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Abstract

The space-time integral equation of Hallen’s type in describing the

transient behavior of linear antennas is derived and solved numerically on

a digital computer. This is also applicable in solving problems involving

the interaction of EMP and linear wires. With modifications on the formu-

lation and numerical technique, the integral equation is also used to obtain

time domain responses of coupled parallel linear antennas, and scatterers

with loads, etc.
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In this note, we present the study of the effect of EMP orIlinear

radiators. The method we use is also useful to the problem of the inter-

action between EMP and linear wires; this would also be included. Earlier

attempts [1] on this transient problem were mainly carried out analytically,

transforming frequency formulations into the time domain. The development

of fast digital computers with large memory storages has prompted intense

computational studies, A commonly used technique in obtaining time domain

results is to numerically Fourier transform the computed steady-state solu-

tions. Such a technique was applied to this problem by Tesche [2]. A direct

time-domain approach seems to be more appropriate in studying early time

behavior, and often offers more physical insight than the steady-state ap-

proach. Sayre [3], Bennett and Martine [4] and Miller et al [5] used the

time-space integro-differential equations in terms of the electric field. A

magnetic field time-space integral equation was used by Bennett and Weeks

[6] to treat solid bodies, We here present an alternative approach which

results in a Hallen’s type integral equation in the time domain, i.e., the

space-time derivatives of the equation are eliminated from the integral

operator. The solution is carried out numerically on a digital computer.

This method is then extended to treat the problem of coupled parallel

wires. In this case, the numerical process is slightly more involved.

With some modifications, antennas and scatterers with loads and with losses

can readily be solved.
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The derivation

in parallel to that

MATHEMATICAL FORMULATION

of the.time-domain integral equation proceeds

of Hallen’s integral equation in the frequency

domain.

At a position ~ at time t, the scattered electric field is

given by

Js J
E (r,t)

ai(;,t)= - F&t) - lJ at , (1)

where the vector potential ~(;,t) is related to the current density

~(:,t) by

(V2-vE-<)i(:,t) =-j(;,t),

at
(2)

and the scalar potential $(#,t) is related to ~(~,t) by the gauge

condition,

V“i(;,t) + E +=0, (3)

The quantities u and e are

tant, respectively, of the

where c is the velocity of

the permeability and the dielectric cms-

2
medium, satisfying the relation Pe = L/c ,

light in the medium. The solution of Eq.

(2), satisfying the radiation condition at infinity, is,
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(4)

where .sis the surface supporting the

Specializing Eqs. (1) and (3) to

oriented in the z direction, as shown

M#,t)

8Z
+=*.

at

source j(~,t).

those of a straight wire

in Fig. “1,we obtain

0,

where Az(#,t) is the z component of ~(~,t). Using Eq. (1) and the

above equation, the z component of the scattered electric field is

related to Az by

(5)

The total electric field is the sum of the irtcidentelectric field

and the scattered electric field, and this relation is also true

for the z components,

E#,t) = E‘nc(:,t) + E:(:,t) ,

where Einc A(r,t) is the z-directed incident electric field. Letting

A
r approach the surface of the wire, and using the boundary condition

that the total tangential electric field vanishes on the surface of

a perfect conductor, we have



z=L

Z=()

2a

(a) (b)

Fig. 1 The configuration of.a thin wire as

(a) an antenna, and

_(b) a scatterer with einc(t) at an angle + to the
z-axis.
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#Az(:, t) ~ 32Az(;,t)
~ ilE‘nc(:,t).— =- (6]

322 C2
.

at2 at2

A particular solution of Eq. (6) can be obtained by using the

new variables,

n = Ct - z,

and (7)

c = Ct + z*

In terms of ~, n, Eq. (6) becomes,

(8)

me particular solution of Eq. (8) is,

Changing the variables back to the (z,t) coordinates [7], we get

.

Ap(z,t) = + u ~aE1nc(Z’,t’) a(~’,n’) ~t,dz, ,
z at’ a(z’,t’)

(Z,t)

where the Jacobian is given by

(lo)
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The limit of integration in Eq. (10) should now be changed to (z,t),

which is illustrated in.Fig. 2. “The upper limits in Eq. (9) give

which in the (zjt) coordinates become

Ctt + z’ = ct + z and ct~ - z’ = ct - z.

