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1. INTRODUCTION

For measurements of the nuclear electromagnetic pulse (EMP) at high.

altitudes above the earth, the sensors often have to be mounted on a

supporting boom that generally can be approximated by a conducting cyl-

inder.1’233Two important problems in this connection are the determina-

tion of–the extent of field distortion due to the presence of the boom,

and then the derivation of ways for minimizing this distortion. The

present paper is a contribution to the first problem, namely, a study of

the near field at the end of a semi-infinite conducting tube illuminated

by a normally incident time-harmonic plane wave.

Using the Wiener-Hopf techniques, the semi-infinite tube problem has

been investigated by a number of authors,
4

namely Levin and Schwinger,

5 6
Pearson,

7 8
Vajnshtejn, Jones, Bowman, Einarsson et al.,

9
and Kao.10 Some

. .

of these results are summarized in the books of Morse and Feshbach,
11

12 13 14
Noble, Jones,

The present

new formulas are

and Mittra and Lee.–”

paper makes two contributions to this problem. First,

derived for the factorization of the Wiener-Hopf kernels

M(u) = niJ~(-a)H$l) ‘(-a). (1.2)

It has long been recognized that the major difficulty in the semi-infinite

tube problem lies in the numerical computations of the factorization of the

kernels in Equation (1.1) and Equation (1.2). The conventional formula :Eor

factorization as used in references 3 through 12 leads to complicated

1



integrals and has hindered the generation of numerical data in the past.

In the present work, the pole singularities of the Bessel functions and

the branch singularities of the Hankel

Equation (1.2) are treated separately;

yields an infinite product, while that

functions in Equation (1.1) and

the factorization of the former

of the latter leads to an infinite

integral with a relatively simple integrand. Both the infinite product

and the infinite integral converge fast enough to permit a convenient

numerical evaluation by a computer. The second contribution of this

paper is the study of the near field around the end of the semi-infinite

tube, thus supplementing

the far field only.

The organization of

infinite tube problem is

the works of other researchers who have considered

the paper is as

formulated in a

follows. In Section

Wiener-Hopf equation

2 the semi-

aridis sub-

sequently solved in Section 3. The key step in the solution is the fac-

torization of the two functions in Equation (1.1) and Equation (1.2), and

that is accomplished in Section 4. In Section

of the magnetic field and induced currents are

Fourier integrals. At low frequency, however,

5, the explicit expressions

given in the form of inverse

the inverse Fourier integrals

can be approximately evaluated and simple analytical formulas for the near

field are derived in Section 6. For more general frequency range, we have

to resort to numerical evaluation with the aid of a computer. Extensive

results have been calculated and analyzed in Section 7; details of the

numerical computations are given in the Appendix. Finally, a conclusion is

given in Section 8.

2



2. FORMULATION OF THE PROBLEM

The geometry of a semi-infinitely long, conducting,

is shown in Figure 1. A plane wave is incident normally

“and is explicitly given by

~(i) = ~-ikz
T

~(i) = (i)
x Y ~ Hx

Y

where the time-factor exp(-iut) has been dropped. The

determine the scattered field defined by

-.-.
+(t)

-*=H
- fi(i)

hollow cylinder

on the cylinder

(2.1)

problem is to

(2,,2)

fi(t)
where is the total field. First, we note that the incident tan-

gential electric field can be wr~,ttenas

which is a superposition of two waves of the form

(2.3)

(2.4)

The circular symmetry of the cylinder preserves the $-variation of

the type exp(in$). Thus, in the following derivations, we will use Equa-

tion (2.4) instead of Equation (2.3) as the incident field, and only at the

end (i.e., Section 5) will we combine the solutions with n = ~1 to obtain

the desired results.

3



The scattered field will be decomposed into TE and TM waves with

respect to z and is derivable from an electric potential ~
(e)

and a

(m)
magnetic potential * through the following relations

%=& Vxvx(;$ (e), -Vx(bll (d)

The potentials themselves satisfy the usual wave equation

[

82
;;(P 1&-)-n2+-+k2 ~(p,z)=O

az2

(2.5)

(2.6)

(2.7)

where @ stands for either ~(e) or
(m)

4 , and is a f~ction of P, O>

and z. However, since the $-variation, namely exp(in@), is common to

all field components, we have not explicitly indicated it in the argument

of $(p,z] in (2.7). Now, the problem is to solve Equation (2.7) subject

to the following conditions:

(i)

(ii)

(iii)

This can

(E$,EZ) and (H$,HZ) are continuous across p = a for z > 0 (2.8)

(E$t),E(t))are identically zero at p = a for z < 0 (2.9)
z

Ez(p = a,z) % z
-1/2, as z + ()+- . (2.10)

be accomplished by the Wiener-Hopf technique.

To this end, let us introduce the standard Fourier transform notations

in the Wiener-Hopf technique:14

I w(~,ci) = Y+(m) + Y_(p,cl)

Y’+(P,cO= Jm $(p,z)eiaz d~
o

—.

(2.11)

(2.12)

4
-
---



Y (p,cx)= /0 I)(p,z)eiazdz .
-m

The Fourier transform of Equation (2.7) leads to

[
;*(P 1-&-).-n2 + K2 Y(p,a) = O

(2.13)

(2,14)

where K = ~= +iA7’57’ with its branch cuts shown in Figure 2.

In the region p > a, the solution of Equation (2.14) may be written

in the form

Y(e)(p,cd = A(cY)H‘1) (Kp) (2,15a)
n

forp>a

f
@)(p,a) 4 (1);B(a) Hn (KP) (2.15b)

where A(a) and B(a) are unknowns to be found. Substituting Equation

(2.15) into (2.5) and (2.6), we may obtain the expressions for the tan-

gential components of the fields

,E4(p,CY) ‘l)’(Kp) +kp= KA(~) Hn ‘B(a) H‘1) (Kp)
n

,.2
Ez(p,a) =~&B(u) H‘1) (Kp)

n

(2.16)

(2.:17)

“rH+(p,ci)= ~ [-KB(a) H$l)’ (KP) + ~p~ A(a) H‘1) (Kp)] (2.:L8)
n

f

,2
‘1) (Kp) .fiz(p,a)= ~~A(a) Hn (2.1.9)

5



Here E$(p,a), for example, is the Fourier transform of E$(p,z). The
(

prime on a Hankel function signifies the derivative

argument. From (2.16) through (2’.19)we may derive

the tangential electrical and magnetic fields at p

with respect to its

two relations between

= a+, namelys

Hz(a+,a) =

H$(a+,a)
<

-~ff (a+,a) - ~
aK2 z

These two relations will be used later

Next consider the field

(2.14) then takes the form

1

(2.20)

‘,~(l) ‘ ~Kal

ik n
FH(I) (Ka)

Ez(a+,a) . (2.21)

n

in deriving the Wiener-Hopf equation.

in the region p < a. The solution of Equation

L,

1

Y(e)(p,ct)
I

= C(a) Jn(Kp)

p<a.

VI
Y@)(p,a) - fiD(a) Jn(Kp)

(2.22a)

(2.22b)

In a similar manner, we may derive
1

;

UHz(a-,a) = .
n

!1
1

(la[-K2a E$’- ,CI)+na Ez(a-,a)] (2.23)

—

—
-.

(2.24)

which are identical to (2.20) and (2.21) except that the Bessel functions

I instead of Hankel functions are used.

i

6
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Now we will apply the bounclaryconditions in Equations (2.8) and (2.9)

to the four Equations (2.20), (2.21), (2.23), and (2.24). The subtraction

.
of Equation (2..23)from Equation (2.20) gives

v-(a) = -2i —

k(Ka)2 M(a)

with the notations defined as

[U+(a) + K2a E$i)(a,a)] (2.25)

M(a) = ni J~(Ka) H~(Ka) (2.26)

-r-V-(ci) =~[Ifz(a+,a) - Hz (a-,a) (2,27)

(2,)28)

f

~~(i)(a,12)- ~2i(a1-k) ●

4- (2,29)

Similarly the subtraction of EquaCion (2.24) from Equation (2.21) yields

u-(a)
2ik

= ~v+(a)

where

L(a) = ‘1) (Ka)lTi,Jn(Ka)Hn

(2.30)

(2.31)

f{
u_(f2)= __; n~[ffz-(a+~a)- Hz I(a-,ci)]- K2a[H$ (a+$a) - 1H$-(a-,~)l

(2.32)

7



V+(a) = Ez+(a,a) . (2.33)

We will a~tack the two Wiener-Hopf Equations in (2.25) and (2.30) in Section

3. Once that is accomplished, the complete field solution may be determined

from the following relations:

A(u) =
?a ~i)’

{

U+(a) + K2a E

)

‘i)(a,a)
(Ka) &

n

B(a) =
k

iK2 H(l) v+(r%)
~ (Ka)

c(a) =
-1

{

U+(a) + K2a E

}

(i)(a,a)
K3a J~(Ka) @-

(2.34)

(2.35)

(2.36)

D(a) =
k

v+(a) (2.37)
iK2 Jn(Ka)

in which A, B, C, and D are the coefficients of the potentials defined

in Equations (2.15) and (2.22).

