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Abstract

.

This note discusses a new EMP simulator concept, one.for
simulating the system generated EMP in exoatmospheric regions.
It uses a pulsed photon source (Bremsstrahlung or otherwise)
illuminating a space system in a vacuum chamber. There are
various important features which improve the simulation quality.
This type of simulator can use electron backscatter reduction
from the tank walls as well as use electron repelling grids.
The photons can be appropriately collimated to remove those not
incident on the space system and “get lost” holes can be used
to reduce backscatter from the vacuum tank associated with the
main photon beam in the case of high energy photons. The re-
quired vacuum in the chamber is related to the electron colli-
sions with the gas and to electrical breakdown. The electromag-
netic interactions of the space system with the test chamber
are rather important. These include capacitance to the chamber
walls, cavity resonances, and reflection of higher frequencies
from the cavity walls. Capacitance is associated with the
chamber size. Cavity resonances can be damped and high fre-
quency reflections reduced by the use of appropriate lossy ma-
terials near the cavity walls. Various figures of merit can be
defined to quantitatively characterize the deviation of various
simulator parameters from those of the environment being simu-
lated.
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Foreword

This note has been long overdue. I began writing it over
a year ago at which time I wrote what are roughly the first
three sections. The antiquity of this note became apparent
when I picked it up more recently to finish it and noticed that
I was listed as Captain on the draft. Unfortunately too many
other reports interfered with the completion of this report
until recently. The general concept for this type of simulator
is then over a year old as are the major features which go to-
gether to make up this type of simulator. Some of the quan-ti-
tative information (regarding damping and reflection reduction)
is of recent origin but the general concepts are older. In a
recent note on the various types of EMP simulators I discussed
the major features very briefly.1 This note is the detailed
note discussing this type of simulator. I would like to thank
Sgt. Robert Marks of AFWL and Terry Brown and Joe Martinez of
Dikewood for the computer calculations for the numbers in sec-
tions V through IX. Some of these calculations gave clues to
simplifying the analytic expressions and make certain numerical
calculations unnecessary.
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I. Introduction

The nuclear electromagnetic pulse (EMP) comes in several
varieties. “Depending on the type of situation of concern the
‘EMP can have different characteristics in its spatial distribu-
tion and in its time domain waveforms and frequency domain
spectra. Furthermore the interaction of the EMP with objects
of interest can be strongly dependent on the conductivity of

d any source region in contact with it and the electron transport
around it even in a vacuum.2 Consider some general space ve-
hicle such as a satellite as shown in figure 1.1. Let us di-
vide the EMP cases into two basic types: source region and non
source region. Figure 1.1A shows the source region case where
the nuclear weapon detonation point has a clear line of sight
to the space vehicle so that an intense pulse of y rays and X
rays travels at the speed of light and produces high energy
electrons by interaction with the object thereby creating the
source region in the vicinity of the object. This is the sys-
tem generated EMP. Of course there are EMP signals propagated
from the detonation point to the space vehicle but due to the
small size of the source region these signals are not very
large, at least from an EMP standpoint.3~4 In contrast to this
situation figure l.lB shows the case that a large EMP source
region in the atmosphere of the earth radiates an EMP out to
the space system. The detonation point may be deep in the at-
mosphere or, of greater interest, it may be a high altitude
detonation with a quite large atmospheric source region with a
propagation path missing the earth’s surface and reaching the
space vehicle after passing through a portion of the ionosphere.
This propagated and dispersed EMP is not considered in this
note, but there are techniques to simulate this which will
hopefully be considered in some future notes.

Considering then the general case shown in figure 1.1A we
have the general problem of the system generated EMP plus other
effects associated with the nuclear radiation (of all types).
For this case there are TRE phenomena in the system electronics
associated with the same y rays and X rays (traveling at the
speed of light to the space vehicle) which also produce the
system generated EMP. While our considerations here are pri-
marily concerned with simulating the system generated EMP using
high energy photons, TRE interactions inevitably accompany such
simulation.

In the system generated EMP it is the presence of the sys-
tem itself in the photon flux which produces the EMP source re-
gion. As illustrated in figure 1.2 the y rays and X rays from
the nuclear detonation travel from the nuclear detonation at
the speed of light and are essentially unattenuated on the way
to the space vehicle; the pulse width (time spread) is also es-
sentially the same as at the detonation position. On interact-
ing with the space vehicle these photons produce various ef-
fects such as the direct TRE effects on the electronic

.

