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1. TINTRODUCTION

For measurements of the nuclear electromagnetic pulse (EMP) at high
altitudes above the earth, the sensors often have to be mounted on a
supporting boom that generally can be approximated by a conducting cyl-

2 . .
1, ’3Two important problems in this connection are the determina-

inder.
tion of-the extent of field distortion due to the presence of the boom,
and then the defivation of ways for minimizing this distortion. The
present paper is a contribution to the first problem, namely, a study of
the near field at the end of a semi~infinite conducting tube illuminated
by a normally incident time-harmonic plane wave.

Using the Wiener-Hopf techniques, the semi-infinite tube problem has
been investigated by a number of authors, namely Levin and Schwinger,
Pearson,5 Vajnshtejn,6 Jones,7 Bowman,8 Einarsson et al.,9 and Kao, Some

1
of these results are summarized in the books of Morse and Feshbach, 1

12 13 14
Noble, Jones, ° and Mittra and Lee,
The present paper makes two contributions to this problem. First,

new formulas are derived for the factorization of the Wiener-Hopf kernels

w:;Jlr(i/krz afa)Hil)(/kz - o2a) (1.1)

L(a)

niJ]'_(/kz - aza)ul(l) k% - oa). (1.2)

M(a)

It has long been recognized that the major difficulty in the semi-infinite

tube problem lies in the numerical computations of the factorization of the

. kernels in Equéfidn a.n éndrEquation (1.2). The conventional formula for

factorization as used in references 3 throughwiZ leads to complicated



integrals and has hindered the generation of numerical data in the past. .
In the present work, the pole singularities of the Bessel functions and

the branch singularities of thg Hankel functiéns in Equation (1.1) and
Equation (1.2) are treated separately; the factorization of the former
yields an infinite product, while that of the latter leads to an infinite
integral with a relatively simple integrand. Both the infinite product

and the infinite integral converge fast enough to permit a convenient
numerical evaluation by a computer. The second contribution of this

paper is the study of the near field arouand the end of the semi~infinite
tube, thus supplementing the works of other researchers who have considered
the far field only.

The organization of the paper is as follows. 1In Section 2 the semi-
infinité tube problem is formulated in a Wiener—Hopf equation and is sub-
sequently solved in Section 3. The key step in the solution is the fac-
torization of the two functioms in Equation (1.1) and Equation (1.2), and
that is accomplishéd in Section 4. In Section 5, the explicit expreésions
of the magnetic field and induced currents are given in the form of inverse
Fourier integrals. At low frequency, however, the inverse Fourler integrals
can be approximately evaluated and simple analytical formulas for the near
field are derived in Section 6. For more general frequency range, we have
to resort to numerical evaluation with the aid of a computer. Extensive
results have been calculated and analyzed in Section 7; details of the
numerical computations are given in the Appendix. Finally, a conclusion is

given in Section 8.
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2, FORMULATION OF THE PROBLEM

The geometry of a semi-infinitely long, conducting, hollow cylinder

is shown in Figure 1, A plane wave is incident normally on the cylinder

-and is explicitly given by

) _ ikz - p () '3\/EH(1) (2.1)
b y e %

where the time-factor exp(-iwt) has been dropped. The problem is to

determine the scattered field defined by
=7 W (2.2)

._).
where H(t) is the total field., First, we note that the incident tan-

gential electric field can be written as

1) _ @ A /w1 i ~ip, ~ikz
E¢ Ey cos ¢ 5 (e™" + e e (2.3)

B

which is a superposition of two waves of the form

(1) A /A1 in¢ ~ikz _
E¢ :\/EZe e s I’I-—i'_l . (2.4)
The circular symmetry of the cylinder preserves the ¢-variation of
the type exp(in¢). Thus, in the following derivations, we will use Equa-
tion (2.4) instead of Equation (2.,3) as the incident field, and only at the

end (i.e., Section 5) will we combine the solutions with n = +1 to obtain

the desired results.



The scattered field will be decomposed into TE and TM waves with

respect to z and is derivable from an electric potential ¢(e) -and a
magnetic potential w(m) through the following relations

E=dvxvx Gy -vx @™ (2.5)

A=9x (E 1})<e))+—0];—]]— VxVzx (2 1p(m)) . (2.6)
The potentials themselves satisfy the usual wave equation

13 9 2 82 2

= =— —) -n" +—+k z) =0 2.7

[p 50 B > blp,2z) 2.7)

(m)

or ¢ °, and is a function of p, ¢,

(e)

where Y stands for either ¥
and z. However, since the ¢-variation, namely exp(in¢), is common to
all field components; we have not explicitly indicated it in the argument
of ¢(p,z) in (2.7). Now, the problem is to solve Equation (2.7) subject
to the following conditions:
(i) (E¢,Ez) and (H¢’Hz) are continuous across p = a for z > 0 (2.8)
(ii) (Eét),Eét)) are identically zero at p = a for z < 0 2.9)

1/2, as z -~ 0+ . (2.10)

(111) E (o = a,2) ~ z
This can be accomplished by the Wiener-Hopf technique.

To this end, let us introduce the standard Fourier transform notations

in the Wiener-Hopf technique:14
Y(p,a) = ¥ (p,0) + ¥ _(p,a) (2.11)
¥ (0,0) = [ v(,2)e ™ dx (2.12)
0

4
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-C0

0 .
" ‘i‘_(p,a) = f t}/(p,z)elaz dz . (2.13)
The Fourier transform of Equation (2.7) leads to

E) 50 Gl ) _— Kﬂ ¥(,a) =0 (2.14)

where «k = sz - a2 = +iVa2 - k2 with its branch cuts shown in Figure 2.

In the region ¢ > a, the solution of Equation (2.14) may be written

in the form

v (,0) = Aw) Hél) (kp) (2.15a)

for p > a

g o) e\/§ B(a) Hél) (kp) (2.15b)

where A(o) and B(o) are unknowns to be found. Substituting Equation
(2.15) into (2.5) and (2.6), we may obtain the expressions for the tan-

gential components of the fields

E,(0,0) = <AG@) B (op) + 2% B(a) 1 (ko) (2.16)

N < @
E (p,cx) —-1—- Ba) H) (kp) (2.17)
H (o,a) '\/—I [-kB(a) H (kp) + I 2 Aa) H<l) (ko)1 (2.18)
H (o) \/”K a) B o) . (2.19)



Here E¢(p,a), for example, is the Fourier transform of E¢(p,z). The
prime on a Hankel function signifies the derivative with respect to its
argument. From (2.16) through (2.19) we may derive two relations between

the tangential electrical and magnetic fields at p = at+, namely,

V[j 1) (ka) ,
H (a+,a) = D" = [}K aE¢(a+,a) + naEz(a+,aE] (2.20)
ikka H Ka
€ 1k él) (ka)
H (a+,a) - ~—-H (at,a) = ———E (at+,qa) . (2.21)
aK HK él) (ca) z

These two relations will be used later in deriving the Wiener-Hopf equation.
Next consider the field in the region p < a. The solution of Equation

{(2.14) then takes the form

L
i

W(e)(p,a) = C(a) Jnth) (2.228)

vy ® 0,0 E\E D(a)

p < a.

Jn(Kp) (2.22b)

In a similar manner, we may derive

|
. | |
: |
(xa)
Hz(a-,a) ﬂXZ;i——ﬂ————- Aa ,0) + no Ez(a—,a)] (2.23)

ikka J (xa) [« a E

H H £ lk D(Ka)
¢(a—- ,0) - —5 (a—,a) . m Ez(a-,a) (2.24)

aK‘_

which are identical to (2.20) and (2.21) except that the Bessel functions

instead of Bankel functions are used.

ol



" Now we will apply the boundary conditions in Equations (2.8) and (2.9)

to the four Equations (2.20), (2.21), (2.23), and (2.24). The subtraction

of Equation (2.23) from Equation (2.20) gives

V(@) = —2 [y (@) + % E( D (a,01 (2.25)
- k(ka)” M(a)
with the notations defined as
M(a) = 7i J;I(Ka) H;(Ka) (2.26)
V_(@) 5\/g [Hz_(a+,oc) - Hz_(a-,a) (2.27)
U+(oc) = ¢+(a a) + no E (a,a) (2.28)
L |
(1) u 1
E¢_ (a,0) i/gm . (2.29)

Similarly the substraction of Equation (2.24) from Equation (2.21) yields

2ik
U (o) = I 3 V (o) (2.30)
where

L) = 11 J_(ka) Hél) (ka) (2.31)

U_(a) =\/§ nalt, (at,a) -, _(a-,0)] - Kza[H¢_(a+,a) - H¢_(a-,a)]
- Y2.32)



V+(a) = Ez+(a,a) . (2.33)

We will aétack the two Wiener-Hopf Equations in (2.25) and (2.30) in Section

3. Once that is accomplished, the complete field solution may be determined

from the following relations:

