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1. Introduction

At the present state of the art there are many detailed
questions co~cerned with the design of pulser arra~s which have
riotreceived much detailed treatment, say in the form of various
pertinent electromagnetic boundary value problems. Such pulser
arrays are likely approaches to the pulser design for the large
EMP simulators’for testing aircraft: ATLAS I (a horizontally
polarized transmission-line EMP simulator with a trestle test
stand) and ATLAS II (a vertically polarized transmission-line
EMP simulator with a trestle test stand). The direction of
electromagnetic propagation is horizontal in both cases. Parts
I through IV of this series (Sensor and Simulation Notes 143
through 146) give more details of the simulator designs.

While there is not yet a lange body of solved electranag-
netic boundary value problems which analyze the performance of
such arrays, still one can use some approximate techniques to
estimake the waveforms launched by various arrays onto TEM
transmission lines. Even though such techniques may address
cmly some of the array design problems and may not give complete
waveforms ~ still they can be used to make comparisons between
one array and another for some of the resulting waveform charac-
teristics.

Too many people seem to think of only peak field or peak
field together with 10% to 90% rise rime for E?@ waveforms.
These are in general quite inadequate by themselves and are 4
often not the important waveform parameters most closely associ-
ated with the coupling to the system under test.

The purpose of this note is to define a few parameters of
interest to waveforms launched by arrays of capacitive pulse
generators onto TEM transmission lines which are assumed termi-
nated in their characteristic impedance or are in effect infi-
nitely long. While cylindrical transmission lines offer some
simplification to the arguments and form the basis of most of
the calculations, the results shouid still apply to conical
transmission lines (of small dive~gence angles) with some small
modifications.

First some of the important characteristics of waveforms
for EMP purposes are discussed. This is followed by a discus-
sion of some figures of merit which can be defined for waveforms
resulting from capacitive pulser arrays launching waves onto
cylindrical ~M tra.nsxrtissionlines. Needless to say such fig-
ures of merit are based on this particular field-generation
problem aridare most appropriate to it; some of these figures of
merit may not be appropriate at all for waveforms produced by
other means in other geometries. Furthermore since the under-
standing of such arrays will likely increase as time goes on
more figures of merit (and even better ones) will likely be
developed.
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II. Some ImpoKtant Characteristics of EMP Waveforms
.

When considering EMP waveforms, particularly when designing
EMP simulators, one should consider how closely the waveform
produced approximates some desired or “real” waveform. But what
is it that one even asks about waveforms to see how well one ap-
proximates another? There are many questions one can ask.

One approach involves direct time domain comparison of the
two waveforms+basi$ally as two superimposed graphs plotting some
component of E or H as a function of time. What are then seen
as obvious differences in amplitude and time characteristics are
made a basis of comparison., Such things might include rise
time, peak amplitude, pulse width or exponential decay time con-
stant, and perhaps some kind of ripple or noise superimposed on
the basic pulse shape (and expressed as a fraction of the peak
amplitude or even the instantaneous amplitude of some ideal ref-
erence pulse). Certainly this represents a way of making com-
parisons of “real” waveforms to “ideal” waveforms. However,
this method while convenient is not very complete unless one can
assume that other waveform features which are not so directly
“visible,” but which can have significant implications for
Coupling to a system under test, are in fact not a problem in
the case of the particular waveform being co~side~ed. Even in
the time”dornainwhy should one only compare E or H as a function
of time to the ideal waveform. For example one could compare
the time derivatives and\or time integrals of these quantities
to the “ideal” case; these are just as much time domain wave-
forms as any others, and rise times, pulse widths, etc. may have
somewhat different degrees of approximation between “real” and
“ideal” for these derived waveforms.

Note that we have been discussing ~ and 3 types of wave-
forms so far. This is appropriate for the case of free space
(and normal air) because of the simple +elati~ns that can be
used to obtain the time derivatives of D and B to give respec-
tively the current and voltage densities.1 However~ for more
complicated media such as EMP source regions at least current
densities should also be considered.

Another way to look at EMP waveforms is to consider their
Fourier transforms and’thereby go from time domain to frequency
domain. Systems have different sensitivities in different parts
of the frequency spectrum. Thus one might determine how closely
the magnitudes of the Fourier transforms of “real” and “ideal”
waveforms correspond over some band of frequencies of interest
to the system response. This band may include many orders of
magnitude in frequency. In frequency domain many characteris-
tics of the waveform may become more obvious.

In asking questions about the pertinent features of EMP
waveforms for system response one should consider some of the

3.
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ways of looking at the interaction cf electromagnetic ‘waves‘.:.ith
systems. Interaction models involve mathematical concepts and
such concepts can be used to formulate questions. At suffici-
ently high frequencies the interaction of electromagnetic waves
with systems is quite often a local phenomenon at sorte“penetra-
tion” into the system. To some extent then concepts of geomet-
rical diffraction theory are applicable implying that high fre-
quency asymptotic forms of waveforms can be useful. At suffi-
ciently lcw frequencies static or quasi static interaction can
be important and the wave equation reduces to the Laplace equa-
tion. For this region of frequencies the asymptotic low fre-
quency content of waveforms is useful. At intermediate frequen-
cies important resonance phenomena in systems are observed.
From the singularity expansion methcdz these are directly relat-
able to singularities cf the object response in the complex fre-
quency plane. Thus for appropriate intermediate complex fre-
quencies (in a magnitude sense) one can appropriately compare
the “real” and “ideal’iwaveforms not just on the iw axis but
over portions of the complex frequency plane. It would be some-
what unfortunate to have the Laplace tran~form of the “real”
waveform have a zero where the “ideal” one did not if that com-
plex frequency were close to a pole in the object zesponse.