●
6



t.

nucleardetonation
closertospace
vehicle

‘“”””-/$’
@

CJ,
.fj$

~:
nucleardetonationnear /

0
earthbutwithdetonation 0

0
pointand lineofsight
tospacevehicle *’ atmosphere
exoatmospheric

y rays
X rays

*~ o space
/0 vehicle

0

A. System generatedEMP from nuclearradiation

o space

,Hl vehicle

exoatmosphericnuclear
detonationwithlineof
sightpath(approximate)from

~$09%$.#~’’~~r::~ting

detonationtos~acevehicle .*/ ,.
intersecting~h~ 0 ‘“ source /

A /
atmosphere

----
/- region /

yrays,
Xrays

nucleardetonationin
theatmospherewith
lineofsightpath
(approximate)fc]r
propagationofEMP
tospacevehicle

.

B. EMP propagatedfrom atmosphericsourceregion

Figure1.1 Two BasicTypes ofNuclearEMP
-‘on a SpaceVehicle



6’

#

thoseelectronspulledhack to
the space vehicleby the
electromagneticfieids

forward

electrons

InternalERIP is
insidethespace

vehicle

backward
ejected
electrons

ExternalEMP
isindicated.
1 indicatescurrent.
A netpositivecharge
isinducedon the
vehicleinsidea
negativeexternal
space chargeduring
thefirstpartof
thepuise.

Yrays and Xrays
incidentfrom a
nucleardetonation

.

Figure 1.2 System GeneratedER4P on a Space Vehicle



components in the space system. Of concern in this note are
the high energy electrons emitted in various directions from
the various parts of the space system and the associated elec-
tric and magnetic fields and current and voltage densities
which produce currents and voltages at various places of con-
cern in the system. This phenomenon is the system generated
EMP which can often be split into two types: external and in-

,- ternal. The internal EMP is associated with the high energy
electrons driven into the inner cavities of various kinds in
the system. For the internal EMP the electromagnetic geometry
is determined principally by the space system itself, particu-
larly if there is little penetration of electromagnetic signal!~
to or from the system exterior so that the internal electromag-
netic phenomena can be treated as occurring in one or more
closed cavities. For the external system generated EM?, how-
ever, the space around the system is also quite important.
Thus for a simulation test with y rays and\or X rays incident
on the space system the proximity of other objects around the
system which can influence the fields etc. can be quite impor-
tant and has a significant impact on the simulator design.

There are other particles which travel from near the nu-
clear detonation to the space system such as neutrons and high
energy electrons. However these particles arrive quite spread
out in time so that the pulse width, rise time, etc. are large
compared to transit times of interest on the space system and
large compared to the y ray and X ray pulse widths. The spreacl
in pulse width is also accompanied by a decrease in pulse am-
plitude. The associated electromagnetic transients on the
space system are then also significantly reduced making these
particle fluxes less significant from an EMP standpoint. While
one could include various such particle fluxes in a simulator
of this type these are lower c)rderquestions, such as particu-
larly in the case of neutrons which introduces other complica-
tions such as radioactive activation of the simulator site and
the system under test.

In simulating the system generated EMP on a space vehicle
the space vacuum is quite impc~rtantso as to give the same non-
linear electron transport in and around the space vehicle. In
this note we consider a simulation approach for which the space
system is essentially at the earth’s surface. Thus some kind
of vacuum test chamber to cont~ainthe space system is required.

L This chamber is the “space” pa,rtof the simulator, but it has
many other features besides vacuum which significantly affect
the simulation. The chamber scatters photons and electrons
produced by a photon source such as a flash X-ray machine or a
nuclear weapon. The photon source is, of course, the other
fundamental part of the simulator and could be one or more
flash X-ray machines or even a nuclear weapon, say in an under-
ground test context. Besides reducing the photon and electron
scattering from the chamber walls there are various electromag-
netic effects of the cavity which can interfere with the
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simulation. For example the cavity can resonate just like any
microwave cavity except that the lowest cavity modes are some-
what lower in frequency because the vacuum chamber needed is a
rather large cavity. At somewhat higher frequencies associated
with the size of the space vehicle aridthe electron cloud pro-
duced around it the space vehicle can act as a radiator aridthe
chamber should not reflect too much of this radiated signal
back to the space vehicle. Thus the chamber will have to be
impedance loaded to make it look more like free space. The
presence of the chamber walls even increases the capacitance of
the space vehicle and so the chamber will have to be somewhat
large compared to the vehicle to avoid too much of a capacitance
increase.