A@ = 5y {U,@ + %2 £ a0) (2.34)

K a Hn (<a)

k
B(a) = v, (@) (2.35)
iK2 H(l)(Ka) +
n
¢(a) = 53— {U, @ + <’a £ (a,0) (2.36)
kK a J_(ka)
n
K

D(a) = V+(a) (2.37)

ik Jn(Ka)
in which A, B, C, and D are the coefficients of the potentials defined
in Equations (2.15) and (2.22).
3. SOLUTION OF WIENER-HOPF EQUATIONS
Let us first consider Equation (2.25) and seek the solution of U+(a).
One of the key steps is the factorization of M(a) such that

M) = M, (@) M, (=) (3.1)

where M#(a) is regular and free from zeros in the upper~half a-plane
defined by Im o > (~Im k). This procedure will be discussed in detail in

Section 4. Substituting Equation (3.1) in Equation (2.25), we have



(k = a)k M, (=) V (o) = U, (o) + ——— . (3.2)
+ - (k + o)a’ M, (o) * a M (@

Note that the left-hand side of Equation (3.2) contains functions regular
in the lower-half a-plane, defined by Im o < Im k, while the right~hand
side contains functions regular in the upper-half a-plane, defined by

Im o > (~Im k). By analytic continuation, both sides must be equal to a

polynomial, say, P(a):

‘221 U, (@) + —-————% = P(a) . (3.3)
(k + @)a” M (o) & St

To determine P(a) we have to study the asymptotic behavior of Equation
(3.3) as |a| » » in the upper-half plane. From the edge condition in

" Equation (2.10), one may show that

1/2 3/2

EZ+(a,a) N (a,0) v o (3.4)

, ,,,,,E¢+

as |a| > » with Imo > 0 .

Recalling the definition of U+(a) in Equation (2.28), it follows that

U+(a) o al/z , Ial > oo with Imo > 0 . (3.5)

As will be shown inTSectionré,rthe asymptotic behavior of M#(a) is of the
form

M, (@) v a-l/z » |a] > with Ima > 0. (3.6)

@



Making use of Equations (3.5) and (3.6) in Equation (3.3) leads to the

conclusion that P{(a) is a constant, say Po. Then Equation (3.3) becomes

2
. a“ (k + a) M+(a) _ /ETQ
U+(0,) = —r {PO - E—m . (3.7)

For convenience of later manipulations, we will now express Po in terms
of a particular value of U+(a). Setting o = k in Equation (3.3) and

solving for PO, we obtain the following result,

U, (k)
P = —%—ﬂ(—i—)- - i -—i—i———-— . (3.8)
°c ai a’k M, (k)

Substitution of (3.8) into (3.7) leads to

U, k)
_ A+ afda (1 1]
U () = (k+ o) M () {5 H,_(0) *\/: 21 [M+(u) ([ (3.9)

The constant U+(k) will be determined later.

Next consider the solution of Equation (2.30). Again the key step is

the factorization of L(a) such that
L{a) = L (a) L, (-a) , (3.10)
which will be detailed in Section 4. Similarly we may show that
2ik

U_(a) L, (-a) = EZKES'V+(G) = Q(a) (3.11)

in which Q{a) is a polynomial, Since

10



" L (@), V+(oc) " a-l/z, and U_(a) » al/Z (3.12)

- as lai + @ in their respective half plane, it follows that Q(a) is also

a constant. Then the solution of Equation (3.11) may be written as

L) U_(-K)
V+(a) = 7Tk L+(a) . (3.13)

Now we will determine the two constants U+(k) and U_(-k) in Equations

(3.9) and (3.13).

From the definitions in Equations (2.27), (2.28), (2.32), and (2.33) we

derive the relations

U+(k) = nk EZ+(a,k) = nk V+(k) , (3.14)
U_(-k) QV[§ -nk) [H__(a+, k) = H__(a=y=K)] (3.15)
= -nk V_(=k),

: n 1 i
Em e = = [1 - = U, (k)] .
2ka Mi(k) ka +

In the last step in Equation (3.15) we have used Equations (3.2), (3.3), and

(3.4). Setting o = k in Equation (3.13), and using Equations (3.14) and

(3.15), we may obtain the following solution for the constant U+(k):

, , S, ,

ika n” LT (k)

U, (k) avfﬂ + ; (3.16)
+ € 4(ka)? Mi(k) - 02 Li(k)

11



Then it follows from Equatiomns (3.15) and (3.16) that

U_(-k) ;\/ﬁz ~inka : (3.17)
- ® 4tka)® M) - n” L2

Substitution of Equations (3.16) and (3.17) into Equations (3.9) and (3.13)
completely determines the solutions for U+(a) and V+(a). When these
results are used in Equations (2.34) through (2.37), the desired solutilons

are obtained and are given below:

Hél) (ka) Alx) = J;(Ka) C o) (3.18)
‘ 2
_s_\/E 2 (ka) M+(k) k + o) K (@
e TTN® 1ol 2
Hél)(ga) B(a) = J_(xa) D(a) (3.19)

av[E nka L+(k) L+(a)
£ N+(k) (kz _ az)
in which

N, () = 4(ka)? Mi(k) - n? Li(k) .

The field solution computed from Equations (3.18) and (3.19) will be discussed

in Section 5.

4, FACTORIZATION OF WIENER-HOPF KERNELS

A key step in solving the present problem by the Wiener-Hopf technique

lies in the factorization of the following two functions

12



" L(a) = 7i Jl(v/k?- az a) H](_l) (v’k2 - 042 a) (4.1)

a1 1
M(o) = 7i J]'_(r’k2 - az a) Hil) (sz - ozz a) (4.2)

in a manner such that

L(a)

L) L_(@) = L () L (-) 4.3)

M(a) M+(oz) M (a) M+(0L) M+(—0L) (4.4)
where L+(oc) ani‘” M+(a) are regular and free from zeros in the upper-half
complex a-plane defined by Im o >(-Imk), and behave algebraically as
la| + =, |

" Let us first concentrate on the factorization of L(o). A standard
formula for L+(a) is expressed in terms of a Cauchy integral:

ot+ic n[rmi Jl(»/k2 - 82 a) Hil)(v/kz - 82 a)l
B - q

L, (o) = exp --—-7C
+ 2ni Lotic

dg (4.5)

- Imk <c<Imo < Imk.

A number of authors including Levine and Schw‘inger,4 Vajnshtejn,6 Jones,7
and Bowmansvhave presented a variety of different formulas for L+(a), all
based on (4.5). 1In the present work, we will derive an alternative expres-
sion using a newly developed factorization formula; the result obtained is‘
believed to be simpler and more suitable for numerical caiciilations.

First of all, we recognize that L(o) is a product of the following

" two functions

13



L@ oy = i Jl(/kz - a) (4.6)
L®) (o) = Hil)(/kz - a) . (4.7)

Note that L(;)(u) is a meromorphic function, its factorization can be
achieved by expressing it in an infinite product form:
2 1/2 e 2

1P @) = mi g -2 1 @+ (4.8)

k™ m=1 Yo

where

Yo = (jm/a)2 -6F - AP (jm/"")zl

jm = ordered zeros of Jl(x) .

Separating the zeros of L(l)(a) in the upper and lower~half o -planes,

we obtain immediately

L_‘(_l)(a) = /ri 3 (ka) (1 + %)1/2 I+ —i—°‘—)ei°‘a/m“ (4.9)
m=1 Ym

in which the exponential factor has been added to ensure the uniform conver-

gence of the infimite product,

*
The function L(z)(a) in Equation (4.7) has no zeros and has only a

pair of branch singularities in mz - k2 with its branch cuts shown in

*
The Hankel function Hil)(z) has zeros with negative imaginary parts, but
Vﬁz - az assumes only either positive real or positive imaginary values,

14



14
Figure 2. To factorize this function, we will use a new formula. Omit~-

ting the details of the application of this formula, the final result is

+ q(a)

exp|- n

Li2>(a) - @{l)(ka)‘(l +'%)—l/2 1ka vk~ - a a, o + 1Vk

(4.10a)

where q(a) is in the form of an infinite integral

1+ —22  ax| . (4.10b)

v(ka)2 - x2

The bar on the integral signifies the principal value integral at the sin-

1 1
(@) = = n
T ?)L [ E A + Yz(x>]

gularity x = ka., As will be discussed in the Appendix, this logarithmic sin-
gularity is such that Equation (4.10b) can be easily evaluated numerically.

The product of Lil)(a) and Liz)(a) gives

L+(o;) = X L_l(_l)(on) Lf)(a) (4.11)

in which the exponential factor is added to ensure the algebraic behavior
of L+(a) as Ial + o, in the upper-half a-plane, To determine x(a),
it is necessary to know the asymptotic behavior of Lil)(a) and Liz)(a).