Zf we integrate t’ first in Eq. (10) the two limits are given by

the straight lines
.

(z-z’) and t, =

tt=t+—
t-

(Z-z’)
c .

c

The integration in Eq. (10) now becomes

z t’

Ap(z,t) =%
z J\-al-

(z-z’).—
c

aE
inc

(Z’,t’) dtt
atf

~,+ (z-z‘)
w

IJ c
aE‘nc(z’,t’) dt,‘% at’

24

z
cc

[

~inc=—
2 (z’jt --)dt’

J
-83

+
(Z-z’) )d~,

c

m

1Einc(z!,t

‘5

)dt’.

(11)
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Fig. 2 The limits of integration for Ap in (z’,t’) space
z
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Since the differential equation, Eq, (6), is only limited to the

surface of the antenna, we have

L

Ap(z,t) = &
J

E‘nc(z!,t . M )dtl,
z c

00

where L is the total length of the wire, and Z
o
= : the intrinsic

impedance of the medium.

Combining the straight wire version of Eqs, (4) and (12), and

the homogeneous solutions to the wave equation, Eq. (6), the inte-

gral equation is thus established as follow,

!1
Jz(z’,t - w) L

c
ds’ =2

1
E‘nc(z,,t-~)dz,

4+ - :’I
2Z0 c

s o

+ fl(ct-z) -1-fz(ct+z), (13)

where Jz(~,t) is the current density along the wire, fl(ct-z) and

fz(ct-f-z)are the homogeneous solutions determined by the boundary

conditions that Jz(O,t) = Jz(L,t) = O.

As $ and ~’ represent any two points on the surface of the

wire, we have

]:-:11 = [(2-2’)2 + 4a2

where $ and 1$1’are the circumferential angles of the observation

9’



point and the source point in the cylindrical coordinates.
.

Due co 4

3

,...

the axial symmetry of the wire, Eq. (14) needs to be satisf5ed only
!.,.

for one value of $. We select $ = 0, yielding

\;_+!l .. 2 $’ 1/2
- [(z-z’)2+4a2s5.n ~] . (15)

For a thin wire, we can neglect the transverse current. This implies

that the time delay term in Jz(z’,t’) can be approximated by lz-z’~/c.

For this axially symmetric current density, the current is given by

I(z,t).= 2ra Jz(z,t) , (16)

where ~ is the radius of the wire. Eq. (13) can now be expressed

in the following form,

Lm

Jf

M]I(z’,t - ~
d$l dzf

o
2 Z&

-IT8T 2-2’)2 + 4a2 sin z

‘7L(
1 J b’L )dz,=—

2Z0
Einc(d,t - c

o

+ fl(cp+ + f2(ct+z) ,

When the observation and source points

possible to use the thin wire approximation

(13), and we obtain,

(17}

are far apart, it is

for the kernel in Eq.
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+ fl(ct-z) + f2(ct+z).

Either Eq. (17) or (18)_can be used for the solution of the

thin wire problems by means of numerical techniques on a digital

computer. When the observation point is close to the source point,,

the thin wire approximation is not very accurate and the singu-

larity has to be treated with care. The physical interpretation

of either Eq. (~7) or (18) helps directly towards the procedures

of numerical solutions and will be discussed more fully in the

following section.
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111. THE NUMERICAL METHOD AND RESULTS FOR A SINGLE ANTENNA OR SCATTERER

In the first part of this section, we present the physical

interpretation and the numerical method in solving Eq. (17) or

Eq, (18), Since the method of numerical approximation of inte-

grals etc. is well documented [8], we shall present

outline. The novelty of the method perhaps lies in

only a brief

the use of the

concept of characteristic curves. This method has been proved to

be elegant and efficient for this type of problems [9]. In the

second part, some results of the computation are presented.

3.1 The Numerical Method

(a) The physical interpretation and the sampling scheme.