As one can see there are many ways to evaluate waveforms.
One would like to reduce waveform comparisons to a few numbers,
but this does not seem reasonable in the most general case.
Part of the problem is just knowing the “real.’’”waveform in suf-
ficient detail to ask all these kinds of questions about its
characteristics. For a given type of EMP simulator, say a 4

transmission-line EMP simulator driven by a pulser array, one
can ask questions about the wave launched by the array cnto the
transmission line from the viewpoint of those ,characteristicsof
the waveform which can be directly.linked to features of the ar-
ray design “suchas array shape and ntier of pulsers in the ar-
ray. The questions one asks are limited by the state of the art
in understanding, but that is no.mnallythe case. Thus in this
note we can formulate a few questicns with scme techniques for
roughly estimating the answers. In scme cases the techniques
are more useful for relative comparisons between arrays than for
determining accurate numbers for the particular waveform charac-
teristics. They can be considered for their conceptual useful-
ness as well as to get some numbers even if very approximate.
However, I expect that future notes will refine these concepts
somewhat and develop more accurate numerical estimates.
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0 111. Field Description on a Cylindrical Transmission Line

~d
Two previous notes3f4 have discussed some of the features

of the design of pulser arrays such as can be used on ATLAS I
and II. Some effects on the waveform associated with the pulser
array parameters were discussed in these previous notes, and
some techniques for improving the waveform with respect to these
effects were also discussed. In this note some parameters are
associated with the corresponding waveform features discussed
before.

Q

Let us first consider some of the early time effects. For
this purpose let the capacitance of the pulse generators in the
individual array elements be sufficiently large that the RC cie-
cay time of the array driving the terminated transmission line
is large compared to times of interest. This allows one to con-
sider early time effects as the deviation of the waveform from a
step function. Early time (high frequency) and late time (low
frequency) characteristics are then approximately separated.
Note that this separation may not be very accurate if the array
size is made large enough that transit times across the array
are of the order of or larger than the effective pulse width (or
RC decay time).

Look at the effect of the finite array size. Referring to
figure 1 we have an array driving a cylindrical transmission
line. The transmission line is shown as two parallel conducting
sheets, one at least being of finite width, but other cross sec-
tion geome+iriesare poss-ible. The pulser array is shown as
planar and sloped at some angle $ with respect to the direction
of propagation on the transmission line. Other array geometries,
including non planar, are also possible. For our initial con-
sideration the source electric field distribution is assumed
continuous over the finite area of the array thereby implying a
large number of array elements. Thus one can think of the
~ul~er array as a source surface S~ with a source electric field
Es(rs,t) tangential to th>s surface and distributed over it in
some prescribed manner. rs gives the coordinates on Ss.

Bes+des the source surface we need an effective aperture
plane A which is “perpendicularto the dire$tion of propagation.
Let the electric field on this_ksurfaceb~ EA(X,y,t). Th~ basic
procedure is then to estimate MA, given Es and then use EA to
estimate the TEM mode on the cylindrical transmission line. The
aperture plane A is placed as near as possible to Sswithout in-
tersecting it. ‘I’hischoice is made so as to minimize the amount
of transmission line conductors for negative z since the modal
expansion is used for positive z for the cylindrical transmis-
sion line and such conductors for negative z complicate matters.
For our coordinate system note that A is the x,y plane and the
TEM mode launched on the cylindrical transmission line propa-
gates in the positive z direction.
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While a detailed solution of an appropriate boundary value

b,
problem (such as for the geometry in figure 1) is beyond the
scope of this note, still one can learn something of the form of
the solution. For this purpose we have

(1)

Y:=-

where we have the permeability Yo, permittivity so? and Laplace
transform variable s (with respect to time) . Using a tilde . to
denote the Laplace transform we can expand the electric field
for z > 0 (the transmission line region) in the general form5

z -yazx
i(:,s) =E. ~a(s)e ga(x,y,s) + fiR(;,s)

a’
(2)

4B where a is a mode index, ~a(x,y,s) is the mode distribution
(with possibly x, y, and z components), and~a(s) is the mode co-

.~ efficient. These latter two may be functions of the complex
frequency s. The’z variation is contained in the exponential
with propagation constants ya which are functions of s (or y).
Note that while a discrete spectrum is indicated by the sum over
a in equation 2 we can still allow this sum to also include an
integral over a for part of its range to give a continuous spec-
trum in Ya if this is needed. The additional term ER has a con-
tinuous spectrum and is termed the radiation field. Note that
by Laplace transforming this term over the z axis (O ~ z ~ m)
and then inverse transforming we have an integral over ya effec-
tively, so we c= let_the sw be over discrete Ya.

The lowest order mode is the TEM mode which for convenience
we designate by a = O for which we have

yTEM = y. 3 Y

since it is well known that the TEM mode propagates at speed c
with a frequency independent mode function. Note that go has no
z component and that it can be expressed as a purely real valued
vector function of x and y.
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There are various cross section geometries of cylindrical
transmission lines consisting of two or more separate perfect
conductors in a uniform, isotropic, lossless, and frequency in-
dependent medium that one might consider. An important example
is the one consisting of two symmetrically positioned perfectly
conducting parallel plates, or equivalently a single finite
width perfectly conducting plate parallel to an infinitely wide
one as shown in figure 1. This example has been studied in pre-
vious notes6r7 and has been an important example with a signifi-
cant influence on the design of ALECS, ARES, and now the simu-
lators ATLAS I and 11 under design.

Understanding this TEM mode can give us tobls for charac-
terizing &he waveform launched on a cylindrical transmission
line by imperfect pulser arrays. At sufficiently low frequen-
cies (wavelengths much larger than h and w) the fields at large
z (z >> h,w) in the immediate vicinity of the transmission line
are given by the TEM mode. Except near the source the fields on
the transmission line reduce to a circuit prcjblemusing trans-
mission”line theory with the TEM mode.