This note defines a simulation technique for the system
generated EMP for space systems which, because of the photon
source, also simulates part of the TRE environment as well.
There are many aspects of this kind of a simulator and various
of these are briefly discussed in this note. This is just a
first note on the subject which will hopefully serve to intro-
duce the reader to the basic concepts involved. Many detailed
design calculations and optimizations can profitably be done.
This type of simulator was very briefly introduced in a pre-
vious note.l

The type of simulator discussed here is one which attempts
to reproduce the nuclear weapon environment (y rays and X rays)
under the conditions found in space outside the atmosphere and
over the entire space vehicle. As such it is a rather complete
simulation. On the other hand it is not a perfect simulation
quantitatively because of various limitations associated with
chamber size, photon spectrum, etc. These limitations are,
however, quantitative and a matter of degree so that one can
make various aspects of the simulator match the real situation
being simulated within definable tolerances; this of course im-
pacts cost and time.

In this note various important aspects of the simulation
technique are discussed. First we consider some aspects of the
photon simulation including possible sources, electron removal,
reduction of photon and electron scattering from the chamber,
and some implications regarding the vacuum. Second we consider
some techniques for reducing electromagnetic interaction of the
vacuum chamber which affects the EMP on the space system.
Third we briefly consider some other aspects of such a simula-
tor for some details of the environment and operation of the
space system in the simulator. Finally we consider some over-
all design options for a simulation facility layout for this
kind of a system-generated-EMP simulator.

.
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II. Some Aspects of the Photon and Electron Environment

First let us look at the photon source which is going to
initiate electron motion on and thereby in the vi.ci.nityof the
space system. There are various designs of such sources that
one might consider. Some basic questions regarding the photon
source can be posed in terms of the incident photon environment
produced over the test volume occupied by the space vehicle.
Comparing various aspects of this environment (in terms of the
photons directly or in terms of the electrons knocked off a
space vehicle or other simplified object) to those associated
with y rays and X rays from typical exoatmospheric nuclear det-
onations one can estimate how complete certain features of the
simulation are i.neach_case considered.

For the photon environment there i.sthe general problem c)f
making it intense enough over the entire space system. Suppose
this environment is to be simulated as a photon flux passing
through some cross section area As which might typically be
circular with radius rs. This area can be thought of as the
area of a cross section area of a cylinder with the cylinder
axis parallel to the photon clirection from the bomb to the
space system. The space system is contained entirely within
the cylinder. Of course the photons reaching the space system
can be better thought of as in a cone, but this cone is very
nearly a cylinder near the space system since the photons are
traveling very-nearly parallel at typical large distances from
the bomb r (compared to rs) c)finterest.

If U is the entire energy released by the nuclear detona-
tion* then the energy released as prompt y rays and as X rays
which go far from the detonation position can be represented as

u= fur
YY

Ux z fxu (2.1)

The fractional energy in gamma rays fy may typically be a few
tenths of a percent which is somewhat less than say 3.5% which
is the fractional energy released as ganunarays in a typical
fission.5 On the other hand most of the energy comes out in
the form of X rays so that fx is close to one, say .7 or .8.
The y ray spectrum is the fission spectrum plus that associated
with neutron interactions with various materials and has an av-
erage photon energy in the few MeV range. The average photon
energy of the X rays is much lower. Considered together the y
rays and X rays give a photon spectrum which covers a broad
range of photon energies peaking toward the low energy end of
this spectrum. Since the electrons emitted from the materials

*AII units are rationalized MKSA. While yields may be
mentioned in tons or energies in eV they must still be put intc}
formulas in terms of joules.
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(making up the space system) have energies which are a signifi-
cant fraction of the photon energies, then the emitted electron
spectrum is very dependent on the incident photon spectrum.
The electron trajectories in the presence of the electromag-
netic fields generated in and around the space vehicle are de-
pendent on the electron energy. If the fields generated are
sufficiently large the problem is then nonlinear making it de-
sirable for a simulator to have as nearly the same photon spec-
trum and photon pulse time history as a nuclear weapon, and
since photon spectrum can depend on the weapon design perhaps
more than one photon spectrum for
desirable.

For relating the y ray and X
ons we have

1 ton S 109 calories

1 calorie = 4.1868J

so that
.

1 ton s 4.1868 X 109J

As an example then one might take
corresponding to an approximately

simulation testing would be

ray energies to typical weap-

(2.2)

,.