.

3. SOLUTION OF WIENER-HOPF EQUATIONS

Let us first consider Equation (2.25) and seek

One of the key steps is the factorization of M(a)

M(a) = M+(a) M+(-a)

where M+(a) is regular and free from zeros in the

defined by Im a > (-Imk). This procedure will be

Section 4. Substituting Equation (3.1) in Equation

the solution of U+(a).

such that

(3.1)

upper-half a-plane

discussed in detail in

(2.25),we have

8



(k - a)k M+(-a) V-(u) = - -2i
U+(a) +

~
(3.2)

(k+ a)a2 M+(a)
a M+(a) “

Note that the left-hand side of Equation (3.2) contains functions regular

in the lower-half a-plane, defined by Im a < Irnk, while the right-hand

side contains functions regular in the upper-half u-plane> defined by

Im a > (-Imk). By analytic continuation, both sides must be equal to a

polynomial, say, P(a):

-2i

(k+a)a’ M+(a)

To determine P(a) we have to study

(3.3) as /al +~ in the upper-half

Equation (2.10), one may show that

U+(a) +
411/&’

= P(a) ●

a M+(a) (3*3)

the asymptotic behavior of Equation

plane. From the edge condition in

-1/2Ez+(a,a) w a , E$+(a,cy)@ a-3/2

as la +@with Ima>O.

(3.4)

Recalling the definition of U+(a) in Equation (2.28), it follows that

U+(a) m al/2 , I(xI+ _ with Im a >0. (3.!5)

As will be shown in Section 4, the asymptotic behavior of M+(a) is of l:he

form

M+(a) % u
-1/2

, lal+~ with Ima>(30 (3.6)

!2



Making use of Equations (3.5) and (3.6) in Equation (3.3) leads to the

conclusion that P(a) is a constant, say Po. Then Equation (3.3) becomes

a2(k + a) M+(a)
u+(a) =

-2i

For convenience of later manipulations,

[P. -
ml

(3.7)
a M+(a) “

we will now express P. in terms

of a particular value of U+(a). Setting a = k in Equation (3.3) and

solving for Po, we obtain the following result,

~
U+(k)

P. =
a M+(k) - i 2 .

a k M+(k)

Substitution of (3.8) into (3.7) leads to

(3.8)

The cons~ant U+(k) will be determined later.

Next consider the solution of Equation (2.30). Again the key step is

the factorization of L(a) such that

L(a) = L+(a) L+(-u) ,

which will be detailed in Section 4. Similarly we may show that

U_(a) L+(-a) =*V+(a) = Q(a)
+

in which Q(a) is a polynomial. Since

(3.10)

(3.11)

@

10



-1/2
L+(a), V+(a) w a , and U-(a) @ a

1/2
(3.12)

as lal+m in their

a constant. Then the

Now we will determine

(3.9) and (3.13).

respective half plane, it follows that Q(a) is also

solution of Equation (3.11) may be written as

L+(k) U-(-k)
v+(~j “—

2ik
L+(a) . (3.13)

the two constants U+(k) and U (-k) in Equations

From the definitions in Equatioris(2.27), (2.28), (2.32), and (2.33) we

derive the relations

U+(k) = nk Ez+(a,k) = nk V+(k) , (3.14)

o
fU-(-k) = ~ (-nk)[tiz-(a+,-k)- Hz-(a-,-k)] (3.15)

= -nk V-(-k),

n 1= -—-[l- ~U+(k)] .
2ka Mf(k)

In the last step in Equation (3.15) we have used Equations (3.2), (3.3)1 and

(3.4). Setting a = k in Equation (3.13), and using Equations (3.14) and

(3.15), we may obtain the following solution for the constant U+(k):

f

ikan2L~(k)
U+(k) - ;— (3,16)

4(ka,)2M:(k) - n2 L:(k) ‘

o
11



Then it follows from Equations (3.15) and (3.16) that

f
U-(-k) = ~

-2nka

4(ka)2M~(k) - n2 L:(k) “
(3.17)

Substitution of Equations (3.16) and (3.17) into EquaEions (3.9) and (3.13)

completely determines the solutions for U+(a) and V+(a). When these

results are used in Equations (2.34) through (2.37), the desired solutions

are obtained and are given below:

@ ‘
(Ka) A(a)

n
= J~(Ka) C(a)

<
-L

2(ka)2 M+(k)
(k + a)

& N+(k)
z 312 M+(a)

i(k2 - a )

H(l)(Ka) B(a) = Jn(Ka) D(a)
n

(3.18)

(3.19)

‘rE
nka L+(k) L+(a)

=
e N+(k) ~k2

- a2)

in which

N+(k) = 4(ka)2 M:(k) - n2 L:(k) .

The field solution computed from Equations (3.18) and (3.19) will be discussed

in SecLion 5.

4. FACTORIZATION OF WIENER-HOPF KERNELS

A key step in solving the present problem by the Wiener-Hopf technique

lies in the factorization of the following two functions

9



.

r ‘ ~1 ~(l)(&V a)
L(a) = ni Jl( kz - C%2

1
(4!,1)

(4,2)

in a manner such that

L(a) = L+(a) L-(a) = L+(a)

M(a) = M+(a) M-(a) = M+(a)

where L+(a) and “M+(a) are regular and free

complex a-plane defined by Im a >(-Imk), and

Iul +~.

Let us first concentrate on

formula for L+(a) is expressed

*ic
L+(a) = exp ‘~~

-+ic

L+(-a) (4,3)

M+(-a) (4*4)

from zeros in the upper-half

behave algebraically as

the factorization of L(a). A standard

in terms of a Cauchy integral:

J,(~ a) H(l)(~ a)]?
J- J-

i3-cl
de (4.5)

-Imk<c<Ima<Imk .

4
A number of authors including Levine and Schwinger, Vajnshtejn,6 Jones,7

and Bowman8 have presented a variety of different formulas for L+(a), all

based on (4.5). In the present work, we will derive an alternative expres-

sion using a newly developed factorization formula; the result obtained is

believed to be simpler and more suitable for numerical calculations.

First of all, we recognize that L(a) is a product of the following

two functions

13



(4.6)

Note that L(l)(u) is a rneromorphicfunction, its factorization can be

achieved by expressing it in an infinite product form:

(4.8)

where

y = ~ . -i !k2 - (j /.’)2’
m m m

jm = ordered zeros of Jl(x) .

Separating the zeros of L
(1)

(a) in the upper and lower-half a-planes,

we obtain immediately

+)(~) = a 1/2 m
~?riJl(ka]f(1 +j-) i; ‘eH (l+—

iaa/m7r

-1- m=l m
(4.9)

in which the exponential factor has been added to ensure the uniform conver-

gence of the infinite product.

The function L‘2)(a) in Equation (4.7) has no zeros and has only a

pair of branch singularities in ~ with its branc~cuts sho~ in

*
‘l)(z) has zeros with negative imaginary parts, butThe Hankel function ‘1

m assumes only either positive real or positive imaginary values.

14
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14
Figure 2. To factorize this function, we will use a new formula. orni.t-

ting the details of

L(2)(a) = w
+

the application of this

[

ika
(1+;)-1’2 (?xp-~+

formula, the final result

~ a%-ai-i~
2 k

i~s

1+q(a)
(4010aj’

where q(a) is in the form of an infinite integral

m

+[

1
q(a)=+ l_&_ H!lnl+o J;(x) + Y;(x) )a ‘x “ ““’0’)

The bar on the integral signifies the principal value integral at the sin-

gularity x = ka. As will be discussed in the Appendix, this logarithmic sin-

gularity is such that Equation (4.10b) can be easily evaluated numerically.

The product of L+‘l)(a) and L~)(a) gives

L+(a) = e (2)(a)X(a) L~l)(a) L+ (4.11)

in which the exponential factor is added to ensure the algebraic behavior

of L+(a) as Ia\ + W, in the upper-half a-plane. To determine X(a),

(2)(a).(l)(a) and L+
it is necessary to know the asymptotic behavior of L+

Omitting the details, the final results are, as Ial +@ with Im a > 0:

(1)(a) %~
{

-1/4 ew aa
‘+

1
#l-c-’n%)~

(4.12)

(4.13)

15



where C = Euler’s constant = 0.57721... . It follows immediately that

x(a) = *[l- C + kn(j$) + i;]

and

L+(IX)~ a
-1/2

, ]al+@ with Ima>O.

The final result

L+(a) = L_(-u)

of the factorization of L(a) is given by

‘1)(ka) exp= ni J1(ka)H1
‘[

i~[l - 0.57721+ ,!m(%) +
1-

r L)

(4.14)

(4.15}

(4.16)

1

{ ‘1‘ay !d#&-J-) + q(a)●.exp
i; ‘e

; (l-l——
iaa/m7r

‘lT m.1 m

where y.m. -ire;.
m

is defined in Equation (4.8) and q(a)

in Equation (4.10b). The expression in Equation (4.16) seems to be simpler

than those derived in all the previous references,
3-12

and can be readily

evaluated numerically (cf., Appendix).