The problem of concern is what happens at high frequencies
with wavelengths of the order of or less than the cross section
dimensions of the transmission line. It is well known that the
TEM mode propagates at speed c with no loss at all frequencies.
Given the linear nature of this problem the TEM mode can be
added in any proportion to any solution of Maxwell’s equations
matching the boundary conditions on the transmission line con-
ductors. To this extent (at least) the TEM mode can be consid-
ered independent of the rest of the fields on the cylindrical
transmission line.

Now in the TEM mode we have .the well knowh pro’pertythat

zT~@,s) = Eo~o(s)e-yz~o(x,y)

ho(x,y) = ez x go(x,y) , go(x,y) = -ez x lio(x,y)

where ~ with a subscript denotes a unit vector
nate indicated. In a form similar to equation
field is expanded as

for the coordi-
2 the magnetic

E

E

-yazq
3(2,s) = # &a(s)e ha(x,y,s) + iFL(:,S)

o~
‘(5)

“a
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o The individual terms in the modal expansion and the “radiation”
term for each satisfy Maxwell’s equations’without sources. OU*’

sources are taken to be in z < 0 and so are not needed in this “’
d, expansion. Sometimes it is convenient to use the components

tangential to the x,y plane defined by

;t (X,y,s) = [: - ZZ:zl “ QX,YA
a

o

(6)

it (X,y,s) = [; - :2321 “ l@fY/s)
a

where the identity dyadic is defined by

+

T+x++ + ;Zzz+ ‘YeY

Using the Lorentz reciprocity theorem

‘.
?

(7)

(8)

where ~ is the outward pointing unit vector normal on S, the
closed surface bounding the volume V? and ~1, al a e a sol tio
of Maxwellls equations for source current density $ HI, and 2, 2
are a solution of Maxwellfs equations without a source term.
Setting the source current density to zerogives

j[
Sglxiz-izx;l]”;ds=o

(9)

which relates two solutions of Maxwell’s equations when no
sources are included in V.

Now let the terms in equation 9 be separate terms from the
field expansions in equations 2 and 5 since each pair of such
terms separately solves the sourceless Maxwell equations. Thus
we can write

r

J
‘yaz-y@z[:(x,y,s) ‘~ (X,Y,S) -: (X,Y,S) xi (X,y,s)] ‘ :ds=oe

s
cl s s c%

(lo)

. .

.
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Next let S be two infinite planes of constant z ~ G, say Z1 aafi
Z2. Call these surfaces S1 and..S2respectively. Keeping Z1
fixed and varying Z2 the change in the exponential on the sur-
face 22 requires that the integral over S -
zero. *5:22emXa::;:’&The integral at infinity (large 4X
imposing a radiation condition at infinity on the modes; essen-
tially this is the requirement for such modes to be considered
guided or bound to the transmission line in our case. Note that
the TEM mode falls off like a static line dipole since we con-
strain no net current in the conductors at any cross section for
this mode; the TEM mode fields then fall off ~Like [x2 + y2]-1
and as long as the other modes or radiation fields are bounded
at ~ then this integral at infinity is zero. We then have for
any cross section plane such as A the result

This can also be written in terms of the transverse parts since
the z components give no contribution as

Now reverse the direction of propagation of one of the
‘asourceless modes, say the a one. This reverses the sign of ya

and the sign of the transverse magnetic field components. Using
this in equations 10 and 11 reverses the sign between the cross
products and this gives for comparison to equation 12 the re-
sults

Combining equations 12 and 13 gives

= J da(x,ns) +x,y,s)l ●:zds = o

‘1

10
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o f [:t<X,Y,S) + (X,Y,S)1 ● :zds
‘1 @ CY,

=j [;6(&Y,dXia(X,Y,S)] ● @ = O
‘1

where the cross products can also be reversed to put the mag-
netic mode first. This general result expresses the mode orthog-
onality for general waveguiding structures involving only recip-
rocal media. This is the case for cylindrical TEM transmission
lines involving only uniform media surrounding perfect conduc-
tors (or even imperfect conductors). Note that the orthogonal-
ity also applies for modes traveling in opposite directions un-
less ya = y~ in which case these two degenerate modes can be
made orthogonal by a common procedure; if it is the same mode
(Only one independent mode not counting reversal of propagation
direction) then of course the mode is not orthogonal to itself.
Note that the orthogonality also applies between a mode and the
“radiation field.”

So far we have been considering general properties of cy-
lindrical waveguiding systems. However, TEM modes on cylindri-
cal transmission lines have rather special properties. From the

Q

free space wave equation (transformed) we have for any mode
propagating in the z direction with propagation constant y the
result

~=[@- -y2]ii(x,y,s)e-yz

e-wi!(x,y,s)= (15)

so that the individual components of ~ satisfy the Laplace equa-
tion. In particular we have

o = V%z(x,y,s) (16)

Now ~z must be zero on the conducting boundaries of our cylindri-’
cal transmission line and of course we require it to be zero at
infinity. The only function satisfying the LapLace equation
with zero values on the boundaries is identically zero. Thu ~

imust have no z component and a similar argument applies for .
Thus

Ya#Y for Ci+o (17)

0’
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and any waves traveling with speed c in the z ciirectionmust be
TEM. Thus there can also be no modal degeneracy between TEM e
modes and non TEX4modes or between TEM modes and the radiation
fields. Degeneracy of a TEM
another TEM mode.