Equation (17) or its thin wire version, Ec~.(18), indicates

that for a specific pair of values (z,to), the current I(z’,tO -

kE-?Jl]J-i z-zr
es on the straight lines t - — =

c toandt+~=
c

to in (z’,t) plane as shown in Fig. 3. For a discrete set of para-

meter to, these straight lines form two families of trajectories,

a and 6, known as the characteristic curves [9]. On the a-family

of curves, t
o
‘t++ , or

12



dz’ =C
T_

—

t’to-+

At
-L-

2a~

Fig. 3

I

-.

z’-t’ diagram showing the two families of Q
characteristic curves. Az = L/16,
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we find current waves propagating along the wire in the + z di-

rection, Similarly on the ~-family of curves we find current

waves in the - z direction, as

dz‘
—=-c.
dt

(19)

(20)

For efficient numerical procedures, the wire is discretized

into N+l points, where N is an even integer. As observed from

Fig, 3, at the time t = O, N = 8. The distance between two neigh-

boring grid points is

2Az = L/N. (21)

The time step, as demanded to be consistent with Eqs. (19) and (20),

is

At = Az/c. (22)

From Fig. 3, it is observed that the next time line, t = At, has

on,lyN sampling points and does not include the two end points of

the wire. These two sampling arrangements, of t = O and t = At,

alternate, and are necessary for this type of sampling scheme in-

volving characteristic curves.

The solution of the homogeneous wave equation fl(ct-z) is in-

variant along an a-curve, which is characterized by a constant value

of Ct-z. Similarly f2(ct+z} is invariant along a e-curve, These

14



two functions should be included in the equations

the multiple reflection of the current at the two

Mathematically, the homogeneous solutions enforce

to account for

ends of the wire,

the boundary

conditions I(O,t) = I(L,t) = O. In effect they summarize the his-

tory of current by the boundary conditions so that the integration

may terminate at z’ = O and z’ = L.

(b) The numerical approximation of the current integral.

The simplest numerical approximation of the current integral,

i.e. the integral on the left hand side of either equation, is per-

haps the point testing or the pulse testing method [8]; both of

these were used by Sayre [3]. In the present work, to achieve

better accuracy, the current is interpolated. As observed from

Eq. (17) or Eq. (18), the current, propagating in the directions

of the characteristic curves, should have smooth values along them;

hence the interpolation is carried out linearly along the characteri-

stic curves.

Consider a point (z’,t’) between the two grid points (z-(k+l.)Az,

t-(k+l)At) and (z-kAz, t-kAt), such that all these three points lie

on the a characteristic curve through the observation point (z,t).

The current I(z’,t’), using linear interpolation, is given by

I(z’,t’) = Iki-
2’-2 + kAz

Az

where I
k
stands for the current

(Ik- Ik+l), (23)

I(z-kAz, t-kAt).

In Eq. (17), the current integral between the two grid points

15



is thus,

●

.

Current Integral

~-z-f-kAz r-z+kAZ
IJl + z Az ] - Ik+l[ z Az ]

d+’dz’

8r2
2~

(2-2’)2 + 4a2 sin z

Let z!!= z!-z, then,

Current Integral
‘k ‘ ~,Az [
-(k+l)

Z’r+ldz
Ik[l 1-Z“-p]-Ik+l[ *Z 1

d$’dz” =
k k
‘l.lk+ ‘21k+l’

(24)

+42 Sil? $-

where, for k ~ O

T: = -+ [O@++ +,
87r

(25)

16



- kAz

Jk= ~“-
‘1

-(k+l)Az

T

J0
1

d$’dz”
2~

Z“2 + 4a2 sin z

-kAz
k2
‘2=G (

f~

ii
II

~(k+l)Az ~ 2“2 + 4a: sin2 ~ ‘$dz” “

The two integrals of Eq.

Simpson’s rule.

In Eq. (18); the current

are evaluated

integral with

mation between the two grid points is,

Current Integral

-k z-kAz

=

-(k+l)Az- (k+l)

L

numerically using

Ik[l + z‘-:~Az ]FIk+l[ “-::WZ ]

fork#O

T;=

~k .
2

% [(k+l)S:+ S:],

-&kS: +’S:],

and,

thin wire approxi-

k k
‘ilk + ‘21k+l

17



-kAz + v(kAz)2+ a2 1

-(k+l)Az + (k+l)2Az2+ az

d- - VX+T ] .