The factorization of M(a) in Equation (4.2) can be achieved in a

similar fashion. Its final result is given below:

M+(a) = M_(-a) (4.17a)

i

[ 1‘1)‘(ka) (1 + ~)-1 exp *[1 - 0.57721 i-En(#) + i;]= ~i J~(ka)H1

m

*+~!m (~) +p(a)l Ii (l+~)e● exp[ ~
iaa/mw

m=1 iy
m

e

16



where

/

. ..-.. —-..

-i k2 - a21

j; = ordered zero of J;(x)

i

p(~)

[

=+ Jml-&
o 1-22 lkiibldxJ~2(x) + Y1 (X)

The asympotic behavior of M+(a) is

M+(a) @ u
-1/2

In the

below, for

with Im a > 0.

5. MAGNETIC FIELD AND DISTORTION PA3UMETER

Fourier transform domain, the complete magnetic field is given

p>a

ffp(P,@,~)
f

‘1)’(Kp) + ‘1)(Kp)]:2 cos $,[: A(a) HI ~B(a) HI (5,,1)

rh’+(P,4ba)= ‘1)‘ (Kp)]‘a A(a) H1(Kp) - K B(a) HI~2i sin ~[~. (5.2)

f

.2
Hz(P,$,a) - $)(K~):2 cos+~A(a) H

in which we have restored the ~-variation. For a field in the

p<a, we simply replace A(a) by C(a), B(a) by D(a), and

functions by Bessel functions in l~quations(5.1) through (5.3).

17
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the Hankel

The explicit



solutions of A, B, C, and D are given in Equations (3.14) and (3.15)
o

I

with n

To

we take

= i-l.

obtain the expressions of the magnetic field in the spatial domain,

the inverse Fourier transform:

‘1
(1)‘

‘1 )
(Kp)/H:l)’(Ka)

COs ~ 2(ka)2 M+(k) a M+(a)
Hp(P@,Z) ‘—

e-iaz da
imk N+(k) k -a

c
J;(KP)/J;(KLI) (5.4)

ka L+(k)
+ i Cos $

Irp N+(k)
L

i sin $
2(ka)2M+(k)

H+(P,4%Z) = ?’rkp N+(k)

‘H
‘1)(Kp)/~.f) (Ka)

L+(a) ‘1

e‘iaz da
(k2 - a2)

J1(KP)/J1(Ka)

a
M+(a)

k-a

{

‘1)(Kp)/~n(1)
‘1

J1(Kp)/J~(Ka)

t

I
(Ka)

e-icizda

(5.5)

co~ ~ 2(ka)2 M+(k)
HZ(P,+,Z) = — mk N+(k)

J H
‘1)*(Ka)H(l)(Kp)/H1

1
k+a

‘iaz da

x c m ‘+(a) J ~Kp),J;(Ka) e
1

H
p>a

for

p<a

(5.6)

in which the integration contour C is shown in Figure 2.

18
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In the EMP study, a quantity of interest is the current on the out-

side surface of the hollow cylinder, which for z < 0 is given by

JZ($,Z) = H@(P = a+) = Fz(z) sin ~ (5.7)

J$($,z) = -H,z(p= a+) = F (z) cos $ .
$

(5.8)

From Equations (5.5) and (5.6), the expressions for the surface currents can

be easily written. For,numerical computations, it is preferable to deform

the integration path C in Figure 2 to a new

branch cut in the upper-half a-plane (Figure

H(l)(Ka)-1

path (pl + p2) around the

3). Note the relations:

H(l)(Ka) - (1)(Ka)
1 ‘1

‘1)(-Ka)
‘1

K Hjl)‘(Ka)
~ H(l)‘~Ka) = ~ Hil)‘~Ka) -

1 1
-K Hfl)’(-Ka)

P. -P,. P.

and

L L J.

4= 9
ilTaK2[J;2(Ka) + y;2(Ka)]

‘1

o) ‘ (Ka)
‘1

K H$l)(Ka)

‘1

=

-P2

4i

?TaK2[J;(Ka) + y;(Ka)]

(5.9)

‘1

● (fj.10)

We may reduce the integrals for the surface current along the new path

(Pl + P2) to the following expressions:

Fz(z) =
4-

(6’1+ g2) , -m< z < 0
?T2N+(k)

19
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8ika M+(k)
F+(z) = (g3 +g~) , -m< z < 0

IT2 N+(k)

in which

k

[

M+(k) M+(u)

1
L+(k) L+(a) ke-iaz

gl(z) = j *

G’(~a)+G(~a)k2-rda

1iL+(k) L+(i@) ke~z

v 2 2“G(k-t-6a)k+6

k M+(a) e-=az
●

!32
-i M+(i8)e

0’ = (m d6

“ (k- i6) Gr(~kA + $~ a)

G(x) = J;(x) + y:(x)

G’(x) = J~2(x) + y~2(x)

The advantage of deforming the integration path

seen from Equations (5.14) and (5.16). In these

integrands decay exponentially, and consequently

ically without difficulty.

.

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

C to (Pl + P2) may be

two infinite integrals, the

they can be evaluated numer-

In addition to the current> another quantity of interest is the altera-

tion of the incident magnetic field due to the presence of the semi-infinite

cylinder (sensing boom). Let us introduce a magnetic field distortion

2Q



factor D such that

Hx

‘(p’$’z) ‘H(i)
x

(5.19)

which is the ratio of the scattered magnetic field H and the incident
x

magnetic field. Then the measured field with meters supported by a sensing

boom (H + H(i)) is related to the undisturbed EMP field by the relation,
x x

From the

Equa’tion

D(P,4,z)

EMP magnetic field = measured magnetic field
l+D . (5.20)

expressions in Equations (5.4) and (5.5), and the definition in

(5.7), it may be shown that

where
‘1

grands and

(ka)2M+(k)eikz

N+(k)

(ka)L+(k)eikz ,

‘1)‘(Ka)
~ dl(cv$,a) k(k : a)

‘1

M_(a) e
‘iaz da (5.21)

H(l)(Ka) -iaz

2N+(k) j ‘2(P,#@) KIL (a) e da,
c

and ‘d
2

are the only functions depending on

are given by

L

For numerical

(5.21) into a

P < sand O < z < =

(P,+) in the inte-

1COS2C) (5.22)

21sin $ . (5.23)

evaluation, we will deform the integration path C in Equation

new path P3 + P4 in the lower-half a-plane (Figure 3), and

obtain the result:

21
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. .
Xkz

D(P, $, ‘) = i~k) [g5 + @ p<a ando

in which

aM+(k) J~(~z - az a)
g5(P,$, z)‘= - ~ [2ka k(k + a)

o M+(ci)

+ L+(k)

<z <co (5.24)

dl(p,h~) +- (5.25)

]e‘az da

-@M+(k) kJ;( 2 c

+ f32 a)

k(k + i~) M+(if3) dl(p,$, i~) +

(5.26)

dJ1( 2
t

+ $2 a)
+ iL+(k)

KFL(,,) ‘2(p’’’i6)]zd’* d’*
+

Again the integrand in the infiniCe integral in EquaEion (5.26) decays

exponentially. In many practical applications, we are often interes~ed

in the distortion on the axis of the cylinder:

Do(z) = D(p,@,z)

Po=
(5.27)

which is a function of z only. For computation of Do(z), we simply set

22
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9

‘1
= d2 = 1 in Equations (5.25) and (5.26).

6. LOW-FREQUENCY APPROXIMATION

In this section, we will derive a set of

for the scattered field when the.frequency is

we assume that

approximate formulas

low. Explicitly,

ka << 1, and la/zl <<1

in which the second condition is introduced in order to avoid the

evaluation of the field in the so-called “boundary layer” (regions

where kz is also small so that la/zl may assume a fixed number). In

the boundary layer, the scattered field varies rapidly and it is very

difficult to obtain an analytical expression for the scattered field

there.

We will now expand the scattered field in an ascending power

series of (ka), and drop all terms of 0(k2a2) or higher. First let

consider L+(a) and M+(a). As will become clear later, our solution

us

under assumption (6.1) depends mainly on L+(a) and M+(a) with a in the

range a X k or less. Within this range we may approximate L(a) in

Equation (4.1) and M(a) in Equation (4.2) by

(6.1)

[
M(CY): 1 +

(k2 - a2)a2 In ma “-l
2 2

1 a2(k2 - a2)

(6.2)

(6,3)

o
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where the terms of O(k2a2) or higher have been dropped.
The

factorization of Equations (6.2) and (6.3) can be obtained by

inspection with the results:

(6.4)

(6,5) o

for k’s’
9 ~cY[2a2<<1.

Next, we will use the results in Equations (6.4) and (6.5) in

Equation (5.24) for the evaluation of the distortion parameter D(p,$,z),

When the terms of O(k2a2) or higher are dropped, the integral in

Equation @.25)becomes

da.

