in terms of the param-
eter ap which simply varies from 0 to 2w radians. Applying
equations 1 and 2 to the above equations gives the cylindrical
cross~section achieved by transforming such a cone.

Note that for small 831, equations 4 and 5 can be written

as
. - tan-l[Slneo - 8, cos8_ cosa, o1 } )
P coseo + 51n80 cosoy cos¢P
g, sina
1 P (7)

by = == —
P 51neo 8 coseo coso

1 4

It can be seen by considering the above relations that a
thin cone will approximate a circular cylinder when transformed
as described. What one now needs is a simple expression for
the effective radius of the circular cylinder.

Along the radial direction, one can define a radius Ry
given by the expression

8 +8 6 -8
2R, = 2z tan(—EL——lJ - 2z tan(—g———i) (8)
o 2 o 2

sinel

e} g + 6 6 -6
cos(-ejr—i)cos(—gjr—é) {3)

22

which, for small §; becomes



Similarly, along the azimuthal direction (¢-direction) one has
a radius Rg, where

8
R¢ = [220 tan -70-:]@51 (11)

where ¢71 is the half-angle subtended by the thin cone when
viewed from the z-axis. It is easily seen that for small 93
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1
b, = = (12)
1 SLnGO
so that
(80) el
R¢ = ZZO tan - g-i—rw; (13)
2z 6
_ o1l
- T + cos8 (14}
o
From equations 10 and 14, one discovers that
R, = R (15)

Therefore, in the two orthogonal directions considered, the
radii of the cross-sections of the transformed thin cones are
equal, at least in the limit of small 6. Thus, one can define
an effective circular radius as

2206l
Reff = 1TF coseO (16)

Now the problem becomes one cof finding the potential dis-
tribution due to N parallel wires of radius Reff equally spaced
along the circumference of a circle of radius Rj, all within a
coaxial conducting cylinder of radius Ry (see Figure 2). For



convenience, let Rp = 1, which is equivalent to picking zo in
equation 1 equal to 1/2, or just dividing all radii by R2.

Consider the conformal transformation*

N
=k LY . - N _
W=z zn[KRl) 1} S zn[(gal) 1] (17)
where
w=u-+ 1iv (18)
- C = i¢
T =x+ 1y = p e (19)

Now w is singular at the points

2Trnl
Lo /NN (20)
Ry

ani
tR, = 1N - N (21)

forn=20, 1, 2, +¢¢, N = 1.

The points defined by equation 20 correspond to the centers of
the N wires. The singular points in equation 21 refer to

images of the wires outside the unit cylinder. These image lo-
cations are necessary to ensure that the surrounding unit cylin-
der is an equipotential and correspond to images of the N wires
below the ground plane in the initial conical geometry.

Now, separating the real and imaginary parts of w one gets

2N N

(ﬁL) - 2cos(N¢)<§L) + 1
u = f% n 1 L (22)

(0Ry) ?N = 2cos (o) (or ™ + 1

*Compare to equation 43 of Reference 4.



N
L ;
(R ) S1nN¢ (or.) ¥sinng 2
1 -1 -1 1
v=s tan N - tan < + 71k (23)
< )' (pRl) cosN¢ - 1 j

k=60,1, 2, «++, N -1

Note that at o = 1, u goes to a constant value for all ¢; i.e.,

u; Fulp=1, ¢) = %ﬁ Qn[_%ﬁ] = Qn(é;) (24)
Rl 1

This ensures that the surface p = 1 is an equipotential. We
now require the potential on the surfaces of each wire; i.e.,
the potential a distance Reff from each of the singular points
at '

Define a new complex variable v by

z = Rl(l + V) (25)

Then

N

-1
(26)
]

1 (1 + V)
w = = &n
N [RiN(1+v)

where for small v,

2
w=_1_2n[ NV £ 0(v¥) ]
¥R

iN(l-%-Nv) -1 +0(vd)
1 1 2N 2N
= J n[Nv] N Qn[Rl l-&Rl Nv}-+o(u) (27)

Thus in the limit as v - 0, u has the asymptotic form



1

wx doanmlo[1-F w18 - 1w mT )] (28)

Setting u = ug and [v! = Reff/R1 we have the potential ug
on the surface of each of N wires.