(29)

In Table 1, the T: and T! values obtained from Eq. (25) and
1. L

Eq, (28) are compared for three different values of Az for Q =

2 log (L/a) = 10. It is observed that in general the two sets

values agree very well, except near the singular point z! = z.

This implies that the simpler Eq, (18) is a good approximation

Eq. (17).

of

of

At the singular point z’ = z and $’ = O the singularity is

integrable. We shall perform the integration by means of the

method of auxiliary integral [10]. In this method, the integrand

is separated into two parts, one is analytically integrable which

takes care of the.integrable singularity, and the other contains

no singularity at all. For this singularity, we have to evaluate

Eq. (25) and Eq. (26) with k = O. Applying the method of auxilary

o
integral to S , tiehave,

1

OIT

Hv
Cos $’0

‘1=2 d$fdz’f

-Az O
2

2[1 + 4a2 sin2 $-

●

✎

“3i “.
-. ..

071

Hv
c.1- COS2

+2 d~‘dzl’

-Az O
,,2

z + 4a2 sinz +

18
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Thin Wire Exact

k
k k ~k Tk
‘1 ‘2 1 2

0 0.16330 0.06957 +

1 0,03063 0.02436 0.03053 0.0243G

2 0.01720 0.01503 0.01718 0.01502

3 0.01199 0.01089 0.01198 0.01089

4 0.00921 0.00855 0.00920 0.00854

5 0.00747 0.00703 0.00747 0.00703
b -J

(a) $2= 10, Az= 1/16=0.0625

Thin Wire Exact
k

~k k ~k ~k
1 ‘2 1 2

0 0.11770 0.06131 +

1 0.03029 0.02419 0,02989 0.02397

2 0.01714 0.01500 0.01707 0.01494
1

3 0.01197 0.01088 0.01194 0.01086

4 0.00920 0.00854 0.00919 0.00853

5 0.00747 0.00703 0.00746 0.00702
1

(b) n =10, Az=~= 0.03125

—
19



I Thin Wire Exact

o I 0.07924 I 0.04908 I

1
I

0.02905
I

0.00076
I

().0;~784 I 0.00076

2 I 0.01692 I 0.00075 I 0.0:L665 I 0.00075

3 0.01189

‘:!

0.00073

4 0.00916 0.00072

5 0.00745 0.00071

(C) Q = 10, Az =%= 0.015625

TABLE I: Values of T:, T;

20
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=4[&sinh
-1 2a

~ + sinh
-1 Az

@

lr/2

-1-4
J

‘z + ~ml,l-coso,do, (30)
‘n [ 2a sine

o

and,

,0 Tr

JJV

z“ Cos g
~o=2
2 z

d@z”

-Az O
z~

Z“2 + 4a2 sin z

oTr

Hy
$’ )

+%

2“(1 - Cos ~
d$‘dz”

-Az O
,,2

z i-4a2 sin’ ~

1
Az ‘2

=.——
v’ 4a2 + AZ2 i-$ !Ln(g +Vl+$)-bal

-4f’2d=--
0

4a2 sin26 - 2a sinO](l-cos6)d9. (31)

The integrals in Eq. (30)

rule method. In Table I,

Consider the case that the source point (z’,t’) is between the

and Eq.(31) are evaluated by the Simpson’s

o 0
a few values of T

1
and T

2
are included.

two grid points (z+kAz, t-kAt) and (z+(k+l)Az, t-(k+l)At), all are

located to the right of the obse~ation point (z,t)

same 6 characteristic curve. The current I(z~,t’),

and lie on the

using linear

interpolation, is

21





integrated
--=. ... .. .. ..... . . . ... . .... —
integ~al in Eq. (17) “jr_Eq. (18),

.