From equations 4 and 14
the other some other mode or

O=j’ Ga(x,w)xto(x,w

%

mode can only apply with respect to —

let one mode be the TEM mode and
the radiation field giving

~zds

= J ;a(x,y,s} ‘;o(x,y)ds

%

(18)

since to is perpendicular to ~z. This gives the important and
useful result that the TEM mode is orthogonal to any non TEM
mode and the radiation field in a dot product integral sense, a
more common way of thinking of orthog nal f~c:tions.

i
Carrying

through the same steps starting with ~ and gcjwe also have

~ = J iJx,Y,s) ●Ko(x,yMs

‘1
(19)

so that this orthogonality applies to both electric and magnetic
fields. While the integrals apply on an arbitrary cross-section
plane SI, tlhisorthogonality will be typically applied to the
aperture plane A.

With the orthogonality relationships one can calculate the
coefficients in the modal expansion using equations 2 and 14 as

.0

1- $ [~(X,Y,S) dia(X,y,S)] “~zd,S~AA
aa(s) =

s

(20)
[Za(x,y,s) ‘%a(X,y,S)] ●~zdS

A

12
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where the aperture eiectric field is

iA(x,y,s) E 3(;,s) ]Z=o

In terms of the aperture magnetic field we have

Z.

!qA [iA(X,y,S) x:a(x,y,S)] ●~zdS

J [FJX?Y,S) .;a(x,y,s)l ● +s
A

(21)

(22)

iiA(x,y,s)= 3(2,s) Iz=o

For the case of the TEM mode the expression for the mode
coefficient can be written as

1-
J(ii X,Y,S) “ ~o(x,y)dS~AA

&o(s) =

~’o(x~Y) ● ~o(x,y)dS

Z. -
—. f( ii X,y,s)EO AA ‘io(x,y)ds

f ~o(x,y) ● io(x,y)ds
A

(23)

Since lo and & are simply related from equations 4 other forms
can also be readily derived. Since the TEM mode distribution is
independent of s then the coefficient can be written in time
domain form as

Cto(t) =

1 f( i x,y,t) ‘Go(x,y)dS~AA

I
+
90(X,Y) “to(x,y)dS

A

Z.

J ii (x’,y,t)●~o(x,y)dS<AA

~ Ko(x,y) ● ~Jx,y)dS
A

(24)

13



With these expressions we can calculate the frequency and/or
time domain characteristics of the TEM mode waveform in terms of
the field distribution on the aperture plane A. By direct ex-
tension these coefficients can also be found in terms of the
fields at any other cross section plane such as S1.

The orthogonality result for the TEM made leading to the
TEM mode waveform in equation 24 forms the basis of some of the
figure-of-merit definitions in the next section. Based on this
integral some very approximate procedures for estimating TEM
waveforms can be developed. As one moves td larger values of z
one generally expects the TEM mode to be the dominant part of
the fields. The higher order modes (non TEM) will likely tend
to attenuate with distance for open structures since these modes
in part correspond to multiple reflections in parallel plate
structures which tend to eyentua~ly scatter out of the transmis-
sion line’structure. In closed Lossless TEM transmission lines
(such as a coaxial transmission line) such higher order modes
are not attenuated unless the frequency is below some cutoff
frequency. The detailed characteristics of higher order modes
in parallel plate transmission lines are not well udecstood at
present except for being orthogonal to the T13Mmode. In any
event we take for our definition of an “averahge”waveform on the
transmission line the TEM mode; from equation 24 the TEM wave-
form at plane S1 can obviously be regarded as such an average.
As one samples across a cross section of the transmission line
different time domain waveforms may be observed. However, it
would be useful to reduce such obse,rvations.toone waveform to
make the waveform analysis simpler. At some future time it may
be desirable to consider some of the higher c]rdermodes to fur-
ther refine the quantitative consideration of waveform quality.
In this note waveform quality is discussed in terms of the TEM
mode.

‘o
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0
xv. Definition of Some Figures of Merit for Pulser Arrays

Now let us obtain some approximate waveform characteristics
.“/ for the TEM mode launched on a cylindrical transmission line by

a finite size source array. For this purpose it is convenient
to concentrate on the time domain form of so(t) as g$ven by
equation 24 in terms of the aperture electric field EA(t). The
waveform characteristics discussed in this section are summar-
ized in figure 2.

First let us”consider some of the early-time characteris-
tics of the waveform. For this purpose assume that we have a
source with zero impedance at low frequencies (infinite capaci-
tance) so that the late time characteristics of so(t) are those
of a step function. This is later modified to include the RC
decay characteristics. For normalization purposes then choose
E. such that uo(t) tends to 1.0 at late times for zero internal
source impedance at low frequencies. The equivalent source gen-
erator is a step function which is distributed at many positions
over the array. Letting V. be the late time step function volt-
age we have for z > 0

h

(~ I

h
VO=-EX dx = -E. gx

o y=o 00
It large

dx

y=o

(25)

where C is a-path with differential line element d~ from the
plate on x = Q to the finite width plate on x = h. Note that
the TEM mode go can be expressed,as

;O(x,y) = -v@(x,y) (26)

where Q(x,y) is a scalar potential function with

v
O(h,y)

I
- O(o,y) = #

lYli; o
(27)

where the two values of y need not be the same. As long as the
ends of C are fixed on the two plates then the line integral in
equation 25 is independent of the path. From equation 27 one
can+appropriately+choose E. such that at late times the TEM part
of EA/Eo is just go, automatically making so(t) + 1 at late
times. For convenience with this normalization define

15
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+
gA(x, Y,t) =

iA(x,y,t)

E. (28)

.. .

aperture plane. The TEMas our normalized electric field at the
waveform can then be written as

-J( +-
9~ xtY, t) ● ~o(x,y)dS

Aso(t) =

J 30(X, Y) ● ~o(:,y)ds
A

(29)

As a first early time consideration let the array be
sented as a continuously distributed source surface Ss as

repre-
shown

in figure 1. Let the electric field on the source surface be
prescribed as a step function in retarded time with respect to z
so that it has the form