(2.3)

u= 10~6 J for the yield,
2.4 megaton weapon. Suppose

,

as shown in figure 1.1 the nuclear detonation is exoatmospheric
with line of sight also exoatmospheric to a satellite in syn-
chronous orbit so that the distance from the center of the
earth is about 40 Mm. Let this distance also be the distance
from the detonation point to the satellite. Also let fy = .002
and fx = .8 to further specify the example.

In free space the photon energy per unit area falls off as
Ui(4~r2) where r is the distance from the detonation point.
Thus the energy flux per unit area from y rays and from X rays
can be written as

‘Y f u@y=—=
4~r2 y 4mr2

(2.4)
Ux

+x=”—= fx~
47ir2 4mr2

In these equations any asymmetry in
included. Of course the y rays and

the weapon output is not
X rays will not be uniformly

12
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radiated into each increment of solid angle. If $r is the unit
vector in the r direction th$n these results can include fac-
tors which are functions of er which are normalized so that the
integral over the full solid angle (4r) is unity; the present
approximation just has a uniform l\(47r)as this factor. The
same applies to the formulas that follow in that er is not in-
cluded in such functions as photon spectrum, etc. To i~clude
effects of weapon asymmetry one may explicitly include er and
integrals over the solid angle, or one may use the present re-.
$ults referred to any particular direction (i.e., particular
er) with bomb yield, etc. ad:justedaccordingly.

The space system as seen from the weapon lies in an area
As through which the simulator is to put photons. Taking As as
circular with As = nr~ we then have y-ray and X-ray energies
required as

(2.5)

Similarly one can define a tckal energy flux per unit area as

which gives a total energy referred to As written as

(2.6)

(2.7)

For our example case let r~ = 5 m and assume that this in-
cludes solar panels and anything else associated with the space
system in the circular area As. Our example case for comparing
simulator performance (which will crop up throughout the note)
can then be summarized as

Example weapon

[

U= 1016 J , f =
Y

.002 , fx = .8

and (2.8)
space system r = 40Mm , rs = 5 m

—

—
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This implies

Example weapon
and

space system

i

$0 ‘ .5 Jm-2 , 00=40J

$7 s 10-3 Jm-2 , @
Y

=8 X10-2J (2.9)

0’ @.4 Jm-2 , .... =30J

Certainly from an energy viewpoint such numbers look quite
tractable, even for a rather inefficient conversion of electron
beam energy to photon energy in a flash X-ray machine.

Not only might one consider the energy flux associated
with the photons; there are various other characteristics of
the photon flux which have significance to our simulation prob-
lem. In its most general form the photons can be represented
by a time dependent spectrum Sp with the normalization

(2.10)

The subscript p is used to denote photons (and similarly e for
electrons) and $ is used for particle energy (units are joules
in formulas). The units of Sp are then (Js)-~. The time vari-
able implies evaluation of s

E
at some position in space, or for

our problem this could be ta en as retarded time

t* =ti-: (2.11)

since we are neglecting any atmospheric or other effects on the
photons propagating to the space system. While the limits on
the integrals are over -~ < t < m and O ~ *P < L=these can be
reduced to only those values of t and Yp for which the spectrum
function is non zero. Note that the spectrum function is writ-
ten as a scalar; we are assuming that the photons are randomly
polarized with a uniform distribution in polarization angle. A
purely energy spectrum can also be defined as

/

!
w

SPOJP) = -m p PS ($ ,t)dt (2.12)



which is then automatically asnormalized

/

m

S ($ )d$p = 1
OPP

Having defined a

(2.13)

. spectrum function various parameters can
be defined such
sense as

as an average photon energy in a time dependent

(2.14)

per

the

‘avg

unitSince sp is
time then

the number of ph,otons unit energy and

J
w

rip(t) s s ($ ,t)d+p
OPP

(2.15)

is the distribution
time normalized as

function for

the

lumber of photons per unit

j

02

np(t)dt = 1
-Cn

(2.16)

thenphoton pulseThe average photon
be defined as

for entire

!
m

IJp (t)np
-m avg

Tp =
avg

=

(t) dt

.