-.

from z’ =otoz’=L,

k=

is thus approximated by

z
Az

[TfIk + T;Ik+l]Cntegral = xCurrent

(:14)

k=o

(c) The numerical approximation of the electric field integral.

incident.electric field integral is less important thanThe

the current integral since the latter contains

The former integral is thus evaluated by means

rule of numerical integration, yielding at the

the unknown quantity.

of the trapezoidal

observation point

(zjt) approximation,

k
L-z=—

z

Az
+ (E;+ E~+l)], (35)

.

z=—

[ Z*Z (E/Ek+~)E Integral = ~

k=O

stands for E1nc(z-kAz, t-kAt), and E~ for Einc(z+kAz,where E.k

t-kAt).

(d) The

Eq.

evaluation of the unknown current and f,, fn.J. L

be approximated, numerically,(17) or Eq. (18) can

and Eq. (35), by the

using

Eq. (34) following equation

.: 2.3
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k=l

The current at time t may be found from Eq. (36) if the current

f along the a and 13characteristics are known prior to time
and ‘1’ 2

t. To facilitate the determination of the functions fl and f2, we

extend the characteristics beyond the t = O line as shown in Fig,

3. Realizing that fl(ct-z} = fz(ct+z) = O for t sO, and that fl

and f2 are invariant along these characteristics, we find that these

functions vanish as long as the (z,t) pair is on a characteristic

curve which extends into the region t LO. To find the current at

t = At, we shall first assume the wire to be unexcited, i.e., I(z,O) ~

O, and by the previous reasoning, we find fl @t~z) = 0. Thus, the
2

current at t = At is readily found from Eq. (36). At t = 2At, since

I(O,t) = I(L,t) = O we find f1(2cAt) and f2(2cAt+L) on the outgoing

characteristics at z = O and z = L respectively. Using similar

steps, we may find I(z,t} at t = 2Qt, 3ht, @t, ●.=, and fl(ct) and

f2(ct+L) at t = 4At, 6At, ... . The computation is a step-by-step

time-marching process, based on the condition that the currents

(36)

prior to the point under evaluation ,areknown. Hence, if we can

24



perform the calculation for one time line, we

the current for all subsequent time.

From _Fig.3,

points, then, for

which is the-time

the wire, we have

we observe that if the wire

one transit time,

“T = L/c,

are able to compute

.-=-.4+?7
. .. . ——

=-= .=

is sampled at N+l

(37)

for the current to travel between the two endsof
-

2N+1 time steps. Therefore, there are (N+ ~) xL

(2N+1) sampling points within one transit time. At each point, tine ‘“

-has to use 2N+I values to compute the current and electric field

integrals. The total number of operation is thus proportional tc)

N3,

In most cases computed, N is chosen to be 8 and the’results

are quite finely resolved.

3.2 Results.

The correctness and accuracy of the results may be checked by

converting the time domain data into the frequency domain. In

Fig. 4, we present the input admittance of–a center-fed dipole with

$2 = 10 as a function of frequency. The agreement with Barrington,’s

frequency domain result [8] is good. The input admittance is given

by the quotient of the Fourier transform of the transient input cur-

rent–to the Fourier transform of the driving voltage.

For–the case of a scatterer with an incident electric field

Eo(t’), propagating at an angle ~ to the z axis as shown in Fig, l(b),

the effective incident electric field at a point z on the scatterer,

after taking the incident angle and delay into account, is

25
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Fig. 4 Input-admittance of a center-fed dipole with Q =“10.
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‘- ~inc
(Z’,t’) = EO(t~

~ co~ ~
-~cos $) sin ~ for t’ >

-c
(.38) “--

Here, we have taken the time origin of EO(t’) to be at the point

z’ = O on the scatterer.

can be represented in the

fronts of propagation for

The trajectory of this wave propagation

(z’,t’) diagram. In Fig. 53 the wave-

a few incident angles are shown in the

(z’,t’) diagram together with the characteristic grids. It is

observed that except for @ = 0° (end incident) and ~ = 90° (broad-

side incident), the wavefront trajectory intersects the character-

istic curves at points other than the grid points. Physically, the

wavefront of the incident-field propagates faster along the wire

than the induced current, hence, the initial induced current at

each point on the wire is the same and is readily evaluated by

means of Eq. (36). We thus know that at each point the wavefront

intersects with a character&tic curve, current is induced and

this value and the electric field quantity have to be taken into

account in the subsequent computation. This process of evaluation

is described more fully in the Appendix.