(6.6)
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The first integ~al in Equation

second one can be approximated

(6.6) can be evaluated easily, while the

by

“+ (~)3(fln~-)[2eikz+ (k2z2 - 2ikz - 2)] ●

Thus, we have

(6.7)

(6.8)

For the integral g6 in Equation (5.26), we note that the exponentially

decaying nature of the integranciallows che use of Equations (6.4) and

(6.5). Then it may be evaluated in a similar fashion as g~9 and its

result is

Recalling the definition of N+(k) in Equation (3.15) and the use of

Equations (6.4) and (6.5) results in

N+(k) ; -2 .

(6.9)

(6.10)

Substitution of Equations (6.7) through (6.10) in Equation (5.24) gives

the desired result,

—
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1 la2 En ka i2kz
DO(Z) + (:)[1 . — - ~(-)

ikz
~] e (6.11)

which is valid under the conditions in Equation (6.1).

Similar procedures can be applied to the approximate evaluation of the

current in Equations (5.7) through (5.18). The results are

J$ : COS $ (;)3 [1 + ikz
-ikz

-~(ka)2(!2n~)]e .

(6.12)

(6.13)

We will estimate the accuracy of Equations (6.11) through (6.13) by comparing

them with results obeained by numerical integrations

7. NUMERICAL RESULTS AND DISCUSSION

In the previous secEion,

plane wave has been obtained,

the scattered field due

in Section 7. ‘

to a

and is expressed in terms of

normally incident

inverse Fourier

integrals. Details of the numerical computation, particularly the convergence

of the various integrals, are discussed in the Appendix. In this section, we

will only present the numerical data relevant to the physical problem under

consideration.

(a) Distortion parameter as a function of ka

The magneticfielddistortionparame~ as definedin Equation (5.19)isgLven@

HX(P, 0, z)
D(p, $, Z) =

ikz=
~(i)(z)

e HX(P, +, z), z> o (7.1)

x

which is a measurement of the amount of distortion due to the presence of

the cylindrical boom. First let us concentrate on the distortion along the

e

*
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axis, that is Do(z) = D(p = O, z), as a

cylinder ka. The numerical results are

feature of the curve is that Do assumes

Ji(ka), namely at

function of the radius of the

presented in Figure 4. A dominant

maximum values at the zeros of

ka = 1.841, 5.331, “ “ “

which are the resonant values for the TE1m modes in the interior of the

cylindrical tube. These values are also the related zeros of M+(a) as

given in (4.17a). The zeros of Jl(ka) or L+(a) at ka = (a/k) = 3.831, ● ● ●,

etc., play a secondary role in the determination of Do. In general, IDal

decreases as ka increases. ~is is..dueto the fact t.$atthe larger,the.....——_ ...-..-..—.—

cylinder, the easier the wave can be transmitted into the tube. In EMP

*
applications, we generally are interested in cases with O < ka < 1.841. In

ID I increases with ka. Thus, for-” a given boomthis range, o

(fixed a), the high-frequency components in the

EMP are distorted more than the

low - frequency components for axial incidence, l?igure.4

presents the distortion on the axis p = O oniy. In the neighborhood of the

axis, the field varies slowly as indicated in Table 1. Thus, in the following

discussion, we will concentrate on the field on the axis.

(b) Distortion p“arameter as a function of kz

Such computations are presented in Figure 5 for

of ka. Note that the distortion assumes its maximum

and then decreases as (kz) increases. For ka < 1.5,

the simple equation

several different values

value at a distance (kz)max

(kz)max is roughly given by

(kz)max = 0.46(ka) + 0.2, for p = O. (7.2)

*For example, with a sensor boom 6 inches in diameter, we have ka = 0.16 at
a frequency of 100 Me/s.
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TABLE 1

ABSOLUTE VALUE OF D(p, +, Z) AT $ = O PLANE

——. .——— -.....-.-,,.’..————.— ----- ——--..—

kz , ka
.—.—.-— —-*—-...—.—..—. ...

1 0“2
I

1.8 I 0.5

L 1.

-.

Po=

..-—.———.

0.0179

0.1171

0.4676

...— —-— .-.

0.0118

0.0805

0.3700
——

P =0.5a 1 p=a
.-—...- — . .. . ..—

0.0178

0.1142

0.4572

.,.-.-4..-.-,............?...--.

0.0117

0.0791

0.3522
-.—

. ... ... .. ... . .. .-—

0.0175

0.1060

0.4026

0.0126

0.0749

0.2798
—..

Thus, to avoid large distortion, for axial incidence the measurement

instruments placed at the end of the sensor boom should avoid the

neighborhood of the point described in Equation (7.2).

The phase variation

feature is that for z >>

% Approximately, D can be
o

of Do is presented in Figure 5b. An interesting

a, the phase varies almost linearly with z.

expressed in the form

Do(z) “ IDO(Z)] e-i(k+~)z eiV

where ~ is a constant, independent of z. Recalling the definition in

Equation (7.1), the relation in Equation (7.3) implies that the scattered

field Hx( p = O, z) has a phase variation of the type

.—

*

*
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HX(P = 0,2) = IH (P = 0,2) I e-i~z J+.x

Thus, 1)may be regarded as the phase delay introduced at the reflecting plane

atz= O for the scattered field, and B is the wave number of the reflected

traveling wave. From the data in Figure 5b, the values of (~, 6) can be

approximately determined and the results are tabulated in Table 2. It is

noted that (@/k) = 0.98 for all the cases considered in Figure 6. The c[ata

Presented in Figure 5a is reflected in Figure 6 as a function of (z/a). It

is clear, that maximum distortion occurs around z = 0.5a, as indicated

in (7,2),

(c) Error in El@ measurement

In El@ studies, a problem of interest is the percentage of error in

the measurement of EMP field introduced by the boom. When the incident

El@ is approximately single frequency, we are only concerned with the

error in the magnitude of the field, and not in the phase. In such a

situation, we may define an error by the definition

(mag.
e(z) =

of total field) - (msg. of incident field) ~ loo %
msg. of incident field

@Otal)(p= 0, 2)1 - @i)(P =0, z)l

= x 100 %
[H(i)(p=o, d!

= [Ii+ DO(Z)I -1]x1OO%. (7.5)

Some typical computations of e(z) are given in Figure 7. For small ka,

e.g., ka ~ 0.5, the error is large at the immediate neighborhood of the

end of the boom, and is zero roughly at

kz~l.4+~, n=0,1,2,3, ***,and P=O. (7.6)

The formula in Equation (7.6) can be derived from Equation (7.5) by
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VALUES OF PHASE DELAY AND WAVE

TABLE 2

NUMBER FOR SCATTERED MAGNETIC FIELD ON AXIS

, —-.. —... —.. .—
(

0.1 i 79°
!
i

0.2 I
! 79°

0,3 79°

0.5 113°

1.0 I 309°
/
i

1.5 ! 355°
1

1
1.841

1
67°

2.0 I 77°

— ---L.._—_————.—.——.. ___

.— ‘-l---i

I
0.98 /

0.98

0.98

0.98

0.98 I .

—
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using the analytical formula of Do(z) given in Section 6. Thus, an

important observation can be made: When the incident EMP is predominantly

single-frequency, and that frequency is low enough so that ka ~< 0.5, the

error in measurement can be minimized by placing measurement instruments at

locations described in Equation (7.6). As a numerical example, at

f = 200Mck andwith a boom of 6 inch diameter, the error can be as large

as 11 per cent when the instruments are placed at z = 3 inches. However,

this error can b. reduced to zero when the instruments are placed at z = 13

inches. It should be emphasized that this conclusion is reached only under

the assumption that the EMP is predominantly single-frequency. Other-

wise, the error can be reduced only when \Dol, as shown in Figure 6a, is

small for a band of frequencies of interest.

(d) Circumferential current J ($, z) as a function of (kz)

This current cm the outer su,rfaceof the cylinder is given

by formulas (5,8) @d (5.12). These formulas show that the current

has an explicit dependence on $ of the form cos ~. Therefore, division

of the current by cos $ renders it independent of ~. Variation of the

magnitude and phase of J /cos @ with respect to kz and for several values
@

of ka is given in Figures 8a and 8b, respectively. Again, the current

is in the form of a traveling wave with a propagation constant B

slightly less than k.

(e) Axial current Jz(~, z) a; a fwction-of kz

The axial current on the surface of the semi-infinite cylinder is given
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by formulas (5.7) and (5.11). The dependence of this current on @ is of

the form sin +. The magnitude and phase of J=(@, z)/sin $ as a function

of kz and for different values of ka are given in Figures 9a and 9b,

respectively.