H
02 co

~ S ($ ,t)d~pdt
-m OPPP

(2.17)
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These spectral considerations can be applied to the y rays
and X rays separately simply by using the subscripts y and x in
place of p. The distinction between y rays and X rays is based
on the physical processes of their generation in the nuclear
weapon. From the viewpoint of the space system, however, both
are just photons and distinction can only be made on the basis
of the energies +P of the individual photons. One might then
also define a fractional energy of the bomb yield in photons as

f
P

Efx+f=fx
Y

(2.18)

which is then approximately .8 for our example case. If one
wishes an arbitrary split can be made in the photon spectrum at
a $P of roughly 100 keV, calling those of lower energy X rays
and those of higher energy y rays.6

The average y-ray energy Tyav is roughly 1 MeV and the
detailed spectrum is affected by tfleweapon design as evidenced
by the fact that only a small fraction of the y rays escape.
The temperature inside the nuclear detonation is of the order
of 10 keV corresponding to a 15 keV average particle ener y
(3/2 times the temperature expressed in terms of energy).?
Again the detailed spectrum of the X rays escaping from the
weapon is affected by the weapon design as is discussed in var-
ious classified reports as well as reference 6. While in this
note we do not consider the detailed aspects of y-ray and X-ray
spectra, the photon spectrum used in a simulator for the system
generated EMP will have a significant influence on the current
and charge generated on the space system.

As an example of an analytic spectrum function that is
often used consider the Planck or black body spectrum which we
designate by Sb (time independent}. Let +0 be the temperature
of the effective black body radiator (which is 2/3 of the mean
energy in a simple case). With ~b as the photon energy, the
number of photons in an incremental energy interval has the
distribution function7

(2.19)

Note that the distribution function for photon energy (instead
of number of photons) has a $3 factor instead of ~~. This dis-
tribution is also often used in terms of incremental wavelength
(instead Of in remental energy, or equivalently frequency) in

!5which case a $b term appears instead of +? for the energy dis-
tribution.

.
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From

Thus
ergy

Here we need the Riemann zeta function defined by8

2c(~) = k-a (Re(u) > 1)
k=l

/

~a-l

= T+ ~“~dv (Re(a) > 1) (2.20)

the normalization condition of equation 2.13 we have

/[

m 2 i“b/$o
1 =B ,+be 1-1d+b

o

= B@(3)L(3) = 2B@3) (2.:21)

our distribution function for photon number per unit en-
is

For reference we have

C(3) = 1.202 ‘“”

G(4)
m

= .900 ““”

(2.:!2)

(2.23)

The average photon energy fc~rthe black body distribution is

17
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(2.24)

The peak of the black body spectrum (for photon number per unit
energy) is found from

Setting this to zero and calling the value of ~b for this peak
as +bo we have

v~

[1
+bo/*o

02-—=
+:e ‘ - 2

(2.26)

which gives

as the spectrum peak. Note that this is less than the average
photon energy.

Spectra like the black body distribution for X rays or the
fission spectrum for y rays or actual measured or calculated
weapon spectra can be used for detailed transport calculations
to describe the photon interaction with the space system. The
results can be compared with those produced by the photons from
a flash X-ray machine. Of course an X-ray machine does not
give the exact same spectrum as a nuclear weapon. In particu-
lar it is difficult and inefficient for an X-ray machine using
the standard Bremsstrahlung production from an electron beam on
a target to produce a photon spectrum with an”average photon
energy even approaching that from the weapon X rays. It is
typically much higher, even in the MeV ranger but the hundreds

.
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o. of keV range can and has been done with accompanying loss of
efficiency.

In order to compare various flash X-ray machines as photon
sources for our simulator one can define several characteris-
tics of the photon flux and see how they compare to the weapon
flux. These characteristics or figures of merit should be

., _based on the various physical effects of significance which re-
sult from the i“ncidentphot:on flux. We have already mentioned

‘-thetotal photon energy il~uminating the space system in the
.- area As. However other large scale parameters can also be con-

sidered. These parameters can be thought of as weighted aver-
ages of the photon spectrum with the weighting chosen according
to the physics of particular important phenomena associated
with the photon interaction. Thus one may reduce the considera-
tion of the exact details of the photon spectrum and flux to a
few numbers which characterize some of its most important fea-
tures.

One of the macroscopic:parameters of the photons from the
weapon is the dose rate which is the power deposited in the
system of interest on a per unit mass basis. This has units of
watts/kilogram abbreviated W/kg (preferred to rads/s or roen.t-
gens/s). Integrating this over the entire radiation pulse
gives the dose in J/kg (which is also the same as (m/s)2 or a
speed squared) . The dose and dose rate can be important for
TRE interactions as an example. Another example would be the
local energy deposited in a material simply from the viewpoint
of local heating and associated shock wave generation (at suf-
ficiently large dose levels).