Omitting the details, the final results are, as ]al -+ o with Im a > 0:

L_*(_l)(c;) n o L/4 Vexp %‘ll [1L-c¢C- m(%?—)] C(4.12)
N 7(2)(a) N L4 exp(%% n %29 (4.13)

15



where C = Euler's constant = 0.57721... . It follows immediately that

o fea g _ 2My L 5 X
x(a) =~ [L-¢C+ zn(ka) + i 2] (4.14)
and
L+(u) N a_l/z, o] >« with Ima >0 . (4.15)

The final result of the factorization of L(u) is given by

L (o) = L_(-a) (4.16)

; D ) ool 19301 2, my _ ka
Vél Jl(ka)Hl (ka) exp i [1 - 0.57721 + Rn(ka) + 12] 15

o

. exp iiY 2,n(Ot ; Y) + g(a) o (@ -+ Eg_oelaa/mn

m=1 m

where v = Vaz - k2 = —inz - az; Yp is defined in Equation (4.8) and q(o)

in Equation (4.10b). The expression in Equation (4.16) seems to be simpler
than those derived in all the previous references,S—lz and can be readily
evaluated numerically (cf., Appendix).

The factorization of M(a) din Equation (4.2) can be achieved in a

similar fashion. Its final result is given below:

M, (@) = M_(-a) (4.17a)
A ay ! ay=1 iaa 27 i
= Vo1 33 Ga)E ) (@ + DL expd 18801 _ 057721 + @Dy + 1]
-ika , iay o - Y > o  ica/mw
cexp[—5— 4+ = tn ) tp@] T+ —Pe

16



where

@

S i
vl = i sy = SR

m =
e
= —i/ﬁz - az
L '
ip = ordered zero of Jl(x)
1
1" 2 2
pla) == { |1 - = o gn |1+ ——22  lix . (4.17b)
"0 T 20x) + Y. % (x) [T 7
’ 1 1 (ka)” - x

The asympotic behavior of M+(a) is

1/2

M+(a) N (4.18)

as |a| » « with Ima > O,

@

5. MAGNETIC FIELD AND DISTORTION PARAMETER

In the Fourier transform domain, the complete magnetic field is given

below, for o > a

HoGrts) 3/ 2 cos o1 a@ 1P o) + 2 3@ 1P ()] 6.

. !
o Gortre) /S 20 sin o2 A By (o) -« BG) BD ()] 5.2)

"H' IE: | (1) | 5 3
,(Ps¢,0) 2 m 2 coséT Aa) H ™ (kp) (5.3)

in which we have restored the ¢~variation. For a field in the region
p < a, we.simply replace A(a) by C(a), B(a) by D(a), and the Hankel

functions by Bessel functions in Equations (5.1) through (5.3). The explicit

17



solutions of A, B, C, and D are given in Equations (3.14) and (3.15)

with n = +1,

To obtain the expressions of the magnetic field in the spatial domain,

we take the inverse Fourier transform:

da

1 )
2 Hil) (Kp)/Hil) (ka)
H (p,0,2) = cos ¢ 2(ka) M+(k) > M+(a) e—iaz da
p T imk N+(k) k- a
¢ 3, (kp) /3, (ka) (5.4)
Hil)(Kp)/Hil)(Ka)
+ i cos ¢ ka L+(k) L+(a) e-iaz da
m N (k) @ - o)
| 3, (kp) /3y (ka)
2 Hfl)(KQ)/Hél) (xa)
¢ ﬂlkp N_I_(k) / k-a m .
Jl(Kp)/Jl(Ka) (5.5)
1
1 o) /1 (ea)
_ i sin ¢ ka L+(k) L+(a) e—iaz do
T N & 73
k- Ji(Kp)/Jl(Ka)
cos 5 20 M ()
Hz(ps¢sz) = Tk N+(k) (5.6)
4 ' N
B o) /1D (ca)
x f—ki—“—-— M, (o) J =102 4,
J 2 2 :

\ J; (k) /3] (ka) J

p>a

for
p < a

in which the integration contour C is shown in Figure 2.
18



" In the EMP study, a quantity of interest is the current on the out-

side surface of the hollow cylinder, which for =z < 0 1is given by

Jz(¢,z) = H¢(p = at) Fz(z) sin ¢ (5.7)

F,(z) cos ¢ . (5.8)

J,(¢,2) 4

4 —Hz(p = a+)

From Equations (5.5) and (5.6), the expressions for the surface currents can

For numerical computations, it is preferable to deform

be easily written.
the integration path C in Figure 2 to a new path (Pl + P2) around the

branch cut in the upper-half o~-plane (Figure 3). Note the relations:

H{l) (ka) Hil) (xa) Hil) (xa) Hil) (~ka)
—_— - ——————— = — - (5.9)
‘. K Hfl) (ka) K H{l) (xa) K Hfl)'(Ka) -K H{l)'(-Ka)
P -P P P
1 2 1 1
4 |
i’iTaKz[le (ka) + le (xa)]
Py
and
H](-l) (ka) _ H](-l)'(f_a—)_ _ 4i (5.10)
K Hil) (ka) K Hil) (ka) 'naKT[Ji(Ka) + Yi(Ka)] )
P -P

1 2

We may reduce the integrals for the surface current along the new path

(Pl + P2) to the following expressions:

L

1 F ('zr)7=———-———r(gr+gw)r, - <z <0 (5.11)
'. z “2,N+(k) 1 2
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8ika M+(k)

F(z)s—F——— (g,+8g,), =2<2z<0
¢ Tr2 N+(k) 3 4
in which
) k[ g M+(k) M+(a) L+(k) L+(a) ke—iaz

g (2 = [ |75 + 7 7 do

o_ G'({Z_az'a) G(éz_az‘a)k -a
o ) - fm 28 M+(k) M#(is) ) iL+(k) L+(iB) keBz i
2 k - iB 2 2

0 i ¢'( {2 + lea) o éz + Bz'a) k° + B

_ k H#(a) o 1oz
gy = ; do
0 (k - a) G (sz - az a)
o -i M#(iﬁ)eBz
g, = | ds
0 (x - 18) ¢' (&% + 8° a)
GG = 2@ + Yo (x)
¢ (x) = J;z(x) + Yiz(x) .

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

The advantage of deforming the integration path C to (Pl + P2) may be

seen from Equations (5.14) and (5.16). In these two infinite integrals, the

integrands decay exponentially, and consequently they can be evaluated numer-

ically without difficulty.

In addition to the current, another quantity of interest is the altera-

.tion of the incident magnetic field due to the presence of the semi~infinite

cylinder (sensing boom), Let us introduce a magnetic field distortion
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factor D such that
H

(5.19)

D(p,b,z) = ?

1@
X
which is the ratio of the scattered magnetic field HX and the incident

magnetic field. Then the measured field with meters supported by a sensing

boom (HX + Hél)) is related to the undisturbed EMP field by the relation,

measured magnetic field
T+ D . (5.20)

EMP magnetic field =

From the expressions in Equations (5.4) and (5.5), and the definition in

Equation (5.7), it may be shown that

2 ikz (l)'
(ka)™, (k)e B (ca) )
+ a 1 ~iaz
D(p,$,2) = RO £ d; 0:9,9) T3 H(a) da  (5.21)
(ka)L+(k)eikz Hfl)(Ka) —ioz
TN, (K) £ dy(ostse) prgy= e do, p<aand 0 <z <o

where dl’ éﬁ&ﬁwdz are the only functions depending on (p,¢) in the inte-

grands and are given by

L ) Jl(sz - o? ) /7?__—7? 5 ]
dl(p,¢,a) = 2 - J2( k™ - a” a) cos¢ (5.22)
sz - az p .
/2 2! B
o . J, (k™ = a” p) Vo
’:sz(p,¢,u) = 2 L - J2( k2 - az a) sin2¢ . (5.23)
2 2

kK™ = a" p

For numerical evaluation, we will deform the integration path C in Equation
(5.21) into a new paﬁh P3 + P4 in the lower-half a-plane (Figure 3), and

obtain the result:
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D( ¢, 2) = EEEiEi [g. + ] <aand 0 <z < {(5.24)
bs O, N+(k) gs 86 » o] .
in which
ey
‘ k aM+(k) Ji( 2 _ a2 a)
gs<ps qb’ Z) = - é [2ka k(k + 01) M+(a) dl(p’¢’0’) + (5'25)
/2 2 .
J,(Vk" = a° a) .
1 ioz
+ L, (k) _ d,(pydsa)]e do
+ 2
A2 2 L, (o)
- a0 I AL+ 6
85(0s9,2) = -f [2ka e+ 15 TRED) d,(p,¢, i8) +
0 + (5.26)
:
Jl(s/{2 + 82 a) gz
+ iL+(k) — d2(0,¢,i8)]e dg.
2+ 8% 1 1)

Again the integrand in the infinite integral in Equation (5.26) decays
exponentially. In many practical applications, we are often interested

in the distortion on the axis of the cylinder:

DO(Z) = D(p,9,2) (5'27>
p =0

which is a function of z only. For computation of Do(z), we simply set
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= 1 in Equations (5.25) and (5.26).
6. LOW-FREQUENCY APPROXIMATION

In this section, we will derive a set of approximate formulas
for the scattered field when the frequency is low. Expldicitly,

we assume that
ka << 1, and la/z] << 1 (6.1)

in which the second condition is introduced in oxder to avoid the
evaluation of the field in the so-called "boundary layer" (regions
where kz is also small so that |a/z| may assume a fixed number). In
the boundary layer,'the scattered field varies rapidly and it is very
difficult to obtain an analytical expression for the scattered field
there. B 7 |

We willr now expand the scattered field in an ascending power
series of (ka), and drop all terms of O(kzaz) or higher., First let us
consider L+(a) and M+(a). As will become clear later, our solution
under assumption (6.1) depends mainl§ on L+(a) and M+(a) with o in the

range o ~ k or less. Within this range we may approximate L(a) in

Equation (4.1) and M(o) in Equaﬁion (4.2) by

2 2. 2 42 2 ‘
L(a) M SE;_ZEE_lE_ on ____:EE.JE (6.2)
2 2.2 2 2
M) ~ |1+ zoda Yk - a o (6.3)
2 2 7.2 2
a (k" - a")
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where the terms of O(kzaz) or higher have been dropped. The
factorization of Equations (6.2) and (6.3) can be obtained by

inspection with the results:

2 2, 2 PN
L(a) ¥ 1Lk o )a zn‘\/&’; %) 2 (6.4)
[ 2 " 2.2 /"“““‘““ﬁ?
m i { &k - a%)a k + Q)a
M+(0L) u ma {'l + 5 in 5 J (6.5)

for kzaz, Ia[zaz

<< 1.

Next, we will use the results in Equations (6.4) and (6.5) in
Equation (5.24) for the evaluation of the distortion parameter D(p,¢,z).
When the terms of O(kzaz) or higher are dropped, the integral in

Equation (5.25)becomes

k . 3 k 2 2
, _a ) iaz _a’ (k = ) (K = 0% (k + ®)a| iaz
85 5 fo (k + 1) e do 5 fo R [%n 5 e do.

(6.6)
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The first integfal in Equation (6.6) can be evaluated easily, while the

second one can be approximated by

3 k k 2 ioz
~E w2 (e-K) e do 6.7)
8 2 0
3 ,
- %I 6%) (n %ﬁ)[Zelkz + (kzz2 - 2ikz - 2)] .
Thus, we have
‘ ) .
v AL - — - L@ ka, 1kz
i a 1 , 1,82, ka 22 .
—-2—(;)[1_1—1—{;4—4(;) (znz)(kz - 2ikz - 2)] .

For the integral g, in Equation (5.26) , we note that the exponentially
decaying‘nature of the integrand allows the use of Equations (6.4) and
(6.5). Then it may be evaluated in a similar fashion as 85> and its

result is

nioa 1, l.a?, ka 22 . .
86 v 2 (Z)[l - ikz + 4(2) (R'n 2 )(k z =~ 2ikz 2)] . (bng)
Recalling the definition of N+(k) in Equation (3.15) and the use of

Equations (6.4) and (6.5) results in

N (k) N -2 . ’ (6.10)

Substitution of Equations (6.7) through (6,10) in Equation (5.24) gives

the desired result,
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D (z) =52 &1 - = - —(—)2 fn —=] (6.11)
o 21 i 4 2 .
which is valid under the conditions in Equation (6.1).

Similar procedures can be applied to the approximate evaluation of the

current in Equations (5.7) through (5.18). The results are

2 .
~n sin a . 3,a ka -ikz
i w —24‘& S 11+ 15S) ka m e (6.12)
3 _
3, Y cos ¢ & 1+ ik - —2—(ka)2(£n -lz‘—a-)]e ikz (6.13)

We will estimate the accuracy of Equations (6.11) through (6.13) by comparing

them with results obtained by numerical integrations in Section 7.

7. NUMERICAL RESULTS AND DISCUSSION

In the previous section, the scattered field due to a normally incident
plane wave has been obtained, and is expressed in terms of inverse Fourier
integrals. Details of the numerical computation, particularly the convergence
of the various integrals, are discussed in the Appendix. In this section, we
will only present the numerical data relevant to the physical problem under
consideration.

(a) Distortion parameter as a function of ka

The magnetic field distortion parameter as defined in Equation (5.19)is glven by

Hx(ps ¢ z) , ik

D(p, ¢, z) = - =e*H (o, ¢, 2), 2> 0 (7.1)
Hél)(z) x

which is a measurement of the amount of distortion due to the presence of

the cylindrical boom. First let us concentrate on the distortion along the
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decreases as ka increases.

axis, that is Do(z) = D(p =0, z), as a function of the radius of the
cylinder ka. The numerical results are presented in Figure 4., A dominant
feature of the curve is that Do assumes maximum values at the zeros of

Ji(ka), namely at

.

ka = 1.841, 5.331, ..
which are the resonant values for the TElm modes in the interior of the
cylindrical tube. These values are also the related zeros of M+(u) as
giyen in,(41l7§li, Ihé,%%?QE,Of Jl(ka) or L+(a) at ka = (a/k) = 3.831, « + -,
etc., play ;7;eéona;r§ ;;ieiiﬁ thé deéérﬁination of Do. In general,rlDo’

' ases. This is due to the fact that the larger the

cylinder, the easier the wave can be transmitted into the tube. In EMP

' : : *
applications, we generally are interested in cases with O <ka <1.84l. In

this faﬁgé,W[Dé{ increases with ka. Thus, for a given boom
(fixed a), - the high-frequency components in the

EMP are distorted more than the

low - frequency componenﬁs for axial incidencé. Figure 4

presents the distortion on the azis p = 0 only. In the neighborhood of the
axis, the field varies slowly as indicated in Table 1. Thus, in the following
discussion, we will concentrate on the field on the axis.

(b) 7Diétortibh:péfaﬁéﬁéf”és a function of kz A

Such computations are presented in Figure 5 for several different wvalues
of ka. Note that the distortion assumes its maximum value at a distance:,(kz)max

and then decreases as (kz) increases. For ka < 1.5, (kz)max is roughly given by

the simple equation

(kz)max =~ 0.46(ka) + 0.2, for p = O. (7.2)

*For example, with a sensor boom 6 inches in diameter, we have ka = 0.16 at
a frequency of 100 Mc/s.
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TABLE 1

ABSOLUTE VALUE OF D(p, ¢, z) AT ¢ = O PLANE

= - e L 4 £ 4t A A vt 4 i g e L . et

. | ; ‘l
kz . ka p =0 , p=053a | p=a i
I : %m, - ~§ cam ;M“mmew”ﬁ
i 0.2 [ 0.0179 |  0.0178 | 0.0175 |
b i ; 1
1.2 0.5 0.1171 0.1142 | 0.1060
i
. |
1 0.4676 0.4572 | 0.4026
~ . I N 3
0.2 0.0118 0.0117 | 0.0116
1.8 0.5 0.0805 0.0791 0.0749
1. 0.3700 0.3522 0.2798

Thus, to avoild large distortion, for axisl incidence the measurement
instruments placed at the end of the sensor boom should avoid the

neighborhood of the point described in Equation (7.2).

The phase variation of D0 igs presented in Figure 5b. An interesting
feature is that for z >> a, the phase varies almost linearly with z.
¥ Approximately, Do can be expressed in the form

D (z) = [p_(2)| e +(KFEIZ 1¥

where ¥ is a constant, independent of z. Recalling the definition in
Equation (7.1), the relation in Equation (7.3) implies that the scattered

field Hx( p = 0, z) has a phase variation of the type
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H(p=0,2)=|0(=02]c "

Thus, ¥ may be‘regarded as the phase delay introduced at the reflecting plane
at z = 0 for the scattered field, and B is the wave number of the reflected
traveling wave. From the data in Figure 5b, the values of (y, B) can be
approximately determined and the results aré tabulated in Table 2. It is
noted that (B/k) = 0.98 for all the céses'considered in Figure 6. The data
presented in Figure 5a is reflected in Figure 6 as a function of (z/a). It
is cleaf, that ﬁaxiﬁum”diétbftion occurs around z = 0.5a, as indicated

in (7.2). |

(¢) Error in EMP measurement

In EMP studies, a problem of interest is the percentage of error in
the measurement of EMP field introduced by the boom. When the incident
EMP is approximately single frequency, we are only concerned with the

error in the magnitude of the field, and not in the phase. In such a

" situation, we may define an error by the definition
, _ (mag. of total field) - (mag. of incident field) o
e(z) = mag. of incident field x 100 7
total i
res= o 20, )] - 1P =0, 2]
= ) x 100 %
'H (p = 0, Z)I
= [|1+ Do(z)| - 1} x 100 3. (7.5)