(f) Accuracy of the approximate formulas

In Section 6, simple approximate formulas are derived for the scattered

field and related quantities. These formulas are valid under the assumptions

that

ka << 1

To test their accuracy, we present

and kz >> 1.

in Figures ICI

(7.7)

and 11, a comparison of

the results for

integration and

the approximate

~(totd) ad J

x +’
respectively, as obtained by numerical

the approximate formulas in Section 5. Generally speaking

formulas are reasonably accurate when

More detailed comparisons

In this paper,

by a semi- infinite

ka: o.5 andkz > ka. (7.8)

are given in the Appendix.

8. CONCLUSION

we have obtained the near field solution for scattering

tube due to a normally incident plane wave. The numerical

8

computation is facilitated by using a

Wiener-Hopf kernel as appeared in the

new factorization formula for the

solution of the problem (Section 4).

For low frequencies, approximate formulas for the scattered field and the

related quantities given by simple analytic expressions are obtained (Section 6),

and they are found to be reasonably accurate for ka ; 0.5 and kz > ka.

The results obtained in this theoretical problem are used to evaluate

the field distortion due to the presence of”the sensor boom in the El@ measurement
*
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(Section 7), It is found that the distortion problem is particularly severe

at the interior

namely, at ka =

the measurement

measurement can

resonance frequencies for the TE mode of the sensor tube,

1.841, 5.331, ● 9 ●. For example, at ka= 1.841 and with

instruments placed at p= O and kz = 2.1, the error in

be as large as 100 per cent!

For many practical cases, the high-frequency components in the EMP

field are probably small enough such that O < ka <1 (for a boom of 6

inch diameter, this means that no significant field component exists beyond

1,000 Me). Under this assumption, guidelines for reducing measurement

error are listed below:

(i) For a given z (the

of the boom), the distortion

boom a (Figure 6a), Thus, a

distance between the instrument and the encl

is proportional to the radius of the

should be made as small as practical.

(ii) The maximum distortion occurs at a distance of about one half of

the radius away from the end of the boom, and becomes insignificant at
.

about five radii away (less than 20 per cent for ka < 1, see Figure 6c).

Thus, the measuring instruments should not be placed very close to

the end. It

based on the

to ascertain

should be emphasized that the above two guidelines are

observation of axial incidence. Further study is needed

whether they continue to be valid for oblique incidence.
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APPENDIX. DETAILS OF NUMERICAL COlfFUTATIONS

In this section, the problem formulated in Sections 2 through 6 will

be numerically solved; that is, the values of the scattered magnetic field,

distortion parameters and curents on the surface of a semi-infinitely long

hollow cylinder, due to an axially incident plane wave, will be calculated.

The first and a crucial step in the evaluation of field and related

quantities is the numerical evaluation of L+(a) and M+(a).

(a) Evaluation of L+(a):

L+(a) has been formulated in Section 4 and is given by (4.16). Here it

is rewrigten as

in which

L+(a) = L+(a/k) = ex(a’k)L~l)(a/k)L$)(a/k) (A.1)

x(a/k) = ~ (a/k)(ka)[0.42279+ Rn(2r/ka) + i ~]; (A.2)

in which

Y (A.4)

jm = ordered zero of Jl(x).

Also the last factor in (Al) is given as

(A.5)

in which
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I

f

“--”-------1

(~) = (a/k)2-1 = -i 1- (a/H2, (A.6)

and

q(a/k) = # ; (l-&_ 1 (ka)(a/k)

o J;(x) + y:(x) ‘“(l + m ‘x’ “4”7)

noting that

-

L+(u/k) has been previously

(a/k), albeit based on different

Therefore, a base exists

i=ix2-

1

(ka)2 for x > ka.

calculated for certain values of (ka) i~nd

formulations, by Jones’ andhtsui;6

for comparison in calculating L+(a/k),

Furthermore, the low frequency approximation for L+(a/k) is given by

(6.4) as

L+(a/k) = 1 - ‘ka~2 [1 - (:)2] ~n[ka(l+ ~)]

fork2a2, \a%la2 <<1

(A.8)

>

which may be used to check the cc~rrectnessof numerical computation of the

general formula.

There are two factors in the computation of L+(a/k) which require special

attention. The first one is the evaluation of the infinite product in (A.3),

i.e.,

---M
limII (1-7 (a/k) ~ ei(a/k)(ka)/mm ,

m+= m=l I(yin/k)
(4,.9)

.

Fortunately, this product is convergent and a maximum value for M may be chosen

so as to render it n-ti’ricallycomputable.

found in most of the books on mathematical

The first few values of jm are

tables.15 For large values of m

,—
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the following asymptotic formula is used

(A.10)

The product (A.9) has been calculated for several values of M and for a/k = I.;

the results are given in Table 3. It is observed that as ka increases, the

convergence of the product is slower; but in any case the increase from

M=200toM= 300 is far below 1 per cent. Throughout the rest of the

numerical calculations, the value of M = 300 is used.

The second consideration is the method of evaluation of the Cauchy principal

value in the integral (A.7). Apparently, the in~egrand in (A.7) becomes

infinitely large for the value of x = ka. In order to investigate the behavior

of the integral (A.7), around the point x = ka, the following integral is

considered

ka(l-co) ka(l+c)

I = lim
/

+,
“J

+(1-L 1
‘x J:(x) +y~(x)& +0

o ka(l-c) ka(l+co)

in which E << 1. Considering the very small

some approximations due to very small value

manipulation the value of integral (All) is

(All)

interval of integration and using

of e, and after some lengthy

evaluated as

(A.12)

IC is observed from (A.12) that the integral (All) is limited and approaches

zero as s + O. Therefore, finally q(a/k) in (A.7) can be written as

$a(l-s) x

f
max

q(a/k) = / (.*. .)dx+ I+ lim (. . . .)dx
J

o
x +u3J
max ka(l-i-&)

(A.13)
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TABLE 3

1,

(.0

VT,. ,Ttl Awl m,l-1 mn,-.m...-.m / . .\ . . . -------------- . . . . .—. -- -.Vlwuu UJ! l.1-mrKulJubl (A.Y) E-UK LJLJfJflmm4”l’Vuulxj UF M

—. —.. —.. ,.—

i

i
10

I
l.05646+i0.09731

50 f 1.05980+i0.10387

I

100 1
]

1.06024+i0.10474

i

150 1.06039+i0.10504

200 I 1.06047+i0 .10519

I
250 I 1.06051+i0.10528

1
300 k

i“

l.06054+i0.10534

..— — .— -—. —.-..—.-. — . ..—..———.

,
t

l.27618+i0.20284 l.99402+i0.29628

l.29282+i0.22082 2.0563&Ho.34135

l.29504+i0.22327 2.06477+i0.34766

l.29578+i0.22410

I
2.06760+i0.34978

I
1.29616+$0.22451

1

2.06987+i0.35087

t

l.29638+i0.22476 I 2.Q6987+iQ.35152

l.29653+i0.22493 2.07044+i0.35196

L .—

a/k = 1

,-..,-— .-. .-”. -.. -.. —. —..-..

4

l.37763+i6.71580

l.30484+i7.15848

l.29309+i7.21945

l.28902+i7.24009

l.28695+i7.25047

1.28571-I-i7.25671

l.28487+i7.26088

——- - .—”......—

,!. . . . . . . . . . . . . . --,__

7
I

5

..-— ... -.--...— ..- -. ---i

i
?

-0.46300+i5.24035 :
!
I

-0.66065+i5.73690
I

i
!
[

-0.69094+i5.80583 ,
~

-0.70137+i5.82919

-0.70664+i5.84094 ;

-0.70982+i5.84801

I

-0.71195+i5.85270 I

...- 4...-..........-.- ..--1



in which the incegrands arethe same as in (A.7).

In order for the second integral ‘cobe numerically tractable, we have to

choose a maximum value Xm beyond which the value of the integral can be

ignored. To this end we should

integrand for x >> ka. This is

(1-:

investigate the asymptotic behavior of the

done and leads to the following results

1
)

>3 1—.. (A.14)
J:(x) +Y:(x)

x-m 8
x’

.

{

(~k(ak)[~ (~)&(dc) - i] for a/k real

(a/k)(~)
Ln(l +

iii-($)” ‘<<l ‘x
@~l~/kl for (a/k) pure imaginary

(:) (;)<<1

in which

It is apparent that for very large values of x, the

(A.13), with regard to (A.14) and (A.15), is of the

the integral has a remainder of the order (l/x~ax).

x the first integrand in (A.13) can be approximated

second integrand in

3
order (l/x ) and,therefore,

For very small values of

and leads to

(ka)(cx/k))—> ~ (I
$(1. % 1 )In(l -1-

J;(x) + y;(x) ~ _x~fio~
-:x) En[l+ (a/k)]

(A.16)

with regard to the above formulas and also numerical calculation of the

integrand it can be said that for constant values of (a/k) and (ka), the

absolute value of the integrand in (A.7) starts from a certain value for x = o>
*
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and decreases, reaches a minimum with respect to x and then goes up to

infinity for x = ka, then decreases rapidly and eventually goes to zero as

(1/x3) , (see Figure 12). Due to this behavior ofthe integrand of (A.7),it can be

numerically calculated in the form of (A.13).