NReff) )

- %n [1 - RzN] (29)

1

=2

u. o= = ln(

where we have assumed NRgff/R1 << 1, which corresponds to the
assumption that 9871 is small (61 << 1).

The transmission line being considered is characterized by
a geometrical factor fg where?

£y = .ﬁ_i (30)

where

Au is the difference in the potential function, u, between
one of the center conductors and the ocuter conductor,
and

Av is the change in the stream function, v, on a path cir-
cling the N interior conductors.

Thus defined,

U1 T %
1/N
_ 1 17 _ L _ p2N
= —2—7; ,Q,n[ii} 7 in [(l Rl ]
(32)
1/N
L1, NReff)
2T Rl
L
R
1 1
= z—in (33)
2T NReff(l RZN) 1/N
Rl 1




Now, remember that

9

= L
Rl = 2zo tan 5 (34)

and for the choice of z5 = 1/2 so that Ry would equal 1, we get
the expression

eo
£ = 2= In Tz (35)
g 27 NR 5 1/N
‘eff <l-—tan2N<—g)>
80 2
tan =
where
R .. = % (36)
eff l+c05’6o
Note that for large N
6 1/N
{:l - tan2N (—Zq):l - 1 (37)
and
eo
N R RY S s (38)
NR fg
—
o
tan<7r>

Now, compare equations 33, 35, and 38 to equation 58 of
reference 4. Reference 4 gives the equivalent radius of a cyl-
inder made of N parallel wires as

1/N

er
Veq = W1<1@j> (39)



where Y3 is the actual radius of the N-wire cage and r} is the .
individual wire's radius. Note that we have a very similar ex-

pression in equation 33 if we replace R} by ¥1 and Reff by ri.

The only difference is the factor

which comes from the image of the wires below the ground plane.
And from eguation 37, this difference has little effect if one
has a large number of wires, N.

Now consider a solid cone above a ground plane and the
equivalent angle, f8e¢qg, that would give the same geometrical
factor as above. Thé geometrical factor for a solid cone is
justl,2,6

g
. _ 1 [ eg]
fg (solid cone) = 3 in|cot 5 {40)

Therefore, 8ggq can be written in terms of 0, by equating the
geometrical factors for aN-wire cone and a solid cone. Thus

)
o
0 cot —
eg _ 2
cot 5 /N {(41)
NR 8
eff l-—tanZN(—g)
) 2
tan(_z')
which gives
[ 5 1/N
_ 2N< o))
6 = 2 tanl NReff(l tan™ \— (42)
eq X
N

ean(2)]

Thus one can characterize an N-wire cone by an equivalent solid
cone with the half-angle 8gq given by equation 41, Figures 4-
13 give 9gg for various 9o with N and 91 as parameters. Note
that the above equations are not valid for very small 6o (where
the narrow cones almost touch) or for 8g near 7m/2 (where the
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thin cones almost touch the ground plane). For this reason the
attached graphs are not plotted for 6o very near to 0 or w/2.

IITI. Results

The calculation of 9gg in egquation 41 indicates that a
sparse cone of N-wires and half-angle 6p is equivalent to a
thinner solid cone of half-angle Geq; i.e., feq < 9. One
might also think in terms of pulse impedance, %, where

Q
zZ = £ = 1207 £ 43
= £y g (43)

By comparing the geometrical factors of sparse and solid cones
it can be seen that a sparse cone must have a larger half-angle
than a solid cone in order for the two to have the same imped-
ance (see Figure 14).

Now consider the effects of using cylindrical wires of
radius rgo in actually building a sparse cone rather than thin
cones of half-angle 031. The effect is obviously greatest at
the apex of the cone since wires with a finite radius cannot
meet at a point as the thin cones were assumed to do. A long
distance along the cone, however, the thin wires can be modeled
fairly well by narrow cones. In fact, it can readily be seen
that the geometrical factor (and thus the pulse impedance) is
actually a function of the distance z along the axis of the
cone when cylindrical wires are used. At a given z the angle
01 subtended by a wire of radius rp passing through the origin
at an angle 6o with respect to the z-axis is approximately
given by

rO coseO
el = EE-— (44)

where we require 67 to be small. This implies that

L <1 (45)

and thus does not apply for z near zero. In the limit that
equation 44 is correct, one can get an approximation for the
geometrical factor and the impedance by simply placing the ex-
pression for 61 of equation 43 intc equation 36, giving

11



ro coseO
Rogge = 211 ¥ cosb_] (46)

Then 2, Beq, and fg all become functions of both 8o and z rather
than of 85 alone. It is readily seen that for z >> rg, the im-
pedance changes relatively slowly with z. In real cases we are
probably dealing with a truncated conical antenna and it is a
pretty good approximation just to replace z in equation 44 by
the height, h, of the antenna; i.e., use

r_ cos?
o) o

el & ——— (47}

This approximation is good when rg/h << 1.