Some typical computations of e(z) are given in Figure 7. For small ka,
e.g., ka < 0.5, the error is large at the immediate neighborhood of the

end of the boom, and is zero roughly at

kz = 1.4 + %ﬂ-, n=0,1,2,3, + ¢+ ¢+, and p = O. (7.6)
" The formula in Equation (7.6) can be derived from Equation (7.5) by
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VALUES OF PHASE DELAY AND WAVE NUMBER FOR SCATTERED MAGNETIC FILELD ON AXIS

TABLE 2

T
1

| ka ; v | B /K ;
;
P0.1 ; 79° ‘ 0.98 |
: f.
! !
0.2 79° 0.98 ;
L0.3 79° , 0.98 |
%
0.5 113° | 0.98
1.0 309° 0.98
1.5 355° 0.98
1.841 67° 0.98
2.0 77° 0.98
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using the analytical formula of Do(z) given in Section 6. Thus, an
important observation can be made: When the incident EMP is predominantly
single-frequency, and that frequency is low enough so that ka S 0.5, the
error in measurement can be minimized by placing measurement instruments at
locations described in Equation (7.6). As a numerical example, at

f = 200 Mchk and with a boom of 6 inch diameter, the error can be as large
as 11 per cent thﬁ the instruments are placed at z = 3‘inches. However,
this error can be reduced to zero when the insfruments are placed at z = 13
inches. It should be emphasized that this conclusion is reached only under
the assumption that the EMP is predominantly single~frequency. Other-
wise, the error can be reduced only when ]Dol, as shown in Figure 6a, is

small for a band of fréquencies of interest.

(d) Circumferential current J¢(¢, z) as a function of (kz)

This current on the outer surface of the cylinder is given
by formulas (5.8) and (5.12). These formulas show that the current
has an explicit dépendence on ¢ of the form cos ¢. Therefore, division
of the current by cos ¢ renders it independent of ¢. Variation of the
magnitude and phase of J¢/cos ¢ with respect to kz and for several values
of ka is given in Figures 8a and 8b, respectively. Again, the current
is in the form of a traveling wave with a propagation constant B

slightly less than k.

(e) Axial current J (¢, z) as a function of kz

The axial current on the surface of the semi-infinite cylinder is given
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by formulas (5.7) and (5.11). The dependence of this current on ¢ is of
the form sin ¢. The magnitude and phase of Jz(¢, z)/sin ¢ as a function
of kz and for different values of ka are given in Figures 9a and 9b,
respectively.

(£) Accuracy of the approximate formulas

In Section 6, simple approximate formulas are derived for the scattered
field and related quantities. These formulas are valid under the assumptions

that
ka << 1 and kz >> 1. (7.7)

To test their accuracy, we present in Figures 10 and 11, a comparison of

itotal) and 3ys respectively, as obtained by numerical

integration and the approximate formulas in Section 5. Generally speaking

the results for H

the approximate formulas are reasonably accurate when
ka < 0.5 and kz > ka. (7.8)

More detailed comparisons are given in the Appendix.

8. CONCLUSION

In this paper, we have obtained the near field solution for scattering
by a semi~ infinite tube due to a normally incident plane wave. The numerical
computation is facilitated by using a new factorization formula for the
Wiener-Hopf kernel as appeared in the solution of the problem (Section 4).
For low frequencies, approximate formulas for the scattered field and the
related quantities given by simple analytic expressions are obtained (Section 6),
and they are found to be reasonably accurate for ka <0.5 and kz > ka.

The results obtained in this theoretical problem are used to evaluate

the field distortion due to the presence of the sensor boom in the EMP measurement
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(Section 7). It is found that the distortion problem is particularly severe
at the interior resonance frequencies for the TE mode of the sensor tube,
namely, at ka = 1.841, 5.331, » * +, TFor example, at ka = 1.841 and with
the measurement instruments placed at p= 0 and kz = 2.1, the.error in
measurement can be as large as 100 per cent!

For many practical cases, the high-frequency components in the EMP
field are probably'small enough such that 0 <ka <1 (for a boom of 6
inch diameter, this means that no significant field component exists beyond
1,000 Mc). Under this assumption, guidelines for reducing measurement
error are listed below:

(i) For a given z (the distance between the instrument and the end

of the boom), the distortion is proportional to the radius of the

boom a (Figure 6a). Thus a should be made as small as practical.

(i1) The maximum distortion occurs at a distance of about one half of

the radius away ‘from the end of the boom, and becomes insignificant at
about five radii away (less than 20 per cent for ka < 1, see Figure 6¢).
Thus, the measuring instruments should not be placed very close to

the end. It should Beiemphasized that the above two guidelines are

based on the observation ofiaxiai incidence. Further study is needed

to ascertain whether they continue to be valid for oblique incidence.
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APPENDIX., DETAILS OF NUMERICAL COMPUTATIONS

In this section, the problem formulated in Sections 2 through 6 will
be nﬁmerically solved; that is, the values of the scattered magnetic field,
distortion parameters and curents on the surface of a semi~infinitely long
hollow cylinder, due to an axially incident plane wave, will be calculated.

The first and a crucial step in the evaluation of field and related
quantities dis the numerical evaluation of L+(a) and M+(a).

(a) Evaluation of L+(u):
L+(a) has been formulated in Section 4 and is given by (4.16). Here it

is rewritten as

L,(a) = L (a/k) = X o/ k)L_i(_l)(a/k)L_‘(_z)(a/k) (A.1)
in which
¥ (a/k) =%r— (/) (ka) [0.42279 + in(2n/ka) + & 515 (A.2)
and
LD (/i) = /a1 TGy 1 (L+ % Llo/k) (ka) fmm (4
m=1 m 7 )
in which

¥ /3 ' 3 |
(2)= /D -1=-1/1- B?, (A. 4)

ka

jp = ordered zero of Jl(x).

Also the last factor in (A.l) is given as

LD (/) = /uD (ka) el KR 4 LEDG/D @ Xy ()],

(A.5)

in which
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G = Vew? - 1= /1 - (a0, (A.6)
and
q(a/k) =-% f (1 - %; 5 1 5 en(l + (ka) (a/k) dx, A.7
o Jl(x) + Yl(x) (ka)2 _ x2

noting that

v’(ka)2 - x2 =1 ¢x2 - (ka)2 for x > ka.

L+(a/k) has been previously calculated for certain values of (ka) and
(a/k), albeit based on different formulations, by Jones7 and Matsui}6
Therefore, a base exists for comparison in calculating L+(a/k)m

Furthermore, the low frequency approximation for L+(a/k) is given by
(6.4) as

.
L(a/l) = 1~ g1 o @2 pnikaq + 3]

(A.8)
for kzaz, ladlaz << 1,
which may be used to check the correctness of numerical computation of the
general formula.
There are two factors in the computation of L+(a/k) which require special

attention. The first one is the evaluation of the infinite product in (A.3),

i,e.,
lim 11 - S8Ry iGa/k) (ka) fam o)
m> m=1 I(Ym/k) * .

Fortunately, this product is convergent and a maximum value for M may be chosen
so as to render it numerically computable. The first few values of jm are

found in most of the books on mathematical tables.15 For large values of m
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the following asymptotic formula is used

jm =B -'gg 3 B = (m+ %Jﬂ for m + =, (A.10)

The product (A.9) has been calculated for several values of M and for a/k = 1;
the results are given in Table 3. IE is obsérved that as ka increases, the
convergence of the product is slower; but in any case the increase from
M= 200 to M = 300‘is far below 1 per cent. Throughout the rest of the
numerical calculations, the value of M = 300 is used.

The second consideration is the method of evaluation of the Cauchy prineipal
value in the integral (A.7). Apparently, the integrand in (A.7) becomes
infinitely large for the value of x = ka. In order to investigate the behavior

of the integral (A.7), around the point x = ka, the following integral is

considered
ka(l—eo) ka(l+e) L , L (ea) (/1)
I= lim e+ E-(l -3 5 an(l +\——————————fﬂ dx
Eo+0ka(l—s) ka(l+eo) Jl(x) f Yl(x) (ka)” - x

(A.11)

in which € << 1. Considering the very small interval of integration and using
some approximations due to very small value of g, and after some lengthy

manipulation the value of integral (A.ll) is evaluated as

2 1

I':
m(ka) Ji(ka) + Yi(ka)

(1 -

—Tl? ) (ka) siin(é—e) + 2 Rn(%) +%- 3 % )

(A.12)
It is observed from (A.12) that the integral (A.11) is limited and approaches

zero as £ + 0. Therefore, finally q(o/k) in (A.7) can be written as
:ga(l—s) max
q(a/k) =.] (. « . Ddx+ I+ lim jf (. . . .)dx
O

X
0 max ka(l+e) (A.13)
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VALUE OF THE PRODUCT (A.9) FOR DIFFERENT VALUES OF M

TABLE 3

=

/

e e B0

®

10

50

100

150

200

250

300

R LI & Ao R e 8 B A

1.05646+10.09731

1.05980+10.10387

1.06024+10.10474

1.06039+10.10504

1.06047+i0.10519

1.06051+10.10528

1.06054+10.10534

1.27618+10.20284

1.29282+10.22082

1.29504+10,22327

1.29578+10.22410

1.29616+10.22451

1.29638+10.22476

1.29653+i0.22493

1.99402+10.29628

. 2.05638+10.34135

2.06477+10.34766

2.0676(0+10.34978

2.06987+10.35087

2.06987+10.35152

2.07044+10.35196

1.37763+16.71580

1.30484+17.15848

1.29309+17.21945

1.28902+17.24009

1.28695+17.25047

1.28571+17.25671

1.28487+17.26088

a/k =1

' -0.46300+15.24035

-0.66065+15.73690

-0.69094+15.80583

-0.70137+15.82919

-0.70664+15.84094

~Q.70982+15.8480Q1

-0.71195+15.85270




in which the integrands arethe same as in (A.7).