(30)

+ + +

where

+
r sx+ye=xe +zes SY Sz (31)

gives the coordinates on Ss and ~s+is the tangential components
“of the electric field on Ss. Let ns be the surface normal for
Ss as indicated in figure 1,

‘As in figure”lC the finite size source surface can be pro-
jetted onto the aperture plane; call this portion of the aper-
ture plane As. From geometrical diffraction theory the electric
fields on A at t = O+ are zero on A - As and in general non-zero
on As given by

[: - XJX,Y):JX,Y)I “ iA(x,y,o+) = is (X,y)
o

(32)

x~, ys being the same as x,y for this calculation. In nor-with
realizedform this is

is (X,y)
o
E.- ;Jx,y):s(x,y)] ● .~A(x,y,o+) (33)

17



We can also write this as

35 (xfy)

;~ x @GYlo+) = i5 x ‘E (34)
o..,*.

Since ~A(x,y,O+) has only x and y components, (transverse to the
direction of propagation in the high-frequency limit) we cari
write

$s (X,y)

-z
z

“ :Jx,y):Jx,y) ● ;A(x,y,o+) =ZZ “- C’E
o

so that equation 33 can be rewritten as

[

+
+ ijns(x,y)~z

1

(X,y)
+
gA(x,y,O+) = I -

0
●

.;5(x,y)“:Z ~—

(35]

(36)

Note that if ~s ● ~z becomes zero this is not a problem if 3S0
‘> is also made zero for such regions of Ss.

For the special case that & has no y component because S~
is described as a function of x and z only, then the results

simplify somewhat. In particular if the source surface is also
flat and inclined at an angle ~ (in the x, :Zplane) with respect
to the y, z plane then

where E&. is the $omponent of ~so paraliel to the x, z plane (or

perpendicular to ey) and it is taken positive in the direction
of increasing x. In this case equation 36 reduces to

El (X,y)
..-

9A (xFY,O+) = - ‘E
x o

Es (x/y)

9A (x,y,O+) = ‘Y

Y
E.

(38)

.0
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o For such flat source surfaces it is then rather simple to relate
the initial aperture electric field to the initial source elec-
tric field which is based on the distribution and voltages of
the generators (to obtain volts/meter) on the source surface.

Now define one figure of merit for such a source array
driving a cylindrical TEM transmission line as

‘1 = (xl(o+)=

.—

~
1 +

;A(xry,o+) ●;o(x,y)dS ~ 9A(X,Y,0+) ● ~o(xry)dS

A s

~;o(x,Y) ● to(x,y)ds = ~jo(x,y) ● ao(x,y)dS
A

(39)

This number represents the fractional initial rise of the TEM
waveform. For,ordinary capacitive generators in an ar$ay for
which As does not completely cover the area for which go(x,y) #
6 this nuiier is typically less than 1.0. Including extra volt-
age on each generator in a manner whi$h applies only to early
times would correspond to increasing gA(X,y,O+) and thereby
raise fl by compensating for the non use of the portion of the
aperture surface A - As. However, this would require additional
features in each generator or special generators distributed
among the other generators on the source surface. In any event
fl is one number for comparing array designs to see which puts
out the better waveform.

Having formulat-edthe integral for so(t) there is still the
problem of calculating waveforms becau$e of the complexity of
the fields on A. We need to estimate gA(x,y,t) in order to com-
pute the integral. The early time (t = O+) form is obtained by
a geometrical diffraction method as discussed above. One way to
try to calculate gA for longer times is to use more terms in a
geometrical diffraction theory expansion including the arrival
time of such terms on the A - As portion of the aperture plane.
Note that as the position of A is moved to larger z values (z >
O) the initial fi-e-ldson As (at t = (z/c)+) remain the same giv-
ing the same value for fl. The fields arrive.on portions of
A- As at earlier retarded times as A is moved to larger z, but
the initial field amplitudes reaching the same portions of A -
As become smaller, or stated better the coefficients of the
early time asymptotic forms of the fields reaching A - As’become
smaller. This is consistent with the fact that so(t) must be
independent of Z1 for Z1 > 0 as the new position of A since the
TEM mode only has a retarded time variation with z. Turning on
portions+of A - As faster is compensated to some extent by
smaller gA magnitudes there at early tlITIeS.

The geometrical diffraction method does not”in general ap-
ply at all for late times. Furthermore it would be desirable to
have some simpler method to estimate waveforms, at least for
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reldtive comparisons among various array designs. This simple
method might be termed a+sequential turn on r~ethod. In this
method one approximates gA as

(40)

where tA(x,y) = O at the first time ZUIYfielck reach the posi-
tion x, y on A. The asterisk superscript indicates a quantity
replaced by the value calculated by the sequential turn on
method. Thus for f~ we would estimate

,#&-

S+*
9A(X,Y,0+) J- 3.(%!/)* :Jx,y)dsc~o(xfy)ds ~

A s
‘i =

s

= (41)
to(x,y)

● ~o(xty)ds,, J 30(xrY) ● ~o(x,y)dS
A A

Note that f~, while not in general the same as f~, still is in-
variant with respect to our choice of z = Z1 > 0 as the position
of A in case we were to move A to some other ~. H~%-=l~erfar
later times the choice of the z = Z1 position for A does make a
difference. In particular as Z1 is increased the subsequent
rise of the waveform beyond f: becomes faster. Thus in compar-
ing two array designs for the rise beyond fl using the sequen-
tial turn on method one should be consistent in the choice of
Zlr the position of A. Since the idea is to point out ‘differ-
ences between different array designs (and not to mask these
differences) then the position of A should be chosen as close to
the array as possible. Of course if a sloped array extends past
its intersection with the transmission line conductors in the
direction of positive z (as shown in figure 1) then the plane A
should be taken before the end of those conductors but as close
as possible. For comparison to arrays which do not extend out
as far but are driving the same geometry of transmission line
the plane A should be chosen at the same common position on the
transmission line at a place which makes A clear of all the ar-
ray shapes being considered.