In Fig. 6, the center currents of a scatterer with Q =21n(L/a) = 10

under a unit step incident electric field are presented for the

cases @ = 30°, 60° and 90V. There appears to be a gradual tran-

sition from sharp to smooth responses as the electric field be-

comes more broadsided.



i.

-c

Fig. 5 z~-t’ diagram showing the intersections of the wavefronts
of Einc at various incident angles with the characteristics
curves.
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lx ● PARALLEL COUPLED ANTENNAS

In this section, the previously described formulation and

numerical method are extended to treat the case of parallel coupled

wires. Relatively few attempts have been made to tackle this

problem in the time domain, and we have to rely on the frequency

domain data to check the accuracy of the computed results, Abo-

Zena and Beam [11], and Tesche [12] obtained the transient re-

sponses of a wire above a conducting ground plane by means of

the Fourier transform of the computed frequency domain results.

By the image theory, this case is equivalent to two identical

wires, driven by waveforms with opposite polarities, separated

by twice the distance by which the original wire is above the

ground plane. The method they employed is inherently slow.

By adding the effect of mutual coupling between the antennas,

Eq. (17) or Eq. (18) can easily be extended to the case of coupled

parallel antennas. The formulation is very similar to that of the

frequency domain and will not be given here. Fcm the case of N
P

wires, we have the folI.owingintegral equatiortwith the thin wire

approximation,

30



dz‘

N
P

i-EJi=lLi
i+j

Ii(z’,t -: v(2-2’)2 +b: )

4.= ‘z’

1

~
E‘*’(.’,t - u )dz’ + flj(Ct-Z) + f2j(Ct+Z)=—

2Z. c
L:

j ‘1, . . ..NP. (39)

where the subscript j denotes the wire on which z is located, b
ij

is the perpendicular–separation between wires i and j, and a. is
J

the radius of wire j.

Equation (39) is similar to Eq. (18) except for the integrals

under the summation sign which account for the coupling effect of

the neighboring wires. The numerical solution procedure follows

closely to that of a single wire. At time t and at each point z

on wire j, there is only one unknown, i.e. I.(z,t), since the extra
J

integrals contain quantities that are time-retarded due to the sepa-

ration between the wires i and j, and are known for

step time-marching process.

Since the mut-ualcoupling effect is of secondary

to save the computational effort, the integrals under

this step-by-

importance,

the summatic~n

sign in Eq. (39) need not be evaluated as accurately as the first

integral. Consequently, the trapezoidal rule of numerical inte-

gration is used. The values b are in general large when co’mpared
ij

with (z-z’), there are no singularity problems for these mutual

3i



coupling terms. However, the time delay, being ~ /(2-2’)2 +b:j,

may not be a multiple of the time step At, hence the current value

Ii(z’, t -~ (z-z’)* +b~j) may not be that c]fa grid point.

This current value, being at an intermediate point between two

grid points at the same ZT value, is obtained by a simple time-

wise interpolation of the current values at these two grid points.

Although interpolation along characteristic curves offers higher

accuracy, the simple method mentioned above is adequate for its

purpose and has a considerably greater advanta~~eof saving in compu-

tational effort.

To compare with the frequency domain results [22]-[24], a pair

of non-staggered, identical parallel wires is chosen.

The frequency domain results by performing Fourier transforms

on the transient results agree very well with known data. In Fig.

7, we present the transient responses of the mid-point currents of

two identical wires with Q = 10, separated by half the wire

length. In Fig. 7(a), wire 1 is center-fed with a unit step

while wire 2 is not directly driven. We observe the general

increase in current magnitude of wire 1 compared with that of

an isolated wire. In Fig. 7(b), the wires are driven by unit

step voltages with opposite polarities. There is an enhancement

●

. .,

..1(’;,.

of the current magnitude.
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Fig. 7 Mid-point current responses of a pair of non-staggered
identical coupled parallel wires separated by half the
wire length, with Cl= 10.