In order for the second integral to be numerically tractable, we have to
choose a maximum value X beyond which the value of‘the integral can be
ignored. To this end we should investigate the asymptotic behavior of the

integrand for x >> ka. This is done and leads to the following results

2 1 1
= 2 ) x+®> 2 (A.14)

Jl(x) + Yi(x) X

(1 -

0w

eIy EHea/i) - 4] for a/k real

(/i) &2
n(l + >

T Y
1V1- a2 kag

x Qggéila/kf for (a/k) pure imaginary

E @«

in which
1/2
1 ka,2 ka
g =11 +-§ (;—) 1 « 1, for z << 1.

It is apparent that for very large values of x, the second integrand in
(A.13), with regard to (A.14) and (A.15), is of the order (l/x3) and,therefore,
the integral has a remainder of the order (l/xiax). For very small values of
x the first integrand in (A.13) can be approximated and leads to

R Sp— 3 2n(l + (ka)(“/k)z,)—-—> 2 (1 -Zx mll+ (a/k)]

m X Ji(x) + Yi(x) .V(ka)zr- X~ x¥o

(A.16)
with regard to the above formulas and also numerical calculation of the
integran& it can be said that for constant values of (a/k) and (ka), the

absolute value of the integrand in (A.7) starts from a certain value for x = 0,
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and decreases, reaches a minimum with respect to x and then goes up to
infinity for x = ka, then decreases rapidly and eventually goes to zero as
(l/x3),(see Figure 12). Due to this behavior of the integrand of (A.7),it can be
numericallyrc;i;;iétédrinrtﬁerfAQQ of (A.13). |

To evaluate the integral by computer, two integration methods have
been considered tentatively. One is based on the trapezoidal rule in
connection with Romberg's principle, which calculates the integral to any
desired degree of accuracy. This method tékes into account the end points.
In the second method, evaluation is done by means of a 16-point Gauss
quadrature formula which integrates exactly polynomials up to degree 31
and without considering the end points of the integral. Subroutines for
these methods are obtained from IBM-SSP. Using the trapezoiaal method for
evaluation of (A.7) we have to maske use of (A.13), but in the Gaussian
method we could eliminate I and perform two integrations from 0 to ka and
from ka to X o Of course, in the latter case, also Equation (A.13) could
be used; however, as will be shown, the results are not much different. Table 4
shows the resultant valﬁe of L+(a/k) for several different forﬁs of integration
of (A.7)‘and as calculated by Matsui16 and Jones.’ As is observed, the difference
in the results due to different'nethods is much less than 1 éer cent. Also,
it must be noticed that the trapezoidal method takes longer than the Gaussian
method, depending on the desired accuracy. Therefore, in the rest of the
calculations, only the Gaussian method is considered. Furthermore, it is
seen that the difference between the results obtained by the Gaussian method,
using the middle step,involving I, and the one not using it, is also much less
than 1 pe; éént.” 7 7 7 7

In order to better appreciate the extent of the influence of I as
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TABLE 4

COMPARISON OF VALUES OF L+(a/k) CALCULATED BY . SEVERAL DIFFERENT METHODS

ka=1., a/k = 1., M= 300

L+(a/k)

ka(l-g) 10.
q(a/k) =/ + f . Trapezoidal method
0 ka(l+e)

EPS = ].0_2 Uppef'bound of absolute error in

integration,e = 10—5, I =20

0.72278 + i0.42127

Gaussian method

-% (0.46174 - 10.14340)

0.01

m
|

ka 10.
qo/k) = f + [ ~ 16-point Gaussian method 0.71957 + 10.41949
0 ka
: ka 4.+ka
qa/k) = J +f 16-point Gaussian method 0.71904 + 10.42084
0 ka )
= 1 (0.45986 - 10.14314)
ka(l-c) 4 +ka
qa/k) = [ + I+ 7/ 16-point 0.71950 + 10.42103
0 ka(l+e)

Calculated by Jones 7

Calculated by Matsui 16

0.7206 + 10.4235

Seme LA NTLG S d

o~

0.7205 + 10.4196
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given by (A.1l) or approximated by (A.12) on the final result of q(a/k),

we proceed as follows. First we consider the value of I with ¢ = 0.01,

as calculated by numerical integration from (A.1l) using a l6-point Gaussian
quadrature method and compare the result with the approximate result of

(A.12), as given in Table 5. It may be ébserved that the two results are

very close; this indicates the correctness of approximation (A.12). Therefore,
from this stage onward the value of I is calculated from (A.12) only.

Second, the value of q(a/k) and its components are computed by Equation (A.13),
using (A.12), with € = 0.01 and for several values of (a/k) and (ka). Then
the resultant values are compared with those obtained by € = 0 (that is, I = 0),
and with two integrations from O to ka and from ka to Xpax? using the Gaussian
method. Moreover,.in order to see the insignificance of the remainder of the

integral (A.13) for x > x___, the value of this integral from x to 2x
max max max

.1s also calculated. In Table 5 a numerical account is given.

As a result of the above discussion and in view of the results of Tables
5 and 6, the evaluation of q(a/k), as given by Equation (A.7) is done accprding
to Equation (A.13) with € = 0, I = 0, and using a 16-point Gaussian method of |
integration._ Upon close study of the variation of the integrand in Equation
(A.7), it is revealed that although the integrand decreases rapidly after
% = ka, however, ifﬁaésﬁméériéfger values for larger values of ka. Therefore,
as a reasonable approximation we choose

X ax = constant + ka = 4 + ka. (4.17)

Although this choice of X oy Seems rather arbitrary, it has been chosen on
the basis of sohe numericai consideration. For values of ka §J6 we could

choose

10,

w
[

max
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TABLE 5

THE VALUE OF q(o/k) AND ITS COMPONENTS FOR DIFFERENT

METHODS AND SEVERAL VALUES OF (ka), (oa/k)

i

+ Computed from (11), with € = 0.01 and using the l6-point Gaussian quadratic method.

* Computed from (12)

‘ ka(l-¢) ; Xnax ; % meax
a/k ;| ka ° e TS [ T+ I TS ! m * q(a/k) T S
. ) 0 ka(lte) ¢ X
i * max
: - r T e o e b B s i ettt =5 B s
! % |
‘ [ 0.0 : _ j0.211605-10.18810
0.2 § * — cemreme - 2 8K107 211, 581070
g (0.00713-10.00210)F
[ 0.01 0.14216 (0.00771-10.00224) " | 0.06388-10.1861 {0.21375-10.18837
] i
i N S ‘ B i,
[ 0.0 S ; 0.45986-10.14314
1. . e e ] 4, 3K10” %15, 5%1073
(0.01042-10.00305) | |
0.01 0.38252 (0.01126-10.00327) | 0.06951-10.14013 0,46173~10.14340
H
1. A S [T
0.0 —_— 0.52789-10.05535
3. T } 1.5%1073-18.6x107>
(0.00556-10.00163)
0.01 0.49178 (0.00602-10.00175)" | 0.03083-10.05372 }0.52863-10.05549
0.0 — 0.53872-10.01896
2 e ~ 1 2.3%1073-18. 5%107>
(0.00261-17.6X107,) 1
0.01 0.52396 (0.00283-18.2x10" " | 0.01224-10.01819 |0.53903-10.01916
LL: ] DA I ipiet Sy S o 1



%4

+ Computed from (11), with € = 0.01 and using the 1l6-point Gaussi

* Computed from (12).

an quadratic method.