.a

“e

One interesting type of array is the curvilinear array dis-
cussed in reference 3. This also applies to sloped arrays dis-
cussed in reference 4. A curvilinear array is one which has the
source field (in the continuous approximation) specified as
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. .

is(;~,t) = is
w.’+ -3

4P

o

is (X, y)
o :
E. = [1 - ;Jx, y)3Jx, y)] “ ;A(x,y,o+)

I
~o(x,y) for x,y Z As

+
9A(xtY/o+) =

O for Xry $ As

(42)

In other “wordsthe source electric field is specified to be the
projection of the TEM electric field on the source surface where
projection is done in the z ~irection along lines of constant x
and y and the components of go(x,y) tangential to S. define the
normalized source electric field there. Note that Ss is still a
finite surface so even a curvilinear array in this sense is not
perfect. However, it does give the special result

+-*
9AhtYN+) = 3A(+Y,0+)

(43)

Thus for the initial rise characteristics of an array the geo-
metrical diffraction method and sequential turn on method become
the same. However, this early time result does not carry over
into later times even for curvilinear arrays.

Curvilinear arrays have other interesting properties. If
we define a complex potential function

w(<) = u(x,y) + iv(x,y)

(44)
c =xi-iy

such that the electric potential function, u(x,y), is a constant
U1 on one conductor and a different constant U2 on the other
conductor then we have the interesting result

+-
90(X,Y) = Vu(x,y)

i!o(x,y)= Vv(x,y)
(45)
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where v(x,y) is the magnetic potential function or stream func-
tion. This allows one to define a complex mode function as

.0

i(x,y) = ~o(x,y) + iio(x,y) = Vw(L) (46)

This can be rewritten using complex mode functions and the
Cauchy-Riemann conditions as

go(c) = 90 (x,Y) + igo (x,Y)
x Y

ho(c) = ho (xfy) + iho (x,y)
x Y

(47)

go (xly) = ho (X,y) , go (X, y) = -h(> (X, y)

x Y Y x

ho(c) = igo(~)

giving

(48)

If a curvilinear array is made such that the projection of
Ss on A to give As results in a surface As bounded by the trans-
mission lj.neconductors (u = u1, u2) and two stream fumction
values (say v = v1, V2 or some other even number of values) then
at low frequencies current is continuous through the array as
discussed in reference 3. Current paths are continuous along
electric field lines so as not to be interrupted in traveling
between the two transmission line conductors. Of course non
curvilinear arrays can also be constructed with this property.

One can picture a curvilinear array by plotting contours of
fixed values of the u and v functions on the aperture plane for

equal changes in u and equal changes in v, although the changes
in u and v between their respective contours need not be the
same. The curvilinear rectangles so formed on As define the lo-
cation of pulsers’ each of equal voltage and equal low frequency
impedance (capacitance in the usual case). This curvilinear
pattern is projected from As onto Ss keeping x and y fixed in
the transformation. On Ss the generators establish the poten-
tial between the proj~cted contours of u. If one looks perpen-
dicular to Ss (along ns) t~e cur~ilinear pattern is not neces-
sarily rectangular unless ns = ~ez.
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Q
Note that+f-orthe case ‘chatthe early time is as projected

on As is just go then “the integral for fl (or ao(O+)) is an in-
tegral of the square of the local electric field. Since the
area of a curvilinear r$ctangle is pro~ortional to lVul-l \Vv\-l
it is proportional to lgo(x,y)]-2+or ]ho(x,y)I-2. The power in
each curvilinear rectangle where go is the normalized electric
field is then the same. Thus the power passing through A at
t= O+ is fl relative to the late time power for fixed voltage
step V. on the array. Note that f? is the power in the TEM mode
at the surface A at t = 0+. The p~wer at A in the higher order
modes and “radiationfield at t ,= O+ is then fl - f: or fl(1- fl)
which is ideally a small number.

Now if the curvilinear array Ss has the boundaries of its
projection As defined by the two (or more) conductors with po-
tential function contours UI, U2 and by two stream function con-
tours VI, V2 and if Av is the change of stream function around
one of the conductors with V2 > VI and v continuous between VI
and V2 then the early time TEM mode

‘2 - ‘1
% = Av

A simple way of viewing this result
~ect~ngles be the differential area
90 ● go is inversely proportional to

fraction is just

(49)

is to let the curvilinear
elements but observe that
the area of the rectangle at

which it is being evaluated, provided the increments in u for
the contours are the same for the whole curvilinear plot and
similarly for v. The result of equation 49 then merely ex-
presses the fractional number of curvilinear rectangles included
in As.

This counting of the fractional number of curvilinear rec-
tangles is a way of graphically evaluating waveform character-
istics by tQe seq~~ntial turn on met~od s>nce this method ap-
proximates gA by gA which is either O or go. This graphical
method then consists of making a curvilinear plot on A with
equal changes in u and equal changes in v to define curvilinear
rectangles. If any field has reached a particular curvilinear
rectangle at the time of interestl then that curvilinear rec-
tangle is counted when determining the fractional number of
curvilinear rectangles which are turned on so as to estimate the
waveform at the time of interest by this crude method.