To evaluate the integral by computer, two integration ~thods have

been considered tentatively. One is based on the trapezoidal rule in

connection with Romberg’s principle, which calculates the integral to any

desired degree of accuracy. This method takes into account the end points.

In the second method, evaluation is done by means of a 16-point Gauss

quadrature formula which integrates exactly polynomials up to degree 31

and without considering the end points of the integral. Subroutines for

these methods are obtained from IBM-SSP. Using the trapezoidal method for

evaluation of (A.7) we have to make use of (A.13), but in the Gaussian

method we could eliminate I and perform two integrations from O to ka and

from ka to x Of course, in the latter case, also Equation (A,13) ccluld
max”

be used; however, as will be shown, the results are not much different. Table 4

shows the resultant value of L+(a/k) for several different forms of integration

16 and Jones.7 As is observe~ the c~ifferenceof (A.7) and as calculated by Matsui

in the results due to different methods is much less than 1 per cent. Also,

it must be noticed that the trapezoidal method takes longer thm the Ga~~ssi~

method, depending on the desired accuracy. Therefore, in the rest of the

calculations, only the Gaussian method is considered. Furthermore, it is

seen that the difference between the results obtained by the Gaussian method,

using the middle

than 1 per cent.

In order to

step,involving I,and the one not using it, is also much.less

better appreciate the extent of the influence of I as
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TABLE 4

COMPARISON OF VALUES OF L+(a/k) CALCULATED BY,SEVERAL DIFFERENT METHODS

;
ka= l., a/k= l., M= 300$

I
1 .—.

ka(l-s)
q(a/k) =1 +

o

10,
r. Trapezoidal
ka(1+s)

method

EPS = 10-2 Upper bound of absolute error in

integration,= = 10‘5,1=0

— . ...——..— —...,,..

ka 10.
q(ct/k)= f + f 16-pofnt Gaussian method

o ka

ka 4.+ka
q(a/k) = f +f 16-point Gaussian method

o ka

= + (0.459.86- iO.14314)

—.

q(a/k)
ka(l-s) 4.-1-ka

= f +I+f 16-point
o ka(l+c)

Gaussian method

= # (0.46174 - iO.14340)

E = 0.01
—

Calculated by .30nes7
--.—

Calculated by Matsui16

L+(a/k)

1
————.——.

o 72278+ iO.42127

: .. . -,...--—= —.. -

0.71957+ io.41949

..--.— ——.. —.-.---...,....

0.71904 + iO.42084

—.. .——. —..,.=

0.71950 + iO.42103

0.7206 -t-iO.4235
->-...+. ....... ..—.--—...-—

0.7205 + iO.4196

--. -—-— .-— ...- ..... . . . .

o

40



given by (All) or approximated by (A.12) on the final result of q(a/k),

we proceed as follows. First we consider the value of I with s = 0.01,

as calculated by numerical integration from (All) using a 16-point Gaussian

quadrature method and compare the result with the approximate result of

(A.12), as given in Table 5. It may be observed that the two results are

very close; this indicates the correctness of approximation (A.12). Therefore,

from this stage onward the value of I is calculated from (A.12) only.

Second, the value of q(a/k) and its components are computed by Equation (A.13),

using (A.12), with c = 0.01 and for several values of (a/k) and (ka). Then

the resultant values are compared with those obtained by s = O (that is, I = O),

and with two integrations from O to ka and from ka to x using the Gaussian
max’

method. Moreover, in order to see tha insignificance of the remainder of the

integral (A.13) for x >

is also calculated. In

As a result of the

5 and 6, the evaluation

to Equation (A.13) with

max, the value of this integral from Xma to 2xmaxx

Table 5 a numerical account is given.

above discussion and in view of the results of Tables

of q(a/k), as given by Equation (A.7) is done according

& = 0, I= O, and using a 16-point Gaussian method of

integration. Upon close study of the variation of the integrand in Equation

(A.7), it is revealed that although the integrand decreases rapidly after

x= ka, however, it assumes larger values for larger values of ka. Therefore,

as a reasonable approximation we choose

x = constant + ka = 4 + ka.
max

(A.17)

Although this choice of Xmax seems rather arbitrary, it has been chosen on

the basis of some numerical consideration. For values of ka ~6 we could

choose

x =10,
max
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TABLE 5

-P
N

THE VALUE OF q(a/k) AND ITS COMPONENTS FOR DIFFERENT METHODS fQJDSEVERAL VALUES OF O@, (a/k)
~—... -——— ——.—.+—..—”..—— .... . ..— —~.--————.—.

—..—

1.

—.

—-—-i-–--+---- —-~--””—-—--~---’” -””’”-””—----”’”-”+-–”---”--“-~.-.. --..--. z-.--.-.-—-- ——--
-------- .

—-—---- —-q-.- ..-. ... “.. . . . . . . . . . . . . . . . . . . . . .

:

~ 0.0 i

‘*2 *
; ~0.211605-iO.18810

_.__l._— —..-.-..—------- -p—-—.-.——.———..

/ (o.oo713-io.oo210)~
0.14216

*.,-.P..-.-”............

“1
\ (0.00771-i0.00224) ~0.06388-iO.1861 “’O.21375-iO.18837

i 3 i 1
—. 1 _-..—._”$_-”... .-.,....-— ---------- ——------+---” --,— ------ .–-

i
I

+

~ 0.0 $ ! ! /.. ~598&io ~43~~

!
i .

-4.–----= ;
1. -j------------ 7

-----_._........-” . . . . . . . . .

i

I 0.01
1

(O.01042-iO.00305)~ ~

!
0.38252 (O.01126-iO.00327) 10.06951-iO.14013 0.46173-i0.14340

i /

-b=t---l--+--—-–---–4----------------- :F5i;8g-io 05535’

~ . .

I ~ \
3. ——. ——-- ...—-----,+——-------------- “

I
i (0.00556-iO.00163)~ f
0.01 0.49178 (0.00602-iO.00175) Q.03083-io.o 0.52863-i0.05549

.Z —.—

I

.-.-.-.-...”------..-.-

0.0 0.53872-iO.01896

7.
—-—-----

(0.00261-i7.6X10~~):
0.01 0.52396 (0.00283-i8.2X10 ) 0.01224-iO.01819 0.53903-iO.01916

X

--------- —. ---.--... -. ...-.—
.. ......... ..- ..... - ---- .. .-—

2.8X10-5-il.5X10-3

.— -----.

4.3xlo-4-i5.5xlo-3

—.

1.5X10-3-i8.6X10-3

2.3x10-3-i8.5X10-3

—.—— .. —-

* Computed from (11), with s = 0.01 and using the 16-point Gaussian quadratic method.
x Computed from (12)
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TABLE 5 – CONTINUED

..—, —.——. — —— .—--—.—... .—————,

I , I
~ ( x Zxmax \

ka(l-E) ; ~ max ~

~ a/k ~ kalEjm”f / T“I }IT”f
1: i i ~“q(~y ‘“J \

! o
$
1 ka(l-1-s)1 \ x

i / ! t max
:, ~‘; $ : ; J : ,

——. .._._-. +-..——..—”—— ——-.—.
-~— ....-—--....-.—” -----.... .-.-.--..--.--,e-.......,—------——.—--—-----,-------

r

—. —-——---A————..—————~................ . --------
t

.%-.,. --- !
1 {

5.

L..–—.-—--+——-——————]0.2, , —-——.-..—”—--i.-..------.--.–...---------.--{- -- --------- --

(0.01160-iO.00221): ]
i

f
; ; ().()1; 0.33990

\
(0.01229-i0.00224) IO.36859-iO.47325/O.72075+io04754~!:

~
* ft——-~— &

4
_——--— — ....-......—-----...—-——.--—-.-—..-------*.–_-_...

r

..— ,-—--. ——-.”.. ...--.-—-------------

~ i /

1 /0.0!
i
{—

1
l.94908-i0.27816

~ i
;_.__p--------- —

i

J 1“

I

;-1’

-,..-—-- ”-.-..............,....-......—--.——..—

~

~
1 1

(O.01696-iO.00321)~ i
\ 0.01 0.93896 (O.01796-i0.00327) 0.29419-iO.27496 1.25112-iO.27823
i1

-----
.,*.-.—-— J.. .=-..-.~~-”-J~----—!-- ---

~
~ ~ 0.0

I 1.36061-iO.09136

+6=0017’)::-’”’-””----4---”--””-’”--””--”--””(0.00959-iO.00175) O.11355-iO.08965 1.36144-iO.09140

.-..—.—.-.—- ...

- ~ ‘-- ~

-.— .. —.—.

0.0 1.37956-iO.0274:

7. ,——.—— --——--——---—.. ,,-----.—.— .,
d%+

I (0.00426-i8.0X10_4)J
0.01 1.33697 (C1.00451-i8.2X10) [0.03842-iO.026631.37990-io*0274~

~ I I —-
1 _-~-–—--7+:::==:~”::-” “--— —...-—.————— ...—-—...--- ------—— ------—--——- -.--,-----

6.9X10-4-i7.6X10-3 ;

----------- ----

8.3X10-3-i0.02339

— . ...”. -— ---------.— -....-.