(a) Only one wire is driven by a unit step, and

(b) the two wires are driven by two unit step
voltages with opposite polarities.
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v. LOADED WIRES AND LOSSY WIRES

The effect of a source resistance on an

to understand a practical radiation system.

antenna is important

It also turns out that

the solution of this problem in the time domain is useful for study-

ing the transient response of an antenna driven via a transmission
.

line; this latter problem will be presented in the next section.

When the scatterer is

certain length, or if

Eq. (17) and Eq, (18)

loaded with some lumped elements across a

the wire itself is not perfectly conducting,

have to be

this problem is essential to the

ceiving system.

slightly modified. The study of

understanding of a practical re-

5.1 Antennas Driven With a Source Resistance.

Consider an antenna driven at a position z = ZO by a voltage

source vs(t) with a source resistance Rs, as shown in Fig. 8.

The actual voltage across the excitation gap which is assumed to

be within one cell length is

v(t) = v5(t) - I(zO,t)Rs . (40)

For an observation point (z,t), the electric field integral contains

only terms across the gap at z = ZO, and is equal to the voltage

across the gap with a suitable time delay. Hence,
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Fig, 8 Antenna driven by a voltage source with a sou”rceresistance.
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IZ-Z()I~
E Integral = v(t - —

c

]Z-znI Z-z. I
=v~(t-&)- 1(2., t - -~ )R~. (41)

(>.,.

Using Eq. (41) instead of Eq. (35), we obtain the following equation,

z=—
Az ~

2T~10 + T~(I1+I;) + ‘~ [
k

TIIk+ T21k+J
k=l

k
L-z=—
Az

+x [T~I~+ T&+l)

k=l

Iz-zo/ 1-o1~R1
=+- [Vs(t - ~ ) - I(zo,t -–—

0
c s

+ fl(ct-z) + f2(ct+z) * (42)

For z # Zo, the above equation is readily solved for the unknown

10
= I(z,t). For z = ZO, the current on the right hand side of

(42) is not known, and the evaluation of 10 is slightly different
R

to the former case. It is interesting to note that if & << 2T~,
o

the source resistance has very little effect on the behavior of the
Rs

o
antenna; if — >> 2T , it would result in a very small current.

220 1
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5.2 Wires With Distributed Loss.

that the wire has a distributed resistance p(z)

and Eq. (18) have to be modified

For the case

Q/meter, Eq. (17)

into account,

On the surface of the wire,

by

to take this I.OSS

the total electric field is given

.
E(z,t) = E1*C(z,t) +E;(z,t) = I(z,t)p(z), (43)

From Eq. (5), we have

~2Az(z,t) ~ a2Az(z,t)
.— =- c&[Einc(z,t) -I(z,t)p(z)].

az2
2
c atz

(44)

Carrying out similar derivation as from Eq. (7) to (13), we find

that there is one extra current term appearing in the current

tegral, and the new equation with the thin wire approximation

in-

is,

E‘nc(z,,t - ~ )dz’ + fl(ct-z)
c

+ f2(ct+z). (45)
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Thus, the effect of the distributed resistance is to modify the

kernel of the current integral. Eq. (45) is readily solved by

similar numerical method as outlined in Section.111.

In Fig. 9 , the center-point current for a scatterer with

Q = 10 is presented for constant distributed resistances p(z) =

10-6 and 10‘8 d/meter under a unit step electric field incident

at 30° to the z axis.

5.3 Scatterers With Lumped Loads.

Eq. (45) can be easily modified to treat the case of lumped

loads on a scatterer. For a single load at z = Zo, located within

one cell length, the electric field across the load is

E(z,t) = & vL(t)d(z-zo), (45)

where d(z-zfi)is the d function, VT(t} is the voltage drop across
u Al

the load and is given by

vL(t) = I(zo,t)~ for

dI(zo,t)
vL(t) = LL dt for

+and

a resistance
%’

an inductance L
L’

L

vL(t) = &
J

I(zO,t)dt for a capacitance CL.

‘o

For more complicated loading, vL(t) is in more involved form and

network analysis techniques have to be applied. Substituting Eq.