For purpose$ of calculating fl we have assumed a continuous
distribution of Es on.Ss, turning on as a step function in an
appropriate retarded-time manner. However a practical array is
composed of numerous discrete pulsers connected together and ar-
ranged to approximate a continuous finite-size source surface.
In such a case the TEM mode waveform so(t) will not
instantaneously but will require some time tl to do
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discussed in reference ‘3this local turn on time for the array
elements is typiaally composed of two parts. First theze is the
rise of the wave coming from the output switch(es) of each array _
module; this includes switch inductance, impedance the module 9
has to drive at early ’times, etc. Second therf?is the time for
the wave to extend over a plane at the output face of the module
which involves the module size and geometry for wave guiding;
this phenomenon is the same kind of effect c}nthe individual
module scale as occurs for the TEM mode turn on for the trans-
mission line on a larger scale of dimensions. Note that -these-
quential turn on method for computing the TEM mode on the trans-
mission line is best used for relative comparisons since it is
not very accurate and the results depend in some cases on the
position chosen for A. In like manner the turn on time for the
local piece of the TEM mode turned on by each module depends on
how far away the first signals from such a module are evaluated
if a sequential turn on method is used; for such a method the
turn on time for an individual module should be evaluated as
close to the module as possible. Another a~?proximateway to
view the geometric part of the local module turn on is to
imagine that conducting sheets on surfaces of conscmc u are
placed between modules and extend from Ss to As; on surfaces of
constant v one can imagine placing magnetic walls as well be-
tween modules. This defines many small transmission lines, one
for each pulser module, extending between Ss and As. The rise
of the TEN mode on each of these transmission lines is related
to the cross section dimensions of the transmission line and how
well the module is designed to launch a fast rising TEM wave on
a transmission line of such cross section dimensions. Note that
tl may vary over the various array modules (because of spacing ‘o
etc.) and some effective value of tl may need to be estimated.

In any event we associate a time tl with the effective turn
on of the individual modules. As shown in figure 2 this is the
time required for the TEM waveform so(t) to rise to fl, the in-
itial TEM mode fraction associated with the entire pulser array
idealized as Ss. Having fl and t~ one figure of merit for the
TEM waveform can be defined as

This is a time constant for the initial waveform rise if the
waveform were a linear ramp for O < t < tl. As such l/Tl is an
indicator of the high frequency content of the TEM waveform.
Thus small T1 is desired for arrays driving transmission lines,
a~d as ‘such can be considered a figure of merit. Note that if
f~ is used instead of fl then we would alsc]have
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Having considered figures of merit for the early rise por-
tion of the TEM waveform let us go on to consider what might be
termed the second portion of the rise of the waveform. Assume
that the time tp to the waveform peak is large compared to tl so
that this portion of the waveform can be considered separately.
For our present purpose ~hen let the array be described by the
continuous source field Es on Ss as discussed previously. This
simplifies matters by making tl = O and ao(O+) = fl.

Then let us characterize the waveform as it rises frgm fl
(perhaps not monotonically) toward 1.0 for the case that Es is a
step function. Define an effective time for this rise by

fk2
t;z2

J
[f2 - so(t)]dt

o

where

‘l<f2:1

uo(t2) = f2

(52)

(53)

The quantity f2 is chosen for convenience to make comparisons of
various waveforms. It might be .9 or so. If it can be made 1.0
with so(t) asymptotically approaching l,fast enough tha<tthe in-
tegral converges then a good form for t2 is

J
m

t; = 2 [1 - ao(t)]dt
o

(54)

However, if there are convergence problems it may be necessary
to choose f2 < 1.’ In such a case it should be the same number
for all arrays being compared, and of course it is required that
f2 > fl for all such arrays. Note that a real array gives a de-
cay~ng waveform due to its finite capacitance so that so(t) may
not reach 1 in a real case, but rather a peak fp. In such a
case it may be useful to set f2 < fp as well as other choices
such as in equatiyn 54. In any ~vent smaller t~ gives a better
waveform and so t2 is another figure of merit.
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Note the factor of 2 in the definition of t; is included to
.

double the area of the difference of o.o(t)from unity. Ii Uo(t)
were a,linear ramp from fl to f2 then so(t) would reach f~ in a
time t2/(f2 - fl) giving a new time constant as “o

t:

‘2 z f2 -Lfl
(55)

which for a linear ramp is the reciprocal of the slope. Thus
l/~2 is an indicator of the relative high frequency content of
the waveform between fl and 1 (or f2). Then T2 and t; are other
figures of merit although perhaps not as important as TI which
gives the dominant high frequency content of the waveform. One
Would ~ot want to decrease T2 at the expense of small f~. Per-
haps t2 is then more important than T2. In any event ~1 and T2
have roughly consistent definitions which become equivalent for
the case of linear ramps. An alternate way of defining ~2 is

‘2
‘i ; f2 - fl

(56)

which reduces to T2 for a linear ramp with t~ = O.

One way of looking at the waveform so(t) for its early time
characteristics is to consider it the sum of two waveforms. The
first part is the waveform of amplitude fl rising in a time tl.
The second part is the waveform,of amplitude f2 - fl (or 1 - fl)
rising in a time t2 (or 72 or T2). The high frequency content
is governed by the first waveform, but as one goes down toward
intermediate frequencies the second part of the waveform can
still make a significant contribution.

A crude estimate for T; (and thereby o’chervariants of it)
can be made using the sequential turn on method to ~pprox~mate
the waveform so(t) from equation 29. On@ replaces gA by go or 6
in equation 23 and numerically approximates the integral, Since
we are using go or 6 in the integral, then counting curvilinear
rectangles that are turned on at time t and dividing by the
total number of curvilinear rectangles gives an approximate
value to as(t). As the size of the curvilinear rectangles tends
to zero the answer is a~(t). Again note that equal values of
change in u and equal values of change in v are required over
all of A if simple counting of curvilinear rectangles and divid-
ing by the total is to apply. To determine whether or not a
given curvilinear rectangle is turned on one has to calculate
the time delay from the source array to say the center of each
curvilinear square in A - As. In each case the array, if
sloped, turns on at different times over Ss. Then the
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geometrically

o rectangle
One needs
propagate
Having an

.—.

closest position on the array to a curvilinear
is not necessarily the array position to
to find that position on the array which
a sianal to the curvilinear rectan~le in
appr~ximation for @(t) we can the;

L

%*

After considering the early time figures
later times can be included. First the decay
is given from simple circuit concepts as

c$(t)]dt

‘d = Zccs

where Zc is the
line given by

characteristic impedance of

Zc=fz f Au
go’ 9 ‘G

find

consider.
can first
question.