Now let us consider what curve each wire of an N-wire cone
should follow to obtain a constant impedance structure. To do
this, place the expression for Reff of equation 46 into equa-
tion 35. Using equation 42, one obtains

)
cot -

Z = 604n 7N (48)
Nr_ cosé6 [l—tanZN(Eg)]
o SY% 2
8
[o]
2 tan(jr)[l-kcoseo]

Assuming a constant impedance, Z, one can solve for z in terms

of 0p.
NZ/60 [:l ~ tanw(%gﬂ [tanN(?zg)}
e

This gives us the equation for the constant impedance curve in
terms of z, the distance along the axis of the N-wire cone, and
8o, the angle to a point on the curve as measured from the ori-
gin (see Figure 15). It is convenient to describe this curve
in the Cartesian coordinates (&, z) where £ is the distance
perpendicular to the z-axis in the plane of one of the wires
making up the cone. Then, it is easily seen that

= NrO (49)

12



- ] 8
£ = z taneo = Nro eNZ/GO[[l-tanzN(7§>][}anN(7§>]} (50)

Note that the expressions for z and £ are only valid if

z >> xr_ , g >> r (51)

Thus, the attached plots of constant impedance curves (see Fig-
ures 16-17) start out at & = 500 ro to ensure that the above
inequalities hold. 1In any real conical antenna, the area near
the apex of the cone would probably be constructed of a solid
sheet of metal which would transition to a sparse cone made up
of a number of wires at some distance from the apex. Thus, the
fact that the above expressions are not valid very near the
apex 1s not particularly critical.

It should be noted that the constant impedance curves plot-
ted are only approximate and the approximations become increas-
ingly worse as the number of wires decreases. This occurs be-
cause as the number of wires decreases, the curvature of the
constant impedance paths increases. The expression for imped-
ance in equation 43 is based on calculations of the inductance
and capacitance per unit length of the transmission line, where
for a conical line, the length is measured along the radial di-
rection from the apex. Since the constant impedance paths plot-
ted in Figures 17 and 18 are curved, the distance along the
curve 1s longer than the radial distance to a point on the
curve. An exact calculation would have to consider the effects
of this difference in path length on transit time, non-TEM mode
propagation, etc. However, as long as the number of wires used
is not too few, the effect of the curvature on path length is
small and the attached plots should be fairly accurate.

Iv. Summarz

In building EMP simulators and various antenna structures
it is often desirable to replace solid conducting surfaces by
sparse surfaces to avoid mechanical problems associated with
wind loading, weight limitations, etc. In this note we have
calculated the effective half-angle of a sparse cone above a
ground plane where the sparse cone consists of N thin wires
spaced at equal angles around a conical surface. It was seen
that a sparse cone is equivalent to a solid cone of smaller
half-angle and as one increases N, the number of wires, the
sparse cone approaches the limit of a2 solid cone.

Several limitations exist in these calculations. First of
all, it is assumed that the diameter of the wires is small

13



compared tc their separation. Therefore, the approximations
used here are not valid for wire separations of the same order
as the wire size. Secondly, no consideration has been given to
conducting hoops placed at right angles to the wires along the
cone. Such hoops might well be added to an actual antenna to
better approximate a solid cone, and it is hoped that these ef-
fects may be considered in later notes.
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FIGURE [© 4-WIRE CONE ABOVE A GROUND PLANE
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FIGURE 2: EQUIVALENT CYLINDRICAL TRANSMISSION LINE
FOR AN 8-WIRE CONE ABOVE A GROUND
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FIGURE 3:
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CONICAL WIRE
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FIGURE 7: EQUIVALENT ANGLE OF A N-WIRE CONE
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