,

38
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Fig. 9 Mid-point current responses of a lossy scatterer under
a unit step electric field excitation incident at 30°.
f?= 10.

(a) Resistance per unit length = 10-8 Q/m and

(b) 10-6Q/m,
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(46) into W. (45], we have *
.

J
.J2+

: ‘:rk==dz’‘+f’inc’z’”‘9’’”
/ Z-ZO I

- vL(t - — )1+ fl(ct-z) + f2(ct+z)*c (47)

The time derivative or integration that may appear in vL(t) are

numerically approximated. For z # Zo, Eq. (47) is readily evalu-

ated by the previously described procedures. For z = ZO, the un-

known current appears also on the right hand side of the equation

and has to be combined together with the unknown current on the

left hand side of Eq. (47).

In Fig. 10, the load currents for

under the excitation of a 30° incident

The resistive load reduces the current

a center-loaded scatterer

plane wave are presented.

amplitude of the unloaded-

wire. The inductive load increases the time between two subse-

quent zero crossings of the currenc, indicating an effective length-

ening of the wire; the waveform is also

tive load shows the opposite effect and

wire; the waveform is sharpened up.

smoothed out. The capaci-

effectively shortens the
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Fig. 10 Induced load current responses on a center-loaded scatterer
under the excitation of a 30° incident unit step electric
field.

(a) No load and 500 resistive load, and (b) Inductive Load
of j 63!2at full wave frequency, and capacitive load of–.
-j 53 Q at full wave frequency.
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w , CONCLUSIONS

The formulation and numerical solution of the time-space

integral equation is useful in the understanding of the transient

behavior of linear antennas and scatterers. This is of particular

interest to Che performance of RES.

This approach has been applied to a wide range of linear thin-

wire problems, including arrays and wires with lasses.
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APPENDIX

INTERSECTION OF THE WAVEFRONT AND THE,C&ARACTERISTIC CURVES .=

The wavefront is taken to begin at z’ = O at time

intersects with

t =_T, as shown

the characteristic curves only between

in Fig. 5.

(a) a characteristic curves.

The

where z
a

z’ axis.

a characteristic curves are defined

z’ = Ct-tza,

t = o. It

t = O and

(Al)

is the intersection of the characteristic curves with the

The wavefront front is expressed as

z’ = ct/cos+ .

The intersection point is thus

Cos(#)
Ct=l-cos$ ‘a

1
z’=————

l-cosf$‘a “ (A4)

If z’ > L, then, there is no intersection along the length of the
.—

wire.
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(b) ~ characteristic curves,

The @ characteristic curves are defined by,

z’ = -Ct+z
8’ (A5)

where z
B
is the intersection of the characteristic curve wieh the

z’ axis. Together with Eq. (A2) ,

et=*

and

z’= 11 + Cost)

we have

‘(3‘

z*
(3

(A6)

(A7)

If z’ > L, then, there is no intersection along the length of the

wire.

(c] The current integral.

If the intersection point with a 13characteristic curve is B

withz’ ‘Z
B’

and the next nearest grid point along this character-

istic curve is A, as shown in Fig. 5, the current integral has to

be evaluated slightly differently to what previously described be-

cause z
AB= ‘B-ZA is not, in general, a multiple of Az, For

z-z
A

= kAz, we have, for the Eq. (17) version,

Current Integral

-k TT

‘~:)f
-z
B B

-’ff
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(:k8)v8T2 Z“2 -+ 4.2 sin2 #-

This integral is similar to that of Eq. (24) and can be evaluated

by similar techniques. The thin wire version, Eq. (18), follows

the similar pattern with z
AB

replacing Az as in Eq. (A8). If the

current at point A is unknown, i.e. z = z , then, Eqs. (30) and
A

(31) are applicable with again zureplacing Az.

For the intersection with a characteristic curves, similar

expressions are obtained as above.

(d) The

For

integral

electric field integral,

the same configuration as in Fig. 5, the electric field

from point B to point A, using the trapezoidal rule is

E Integral

-k

=J [Einc(zB, tB) + EinlzA, tA)]
2ZAB

-z
B

(A!])
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