0.01779-i0.02707

—-... ...— ...—---- ,.- --- -

0.01796-iO.02044

......-. . .—-
. ..—

t Computed from (11), with e = 0.01 and using the 16-point Gaussian quadratic method.
* Computed from (12).



TABLE 5 – CONTINUED
.— .— ....— -— -,.--.”,....-”..,..-..-..— -—.—..—— .—-”.-.----!—,——-—.. —----”.-..------. -.

I ka(l-~)
xInaxr

t
:

a/k I ka E “T “r ITOI :IT”r ; n ● q(u/k)

2i

0.0 ‘t
;

0.2 k———— : mw...~r”w”w-.-.’.--..—..-.-.-,
~ (9.03+i2.17)X10~~)~ \

0.01: 0.17354i-i0.20040\ (9.68+i2.24)X10 )
[

[ 0.28453
}
;—.. — -——. -- - .+ ------- . .... .. -,, —-—.””-”...’-....”! “ - . . -.#......&-

0.0 ~
;

\ \

I ; I
1.

3.

7.

!

1 j(O .01320+i3.19X10j~)~
0.01 0.46029i-i0.56327~ (0.01415+i3.27X10 )

I
0.20738

i

0.0

!

\ (7.05+il.71)xlo:;)j \
0.582291-iO.75428~(7.56+il.75)X10 )

I
0.07857

T-=-I- --Jr--’”-----’”-”
~ (3.3xlo-:~i8.ox~o-:~tk

0.01 0.6145+i0.82049
I (3.55X1O I-i8.2X10 ) I 0.02671

— -1—.- -—.—.-. ... ..

,,.” “,.. -q, —.- .- . . -

. . . . . . .

0.46560-i0.20258

,.., —.

0.46775+i0.20264

,.m..-,,.. . .. . . . . .. . . . -. , . . . ~ ~, . . . .

0.67985+i0.56646

. . . ...... ....-. ,” ..— —

0.68182+i0.56654

-—.—.-.--.%.,.”......,.,-... ....“

0.66762-t-i0.75599

.— -...... -... —----- ,. - .,.

0.66841+i0.75603

.—.. . . . ... . .— . .,-..+ -..

0.64443+i0.82129

— .——,.—..,-..-s..-. --6X-!

0.64476+i0.82131

,-----...-..e—.-,—.—— ,-.

t Computed from (11), with s = 0.01 and using 16-point Gaussian quadratic method.

2xmax

“f ;
x
max i—— ---.-,---

,

,.- ,.

,. .S ,- . . . . .

0.01364

....,.-----....

0.01250

..-—--.-., , ..... .

* Computed from (12).



which leads to almost the same results as (A.17).

For comparison, sample values of L+(a/k) as calculated by the authors

7
and those calculated by Jones and Matsuil’ are given in Table 6.

(b) Evaluation of M+(a/k):

M+(a/k) was formulated in Section 4 and given by (4.17). For convenience,

it is rewritten as

M+(a) = M+(a/k) = e‘(a/k) M~l)(cy/k)M~2)(a/k),

in which X(a/k) is given by (A.2),,and

a

M(l)(a/k)
a/k

n?

ei(a/k)(ka)/mn
+

= ~~iJ;(ka)7 H (1 + —
iy’

m=l

in which

(A,18)

(A,19)

y~/k = ~
1

(J~/ka)2- 1 = -i ~1 - (J’/ka)2’, (A,20)
m

and J; is the ordered zero of J;(~).

Also M(2)(a/k) in (A.18) is given by+

l’”
(z) (a/~) = -1 ika l$kn(:_ ~) +p(a/k)l,

/H~i (1 + ? )
‘+

exp[- ~i-

(A,21)

in which y is given by (A.6), and

m
1 (M (dk) ~ dx.p(a/k) =: ~ [1 -~ (1 - +)” 1 ● !?m(l+

x Ji2(x) +y~2(x) ~~(A)22)o

In the integrand of (A.22)

M+(Jk) has not been calculated before by any author; therefore, the only
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TABLE 6

COMPARISON OF SEVERAL VALUES OF L+(a/k) FOR

ci/k= “1AND DIFFERENT ka
-.....-..,..-—---- —-------—-— .........— <..-.—...-= -.,..—-----

I -lC 7
ka ~L-J-M* Matsui&”

I
Jones

1—. , -.—- .——--—----—-.=--..!———

0.1 ;0.9943 0.9957

0.5 io.9~59 0.9070 0.9078
~

1.0 {0.7190 0.7205 0.7206

2.0 ;0.3937 0.39.55 0.3942

3.o ~o,2351 0.2366 0.2348
I

5.0 \O.2452 0.2439
{

7.0 0.2722 0.1705

10.0 0.1369 0.1305

f

*S. W. Lee, V. Jamnejad, Raj Mittra

Im~+(cz/k)}

16 7
L-J-MA Matsu~ Jones

...........,...-_-=,.>.A----------...:”.-.— ..... -—.

0.0614 0.0609

0.2726 0.2716 0.2747

0.4208 0.4196 0.4235

0.4363 0.4356 0.4391

0.3137 0.3136 0.3163

0.2485 0.2532

0.1331 0.1388

0.1348 0.1452

..—-- ... .. ..”.---- .,.. ,., . - .. =-.....-. ..- . . ..- . . . . . . .—
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o check on the correctness of the numerical results is a comparison with the

low-frequency

M+(a/k) s

approximation as given

i
ka(l + a/k){

1+~:[1

by (6.5) and restated here as

)
- (a/k)2] 2n[ka(l+a/k)]

(A,23)

for k2a2, \al2a2 <<1 .

L+(a/k) and M+((%/k),as can be seen from (Al) and (A.18), are very

similar and one may expect similar methods for their numerical computaticm;

this is indeed the case. The product factor in (A.19) is identical to that

of (A.3) as given explicitly by (A.9), upon replacing ym by y:. This prclduct

is convergent and,as before,is calculated by using a suitable choice of the

upper limit M. The first few values of J: are

for large values of m, the asymptotic formula

J~=6’-~~~;@’=(m-

is used. The behavior of the product when the

very similar to the previous case for L+(a/k),

ofM= 300 is chosen.

found in the tables,15 and

value of M is increased is

and consequently the value.

Evaluation of the Cauchy principal value of the integral in (A.22)

follows along a line similar to the previous case of (A.7). In short, the

behavior of the integral is investigated through the evaluation of an integral

of the form given by (All) thus producing an approximate formula similar to

(A.12). Consequently, it may be shown that the integral is well-behaved

around the point x = ka and can be evaluated by a formula similar to (A.13).

The investigation of the behavior of the integrand in (A.22) for large values

of x can be similarly approached. The first part of the integrand has an

asymptotic behavior of the form
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1 -+(1-+” 1 1 >71.—

x’
8X2”

J;(X) + Yi2(X)
X-*

(A.25)

The second part of the integrand in (A.22) is identical to that of (A.7)

as given by (A.15). Again it can be concluded that the absolute value of

the integrand in (A.22), for large values of x, is of Che order (1/x3).

Therefore, by choosing an upper limit x = Xmax for the integral in (A.22)>

the disregarded part of the integral will be of the order (l/x~u).

The integrand

approaches zero,

. fn

of (A.22) assumes the following approximate value as x

1$3J--(1 -+” 1 HEn ~ + (ka)(a/k)

x
J!(x) + y!(x) J(ka)2 - x’

)
~. . ~. .

(A.26)

:(1+;~— X) h[l -t-(a/k)].
X*

Considering the preceding discussion, the obtained results in (All),

(A.12), (A.25), (A.26), and some actual numerical evaluations, the behavior

of the integrand in (A.22) can be summarily given as follows. The absolute

value of the integrand starts from a certain value at x = O. Then, in the

case x $ 0.5, the absolute value slightly increases until it reaches the

neighborhood of x = ka, whereupon it rapidly goes to infinity at x = ka.

However, if xi 0.5, the absolute value of the integrand finds a low maximum

around x = 0.5, then decreases and finds a minimum in the neighborhood of x = ka;

whereupon it rapidly ascends to infinity. (Note that the occurrence of the

low maximum at x = 0.5 is peculiar to (A.22) for M+(a/k) and does not occur

in the corresponding case of L+(a/k). Then, after the point x = ka, the

absolute value of the integrand drops rapidly from infinity and eventually goes
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to zero as x goes to infinity. A typical behavior of the integrand of

p(a/k),as given in (A.22), is presented in Figure 12. It is apparent thi~t

tkintegrand of P(a/k) converges to zero slower than that of q(a/k). Therefore,

in the former case the upper limit of the integration will be considered

larger than the latter case

x=
rnax

and is given by

constant + ka = 5 + ka. (A,27)

Following the ”considerationsof the case of q(a/k) in (A.7), the inregral

will be evaluated numerically using the Gaussian quadrature method of integration

and considering two intervals, i.e., (O+ka) and (ka+x ). In Table 7,
max

some calculated values of M (u/k) are given.+
As a check on the correctness

of the results, a comparison with the low-frequency approximations obtained

from (A.23) is also given in Table 7.