(57)

of merit those-for
time constant rd

the

where Au is the chanqe in the potential function between the

(58)

transmission

(59)

plates and Av is the-change in-the stream function on a path en-
circling the current in one plate (or several conductors depend-
ing on which currents one includes to define the impedance).
The total capacitance of the array is Cs with the series-paral-
lel connections of the individual module capacitances taken into
account.

This
mately as

Cto(t)

decay constant

-t/Td

=e

fits into a late time waveform approxi-

(60)
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for t >> t~ (time of the peak). For this expression to be at
curate’one requires ~d >> kg so that the early time waveform
distortion in the sense of ~eviati.onfrom the ideal waveform

-t/’rd
U. (t) = e u(t)

ideal
61)

does not have a sufficient time integral to raise the amplitude
of the waveform at late time in order to conserve the time in-
tegral of the waveform. Note that we have

I
w

ao(t)dt = ‘rd= ZcCs
o

(62)

independent cf the early time effects. This merely expresses
the fact that the complete time integral of a waveform is re-
lated to its low frequency asymptotic form, which in &his case
is given by the total charge (time integral of current) tnat the
array delivers to the transmission line. Note then irom equa-
tion 62 that ~d has another ifiterpretationrelating to pulse
width in the sense of complete time integral. One can compare
this integral for ~d to another one in equation 52 for t~ for
assumed step function excitation. To make some of the expres-
sions more accurate then one would like t~/2 << ~d.

The characteristic impedance of the transmission line Zc is
used under the assumption that the transmission line is termi-
nated in this impedance, at least at low frequencies. There is
also a matter of consistency if more than one pulser array is
used (such as in ATLAS I, designs 1 and 2). The definitions of
Zc and Cs must be consistent. Both should refer to the same
combination of transmission lines and the product ZcCs for a
single transmission line (such as a conical wave launcher)
should be the same for all TEM transmission lines that are com-
bined to launch a TEM wave on a single transmission line, if
this is done by separately launching portions of this wave over
separate parts of the cross section of the single transmission
line. Perhaps special low frequency matching networks could be
used to allow one pulser to provide the low frequencies for
radian wavelengths larger than the cross section dimensions of
the single transmission line, but that is another problem.

P

“e

This leaves one more figure of merit fp, the peak value of
Uo(t). To estimate this peak one can compare the early time
calculations for so(t) using step functio~ excitation on a con-
tinuous array as in equation 29 (or for so(t) using the sequen-
tial turn on method) to the late time form cjfso(t) including
decay as in equation 60. Where the early and late time

..n#
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approximations cross is one crud= estimate for f .
E

Perhaps a
more accurate estimate could be made by taking t e early time
form of so(t) for step excitation and convoluting it with the
derivative of the ideal late time waveform as in equation 61
giving

[

-t/Td

Cio(t) ~ Cto(t) * d(t)-~e u(t)
all time early time ‘d 1

= Cio(t)

early time

!_u(t) ‘a (t _ t,,
-t’/T

e ‘dt‘
‘do” early time

(63)

Then fp would be taken as the peak of this estimate. Note that
equation 63 is not exact and only a reasonable approximation if
Td >> tp so that the low-frequency source impedance effects on
the waveform are not very large in our estimate of the early
time waveform.

Of course fp (or peak field) is not necessarily the most
important waveform parameter. Certainly if one looks at the
Fourier transform of the waveform the low frequencies are domi-
nated by rd and the high frequencies are dominated by T1 and
more sophisticated details of the early rise. Both of these are
scaled with the amplitude (in volts/m, amps/m, etc.) that goes
in front of so(t) so that ~d gives the waveform integral and T1
an initial slope. For intermediate frequencies more detailed
waveform characteristics are important, but enter in a more com-
plex manner. However, one migh$ say sacrifice some on the mag-
nitude of fp while decreasing t2 say, and not consider fp as anY
absolute.
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v. Summary

This note has considered some of the effects associated ‘
with launching TEN waves on cylindrical transmission lines or
conical transmission lines with small cone angles between outer-
most portions of conductors. The wave is being launched by a
finite size pulser array where the pulsers are assumed to be
rather simple capacitive generators. Based on these considera-
tions several figures of merit for the waveform can be defined~
including ones associated with a fast initial rise, the subse-
quent rise toward the peak, the peak value, and the exponential ,
decay. Some rough techniques for estimating some of these num-
bers are also discussed.

LMoredetailed calculations of various boundary value prob-
lems are needed to better quantify the calculation of these
waveforms and the associated figures of merit. Such calcula-
tions can even suggest more figures of merit to characterize
significant features of such waveforms.

There are various questions about waveforms Whicil these
figures of merit do not address. These include details of the
intermediate frequency characteristics of the waveforms, or the
behavior of the Laplace transform of the waveforms in the com-
plex frequency plane at roughly intermediate frequencies corres-
ponding to possible natural frequencies of objects under test in
a transmission line simulator. In other worclsit is still pos-
sible to have poor waveforms which have good figures of merit
corresponding to the present list. These figures of merit cor-
respond to some of the more apparent characteristics of pulser
arrays. More subtle effects can enter from various aspects of
the design of the individual modules and how the modules are
electrically connected together to form an array.
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