PN &
TABLE 5 — CONTINUED
_ ka(l-~g) ‘ ' *nax 2xmax i
fo/k! ka: e im S g m e I iw oo S m * q(a/k) T f :
i { w! 0 { i ka(l+e) i X ;
1 g H i t : : max |
4 i ' i ! i : J*
ki - — T e L i e e s < e e oo e - i H
! : k { ! i
S 3 : | : E
! 0.0 . ]  — ; 0.71849-10.47543: '
L 0.2 1 j . e e o1 6,9X10 %17 .6X107 |
P ; ‘ . (0.01160-10.00221) : §
1 ! © 0.01 ¢ 0.33990 (0.01229-10.00224)  10.36859-10.47325/0.72075+10.47548 | g
3 i H
: | - L '
; | :
0.0 | — 1.94908-10.27816
i
1. | e } 8.3X10™ >-10.02339
(0.01696-i0.00321) ,
. 0.01 | 0.93896 (0.01796-10.00327)  |0.29419-10.274961.25112~10.27823
5 . SR, T AT B T e s s
0.0 — 1.36061-10.09136
3. T i e mnsed 0,01779-10.02707
(0.00906-10.00171) .
0.01 | 1.23829 (0.00959-10.00175)  }0.11355-10.089651.36144-10.09140
0.0 S 1.37956-10.02743
7. - s 0.01796-10.02044
(0.00426-18.0X10_, ),
0.01 | 1.33697 (0.00451-18.2X1Q ') [0.03842-10.02663|1.37990~10.02745




KA

TABLE 5 — CONTINUED

PO

A A i K e s

: } ; ka(l-¢) i *nax ; : 2xmax
a/k © ka e me /S T+ I R ; 7+ q(a/k) woe S
: { : 0 , ka(lte) § ! x
o : : ISR L ) v L _“'ff' mz
_~ 0.0 ; — * ! 0.46560-10.20258 |
K : 3 {
: : ; ’ ¢ -
0.2} —Ch e <o ~ 2.95X10
: ; ! | (9.03+12.17)X10_ ), : ~
: i 0.01] 0.17354+10.20040 i (9.68+12.24)X10 ~) { 0.28453 - {0.46775+10.20264
P 3 i 4 i
'; 0.0 ; — 0.67985+10.56646
! ' {
; . 4
o
b1, . e e I T < TR
{ (0.01320+13.19K10 1) 4
0.01 | 0.46029+10.56327 | (0.01415+13.27X10 °) 0.20738 0.68182+i0.56654
:
0.0 ! _— 0.66762+i0,75599
i
3. =5 w4 0.01364
| (7.05+11.71)X10_3)
0.01 | 0.58229+10.75428 { (7.56+i1.75)X10 ") 0.07857 0.66841+10.75603
!
0.0 ‘ — 0.64443+10.82129
7. 3 — s w0, 01250
' (3.3X10 74i8.0X10 1) ", |
0.01 | 0.6145+10.82049 | (3.55%10 “+i8.2X10 ') | 0.02671 0.64476+10.82131

t Computed from (11), with € = 0.01 and using 16-point Gaussian quadratic method.
* Computed from (12).




which leads to almost the same results as (A.17).
For comparison, sample values of L+(a/k) as calculated by the authors
and those calculated by Jones7 and Matsui16 are given in Table 6.
(b) Evaluation of M+(a/k):
M+(a/k) waé formulated in Section 4 and given by (4.17). For convenience,

it is rewritten as
M, () = M (a/l) = X D ey wl? (amy, (A.18)

in which x(o/k) is given by (A.2), and

(10 /K) (ka) fum

Mil)(u/k) = Vi3] (ka) I(1+ %?2 (A.19)

=1

in which

y;/k = V(J;/ka)’ -1=-1 /& - (Jé/ka)zl, (A.20)

and J; is the ordered zero of Ji(x).
Also Miz)(a/k) in (A.18) is given by

- .
_ ika

D oy = P ka) @+ £ empl- B2+ 2B a2 - L) + pa/l,
(A.21)
in which y is given by (A.6), and
pafio =L L -yt s RAD,)
o x Iy ) Aka) 2% | (A.22)

In the integrand of (A.22)
/““““’““‘”‘“l
n/(ka)2 - x2 =i xz- (ka)z,for x > ka.
M+(a/k) has not been calculated before by any author; therefore, the only
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TABLE 6
COMPARISON OF SEVERAL VALUES OF L_I_(cx/k) FOR

af/k = 1 AND DIFFERENT ka

e

Re {i.+(a/k)} | 'Im{L_*_(cz/k)} | 1
ka ' L-J-M#* Matsui16 Jones 7 f L-_J-M* Matsui 16 Jones7 |
0.1 50.9943 0.9957 . 0.0614 0.0609
0.5 50.9059 0.9070  0.9078  0.2726 0.2716 0.2747
1.0 50.7190 0.7205  0.7206 0.4208 0.4196 0.4235
2.0 Ed.3937 0.3955  0.3942 ; 0.4363 0.4356 0.4391
3.0 10,2351 0.2366  0.2348 0.3137 0.3136 0.3163
5.0 10,2452 0.2439 0.2485 0.2532
7.0 {0.1722 0.1705 0.1331 0.1388

10.0 {0.1369 0.1305 ' 0.1348 0.1452

!

*S. W. Lee, V. Jamejad, Raj Mittra
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check on the correctness of the numerical results is a comparison with the

low-frequency approximation as given by (6.5) and restated here as

2
. i [, (ka) 2
M+(a/k) * Rall ¥ a/k)\} + 7 [1 - (a/k)"] n[ka(l + a/k){}

(A.23)
2 2 22
a , la' a

for k << 1.

L+(a/k) and M+(a/k), as can be seen from (A.1l) and (A.18), are very
similar and one may expect similar methods for their numerical computation;
this is indeed the case. The product factor in (A.19) is identical to that
of (A.3) as given explicitly by (A.9), upon replacing Yo by Y;- This prodﬁct

is convergent and, as before,1s calculated by using a suitable choice of the

upper limit M., The first few values of Jé are found in the tables,15 and
for large values of m, the asymptotic formula
Jl= gl - g = (m - l-)Tr as m » « (A.24)
m 8s' ? 4 )

is used. The behavior of the product when the value of M is increased is
very similar to the previous case for L+(a/k), and consequently the value
of M = 300 is chosen. |

Evaluation of the Cauchy principal value of the integral in (A.22)
follows along a line similar to the previous case of (A.7). In short, the
behavior of the integral is investigated through the evaluation of an integral
of the form given by (A.1ll) thus producing an approximate formula similar to
(A.12). Consequently, it may be shown that the integral is well-behaved
around the point x = ka and can be evaluated by a formula similar to (A.13).
The investigation of the behavior of the’integrand in (A.22) for large values
of x can be similarly approached. The first part of the integrand has an

asymptotic behavior of the form
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2 1 1 71
1 - ;E.(l - —E) > 377 (A.25)
X X0 X

3G + v
The second part of the integrand in (A.22) is identical to that of (A.7)
as given by (A.15). Again it can be concluded that the absolute value of
the integrand in (A.22), for large values of x, is of the order (l/xs).
Therefore, by choosing an upper limit x = X ax for the integral in (A.22),
the disregarded part of the integral will be of the order (l/xiax).

The integrand of (A.22) assumes the following approximate value as x

approaches zero,

(ka) (a/k)

/?ka)z - x2

3 |

2 1 1
[l—-ﬂ;(l—*-z) ]Zn 1+

X I3+ Y] (x)

(A.26)

—_— %-(1 + %-x) tn[l + (a/k)].

XKoo

Considering the preceding discussion, the obtained results in (A.1ll),
(A.12), (A.25), (A.26), and some actual numerical evaluations, the behavior
of the integrand in (A.22) can be summarily given as follows. The absolute
value of the integrand starts from a certain value at x = 0. Then, in the
case x g 0.5, the absolute value slightly increases until it reaches the
neighborhood of x = ka, whereupon it rapidly goes to infinity at x = ka.
However, if x i 0.5, the absolpte value of the integrand finds a low maximum
around x = 0.5, then decreases and finds a minimum in the neighborhocod of x = kaj
whereupon it rapidly ascends to infinity. (Note that the occurrence of the

- low maximum at x = 0.5 is peculiar ;o (A.22) for'M#(a/k) and does not occur
in the corresponding case of L+(u/k). Then, after the point x = ka, the

absolute value of the integrand drops rapidly from infinity and eventually goes
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to zero as x goes to infinity. A typical behavior of the integrand of
p(a/k), as given in (A.22), is presented in Figure 12. It is apparent that

the integrand of'P(a/k) converges Lo zero slower than tha£ of q(a/k). Therefore,
in the former case the upper limit of the integration will be considered

larger than the latter case and is given by

x = constant + ka = 5 + ka. ' (A.27)
max

.Following the considerations of the case of q(a/k) in (A.7), the inrtegral
will be evaluated numerically using the Gaussian quadrature method of integration
and considering two intervals, i.e., (0 - ka) and (ka - xmax)' In Table 7,
some calculated values of M+(a/k) are given. As a check on the correctness
of the results, a comparison with the low-frequency approximations obtained
from (A.23) is also given in Table 7. o |

As a final comment on the calculation of L+(a/k) and M+(a/k), it may be
observed that factorization formulas for the Wiener-Hopf kernels as given by
(4.3) and (4.4) can be used to check both the accuracy of the factorization
process andrthé numerical computation by calculating the right- and 1eft"haﬁd
side of the aforementioned formulas separately and comparing the results.