As a final comment on the calculation of L+(a/k) and M+(a/k), it may be

observed that factorization formulas for the Wiener-Hopf kernels as given by

(4.3) and (4.4) can be used to check both the accuracy of the factorization

process and the numerical computation by calculating the right- and left--hand

side of the aforementioned formulas separately and comparing the results,,

Now the field and related quantities may be computed.

(c) “Evaluation of the scattered field and distortion parameter:

Formulation of the scattered magnetic field due to t-heaxial incidei~ce

‘i(kz)(tinledependence e-iutof a field of the form e is implicitly assumed)

on a semi-infinite hollow cylinder, has been given in Section 5. For

convenience, it is rewritten in a fom suitable for numerical evaluation,

HX(P, 4, z) ‘~-(h1+h2), O<kz<~
+

(A.28)

in which N+(a/k) is given by
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TABLE 7

COMPUTED VALUES OF M+(a/k) IN THE GENERAL
APPROXIMATION

CASE AND IN THE LOW-FREQUENCY

,,- .—. ..—. —. —. .. —-.——.—.— .—-. —.--—, -p. —------.-. .—.,—

i

a/k ka

.’

&--’---

1.

L.–-_—

— ..—

0.1

0.2

0.3

0.5

1.

3.

5.

7.

10.

M+ (a/k)

General Case

——.—

0.294+i4.997

0.295+i2.505

0.294+il.677

0.290+il.021

0.264+i0.525

0.340+i0.315

0.179+i0.201

0.184+i0.211

0.157+i0.172

._..,...—.——

—...-.——

Low-Frequency
Approximation

,.-——..-.—. —

i5

i2.5

il.67

il.

io*5

*
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‘1

N+(a/k) = 4(ka)2 M: (a/k) - L: (a/k). (A.29)

In Equation (A.28), hl is giw’enby

r1 J1(K”ka)

KL+(a/k)
fl(P, + 2ka M+(l)

.e
i(a/k)(kz)

d(f)

(a/k)
1 + (a/k)

in which

K i=+1- (a/k)2

( l,ifp=o

J~(K*ka)

M+(a/k)

fl(P, $) =

[[
J1(K*kp)

2
“k 1

- J2(Kkp) COS2+ , otherwise,
K

● f2(P,

and

f’l, ifp=O

(A.30)

(A.31)

- J2(Kkp) sin2~
1

(A.32)

, otherwise.

Also h2 in (A.28) is given by

? J;(Eka)

){
-(elk)

‘2 = 2(ka) ‘+(1) 1 + i(6/k) M+(iB/k) ‘l(p’ 0)
n L
u

(A.33)
J1(Fka)

}

-(e/k)(kz)
d(fj+ ‘L+(l) ~+(i6/k) f2(p, 4) e

in which

and functions f~ and fz are given by (A.31) and (A.32) upon substituting
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—
Y. for K. Then the total magnetic field will be given by the

equation

@
~ (P, @, z)

-i (kz)
=~X(P, 0, z)+e . (A.34)

In addition, the distortion parameter as defined in (5.19) will be given

by

D(p, $, z) = e
i(kz)

●
“ HX(P, $, z). (A.35)

The main step in the numerical evaluation of the field quantities is

the computation of hl and h2, as given in (A.30) and (A.33). hl can

be easily evaluated by using the 16-point Gaussian method of integration in

the interval [0-1]. However, the evaluation of h2 in (A.33) merits special

attention. As may be noted, the integral extends to infinity, but due to

the exponentially decaying term in the integrand, we may disregard the

integrand for values of (e/k) larger than a suitable limit (6/k) = x
max”

This limit should be inversely proportional to (kz). Bearing this limitation

in mind, several sub-intervals of integration are considered within the

interval [0, Xma ]. The sub-intervals have been chosen as follows:

[0.,1.1, [1., 3.1, [3., 7.1, [7., 12.] for kz ~ 0.8,

[0., 0.6], [0.6, 1.5], [1.5, 4.] for 0.8 <kz <2.,

[0., 0.2], [0.2, 0.8], [0.8, 2.] for 2. < kz < 10.

With these provisions, different field quantities are computed and the results

obtained are given in Section 7.

A low-frequency approximation to the field quantities, as explained in

Section 6, may be obtained by considering the formulas,

f-

J
h=ika
1 7E(2 - *J ‘ikz

-+~(1-~), (A.36)

.h2=~~(l -&);P= O, ka << 1, kz > ka. (A.37)
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These approximate formulas lead to the following result for the scattered

magnetic field,

HX(P ‘ka ~ (2 - -+-) eikz. (),‘) .-.7

(A.38)

P =0, ka<<l, z>a.

Finally, the approximate values of the total field and the distortion

parameter can be immediately evaluated substituting (A.38) in (A.34) and

(A.35). A comparison of the results obtained for the scattered field

by the general formulas and by the low-frequency approximation is done in

Section 7 and demonstrated in Figure 10.

(d) Evaluation of the currents:

Formulation of the current on the surface of a semi-infinitely hollow

cylinder due to the presence of an axial incident field of the spatial form

~-i(kz)
is done in Section 5. The final results are repeated in a form

convenient for the numerical evaluation.

J
z 4— . (11+12) ,-~ < kz<O

sin @ n2N+(l)
(A.39)

‘+ _ -8i (ka)M+(l)
—_ — (13 + 14) , -~<kz<o (A.40)
Cos @ T2 N+(l)

in which N+(a/k) is given by (A.29). Components 11, 12, 13, and 14 in

(A.39) and (A.40) are given by

; f 2(a/k) M+(l)M+(a/k) L+(l)L+(a/k) ~

11=: Jl- (ci/k) J~2(Kka) + y;2(Kk~
‘2 (

‘(o Jl(Kka) + Y~(Kka).

e-i(a/k)(kz)
● d(;),
1- (a/k)2
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m

I_
M+0)M+(i6/k) L+(l)L+(i8/k) ‘~~ 2i(B/k)

12 = ‘i “1~
..

- i(B/k)
J~2(~ka) + Y;2(Fka)

‘2-
Jl(Kka) + Y~(=ka)-/

“o

(A.42)
+(~/k](kz)
e. ~(:),
1+ (6/k)2

.
A

J
M+(a/k) -i(a/k)(kz)

13 =
e

o
(1 - a/k)[J~2(Kka) -1-Y~2(Kka)]

and

+(8/k)(kz)
e d(;).

(A.43)

(A.44)

In the formulas (A.41), (A.42), (A.43), arid(A.44), K and = are given

by

(A.45)

of 11 and 13 is readily obtained by using the 16-point

of integration in the integral [0, 1]. However, special

Evaluation

Gaussian method

attention should be given to the infinitelimit of integrals for Iz and

14 as given by (A.42) and (A.44]. Since we are concerned with the case

of z < 0, it is apparent that the exponential terms in the “integrandsof

(A.42) and (A.44) have a decaying behavior. Therefore, a maximum limit

the interval of “integrationin (A.42) and (A.44) may be chosen (albeit

inversely proportional to kz) , such that the remainder o“fthe integrals

be disregarded. Within this limit the interval of integration has been

divided into several sub-intervals and the 16-point Gaussian method of

integration has been employed in every sub-interval. The sub-intervals

for

can

are
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given by

[0., 1.1, [1., 3.1, [3*, 7.1,,[70, 12.], forkz~-O.8

[0., 0.6], [0.6, 1.5], [1.5, 4.], for-O.8 > kz ~-2.

and

[0.,0.2], [0.2, 0.8], [0.8, 2.], for -0.2 > kz > -10.

With these provisions, the circumferential and longitudinal currents have been

computed from (A.37) and (A.40), and the obtained results are given in Section

7.

In this case also, a low-frequency approximation to the currents, as

explained in Section 6, may be obtained by the following formulas,

J
z

sin @
=+ (fi)2 e-ikz , ka <<1, Ikzl >> ka

and

‘+ . (2)3 (1+ ikz) e-ikz, ka << 1,
Cos @

Ikzl >>ka .

(A.46)

(A.47).

A comparison of the general and approximate results for the circumferential

current was given io Section 7 and was demonstrated in Figure 11. Unfortunately,

the results obtained for the longitudinal current by the general formulas in

the low-frequency range are not reliable. This occurs because the errors in

the numerical evaluation of I
1
and I

2
are cumulative and since the current

.—..
has a very small value which is comparable to the total error, the error

plays a decisive role in the determination of the final result. The longitudinal

currents as computed from (A.39) and from (A.46) are compared in Figure 13.

Since the amount of error in the numerical evaluation of (A.39) could not



be decreased for low frequencies, therefore, in such cases, the use of

Che approximate formula as given by (A.46) should be preferred.
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