Now the field and related quantities may be computed.
(¢) Evaluation of the scattered field and distortion parameter:

Formulation of the scattered magnetic field due to the axial incidence
of a field éf the form e-i(kz)(time dependence e_imt is implicitly assumed)

on a semi-infinite hollow cylinder, has been given in Section 5. For

convenience, it is rewritten in a form suitable for numerical evaluation.

= ka - )
HX(p’ b, Z) = N+(l) (hl + hz) ) 0 < kz < (A.28)

in which N+(a/k) is given by
) T ST 49



TABLE 7

COMPUTED VALUES OF M+(a/k) IN THE GENERAL CASE AND IN THE LOW—FREQUENCY

APPROXIMATION
[ f
: ‘ M+(u/k)
o/k . ka
f : Low-Frequency
:_. i General Case Approximation
: ;0.1 0.294+14.997 | 15
i. £
| 0.2 0.295+12.505 12.5
§7 _
'g 0.3 0.294+11.677 11.67
E 0.5 0.290+i1.021 il.
i
i 1. 1. 0.264+10.525 10.5
- 3. 0.340+10.315 ——
! .
5. 0.179+10.201 S
7. 0.184+i0.211 -
10. 0.157+10.172 | _
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" N, (a/k) = 4 (ka)* Mi (a/k) - Li (a/K) . (A.29)

In Equation (A.28), h

1 is given by
1
. J!(k+ka)
= fr M (a/k) 1 . ‘\/’

h, = - {L+(1) o £100, &) + 2ka M (1) 73700755 H, (a/%) £,00, d>)J

0 +

R AR | (A.30)

in whiéhrrr 7

=4 /1 - (oc/k):Z

- | 71, if p =0 ”
fl(p, ¢) = (A.31)

Jl(K.kp) 2
2 ko J2(Kkp) cos“¢ | , otherwise,

S

‘ll' and

1, ifp =0
(A.32)

0, 9) = V[, (c ko) 5
& - Jz(Kkp) sin ¢} , otherwise.

2 kK ¢ kp

Also h, in (A.28) is given by

2

7 N I A
hy = | {Z(ka) O TR
0

(A.33)

+ iL+(l) = d(E)

3, ®ka) -(8/0) (k2)
< ‘L_*_(iB/k) fz(p > ¢)})e

in which

% =+/1+ (3/0)°,

and functions fl and f2 are given by (A.31) and (A.32) upon substituting
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v for x. Then the total magnetic field will be given by the
equation
-ilkz)

B0, 6, 2 =H (0, 4, 2) +e (4.34)

In addition, the distortion parameter as defined in (5.19) will be given
by

i(kz)

D(p, ¢, 2) = e © H (p, ¢, 2). (A.35)

The main step in the numerical evaluation of the field quantities is
the computation of hl and h2, as given in (A.30) and (A.33). hl can
be easily evaluated by using the l6-point Gaussian method of integration in
- the interval [0~1]. However, the evaluation of h2 in (A.33) merits special
attention. As may be noted, the integral extends to infinity, but due to
the exponentially decaying térm in the integrand, we may disregard the
integrand for values of (8/k) larger than a suitable limit (B/k)} = Xyt
This 1limit should bé inversely proportional to (kz). Bearing this limitation

in mind, several sub-intervals of integration are considered within the

interval [0, Xmax]' The sub-intervals have been chosen as follows:

[0., 1.1, [Ll., 3.1, [3., 7.1, [7., 12.] for kz < 0.8,
(0., 0.6], [0.6, 1.5], [1.5, 4.] for 0.8 <kz <2.,
[0., 0.21, [0.2, 0.8], [0.8, 2.] for 2. < kz < 10.

With these provisions, different field quantities are computed and the results
obtained are given in Section 7.
A low-frequency approximation to the field Quantities, as explained in

Section 6, may be obtained by comsidering the formulas,

£ _ika 1 ikz i ka 1 o
JEREAT C-72°¢ 2% G- (A.36)
. h ~ .j_'l'_{_a_ (1 - l ). = 0 k << 1 Kk > k (A 37)
2 2 kz ikz’? P s Ka s Kz a. .
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These approximate formulas lead to the following result for the scattered

magnetic field,

I
o
-
N
~
R
i

Hx(p =
(A.38)

Finally, the approximate values of the total field and the distortion
parameter can be immediately evaluated substituting (A.38) in (A.34) and
(A.35). A comparison of the results obtained for the scattered field
by the general formulas and by the low-frequency approximation is done in
Section 7 and demonstrated in Figure 10.
(d) Evaluation of the currents:

Formulation of the current on the surface of a semi-infinitely hollow
cylinder due to the presence of an axial incident field of the spatial forﬁ
e—i(kz) is done in Section 5. The final results are repeated in a form

convenient for the numerical evaluation.

J
Z o % (I +1.), - < kz<0 (4.39)
, 2 1 2
sin ¢ ©'N, (1)
+
J s (ka)M (D)
© . 8 (I, +1I,), -» <kz <0 (A.40)
2 3 4
cos ¢ w N+(l)
in which N+(a/k) is given by (A.29). Components Il’ IZ’ 13, and 14 in
(A.39) and (A.40) are given by
1
. r j’ 2 (a/k) M#(l)M+(a/k) . L+(1)L+(a/k) B
- 1 =
oy BT ke + vk 3P (kka) + Y2 (kka))
-1(a/k) (kz)
- S 46, (4.41)

1 - (a/k)2
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[+]

[ F 2iaso M, (1M, (18/K) L (DL (18/k) |
I, = -1 : - + i
2 ’, 1 - 1i(8/k) Jiz(zka) + Y]'_Z(Eka) Ji(gka) + Yi(zka) l
(A.42)
+(8/k) (kz)
. < d('@'):
1+ (8/K)° K
: ¥, (a/k) -ia/R) (k2)
13 =f 5 5 e d('lz), (A.43)
0 (1 = a/k)[Ji (xka) + Yi,(Kka)]
and
P M, (iB/k) +(8/k) (k2) 4
I4 = -1 Jf 7 7 e d(g?- (A.44)
0 (1 -~ iB/k)[Ji (xka) + Yi (kka)]

In the formulas (A.41l), (A.42), (A.43), and (A.44), k and Kk are given

by

1 B |
Kk = V1 = (a/k)z , K = /i + (B/k)2 . (A.45)

Evaluation of Il and I3 is readily obtained by using the l6-point

Gaussian method of integration in the integral [0, 1]. However, special
attention should be given to the infinite Hmit of integrals for 12 and

14 as given by (A.42) and (A.44). Since we are concerned with the case

of z < 0, it is apparent that the exponential terms in the integrands of
(A.42) and (A.44) have a decaying behavior. Therefore, a maximum limit for
the interval of integration in (A.42) and (A.44) may be chosen (albeit
inversely proportional to kz), such that the remainder of the integrals can
be disregarded. Within this limit the interval of integration has been

divided into several sub-intervals and the 1l6-point Gaussian method of

integration has been employed in every sub-interval. The sub-intervals are
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given by

0., 1.1, [i., 3.1, I3., 7.1, [7., 12.], for kz > -0.8
[0., 0.6], [0.6, 1.5], [1.5, 4.], for -0.8 > kz > -2.

and

(0., 0.21, [0.2, 0.8], [0.8, 2.], for -0.2 > kz > ~10.

With these provisions, the circumferential and longitudinal currents have been
computed from (A.37) and (A.40), and the obtained results are given in Section
7.

In this case also, a low-frequency approximation té the currents, as
explained in Section 6, may be obtained by the following formulas,

J

z . 1 ka2 -ikz
rrardil @) e , ka <<1, |kz| >> ka (A.46)
and
J ka3 . -ikz
O o & (1 + ikz) e FE, ka << 1, |kz| >>ka . (A.47) .

cos ¢  ‘kz

A comparison of the general and approximate results for the circumferential
current was given in Section 7 and was demonstrated in Figure 11, Unfortunately,

the results obtained for the longitudinal current by the general formulas in

‘the low-frequency range are not reliable. This occurs because the errors in

the numerical evaluation of Il and I2 are cumulative; and since the current

has a very small value which is comparable to the total error, the error
plays a decisive role in the determination of the final result. The longitudinal
currents as computed from (A.39) and from (A.46) are compared in Figure 13,

Since the amount of error in the numerical evaluation of (A.39) could not
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be decreased for low frequencies, therefore, in such cases, the use of

the approximate formula as given by (A.46) should be preferred.
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Figure 1. Scattering of a plane wave by a semi~infinite, hollow, conducting
cylinder

mi > iRea

Figure 2, Branch cuts for k = sz - az in the o~plane
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Figure 3.

Contour P in the complex g~plane
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