Now the dose and dose rate are not only functions of the
photon spectrum, but also of the atomic element or elements
comprising the material. I?urthermore the dose and dose rate
can vary as a function of position in the object (i.e. space
system) due to changes in the material composition and/or at-
tenuation and scattering o:fthe photons. To estimate the dc)se
rate one can take a mean f:reepath for photon absorption in
typical materials. Of course this varies somewhat between r~a-
terials for any given photon energy, but if this is expressed
in terms of a mass type of cross section (m2\kg) then the mate-
rial density is factored out and the results only depend some-
what insensitively on the atomic number (Z) of the material, at
least in the few MeV range where Compton scattering is dominant.
Since for dose we are interested in the energy absorbed by t:he
medium then we do not want the total photon collisions per unit
mass but instead the photon energy deposited. Thus we want the
mass absorption coefficient instead of the mass linear attenua-
tion coefficient.

kg.
this

Call this mass
For any given
quantity as a

absorption coefficient M(~p) with units m2/
atomic number Z one can calculate or look up
function of +P the photon energy.9 This

19



quantity could be subscripted to indicate what Z or Z combina-
tion this applies to. For low Z materials in the middle of the
Compton region, say 1 MeV, M will be like .003 m2/kg. For
higher photon energies pair production takes over (not very im-
portant for our cases). For lower photon energies the photo-
electric

f
recess with an absorption coefficient proportional to

roughly Z /@ takes over.9 Thus at the very low photon energies
M is greatly increased and is very Z dependent.

One can define a mean mass absorption coefficient using a
given photon spectrum as

(2.28)

where the weight factor VP is used because we are weighting en-
ergy absorption. Here we have used the time independent spec-
trum although the time dependent form may be used as well to
give

For a given Z or Z combination the mean mass absorption coef-
ficient is then one useful macroscopic pararieterto character-
ize the photons from the weapon or from another kind of X-ray
source.

Call the dose rate waveform d(t) normalized such that

I
Cn

d(t)dt = 1
-m

The total dose is then dpo
rays) . This is related to
npo as

(2.30)

(and similarly for y rays and X
the number of photons per unit area

J
m

d=
P.

np M($p)~pSp(~p,t)d~p = fip 7P np
o 0 avg avg o

/

(2.31)
w

dp d(t) =
‘P.

M(~o)~psp($p,t)d~p = Mp (t)@ (t)np rip(t)
o 0 avg Pavg o

9
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o where
tions
doses
ation

subscripts, as before, allow one to separate the contribu-
from various parts of a photon spectrum. Note these
are incident doses in that no attenuation or other alter-
of the incident photon spectrum is included.

To get a feel for what the total dose is for our example
case consider various photon energies and the associated mass

. . absorption coefficients for aluminum (using ref. 9) and the as-
sociated doses for our 1016 J bomb at 40 Mm distance. For sim-
plicity pick a monoenergetic photon spectrum and use that en-
ergy for the calculations. Using just the total bomb energy at
each photon energy with
energy flux per unit area
ing table.

opo ‘ .4-J-m-2 as the incident photon
for our example case gives the follow-

Photon
energy

10 keV

100keV

1 MeV

10 MeV

Table

Photonnumber
fluxper unit

P)
area (n

,*, x ,.’:{’

13 -23.1 X lo m

3*1 x # ~-’

,,~x # #

Approximate
mass

absorption
coefficient Approximatein aluqinum dose (d )

‘“I)A1) P.
Al

2.4 m’/kg .96 J/kg

.0038m2/kg .0015J/kg

.0026m2/kg .001 J/kg

.0018m2/kg .0007J/kg

Approximate
average
doserate
(: )
‘Al

.96X 108w/kg

1.5 x 105w/kg

1 X 105 W/kg

.7 X 105W/kg

2.1 Approximate Dependence of Photon Number Flux
per Unit Area and Dose on Photon Energy for
Monoenergetic Photons from Example Weapon

As one can readily see the incident dose does not vary markedly
over the energy range 100 keV’to 10 MeV. However in going from
100 keV down to 10 keV (and even lower) there is a very signif-
icant change in the dose (associated with the photoelectric
process) . Thus from a dose viewpoint (for a given incident en-
ergy flux per unit area) the low end of the spectrum (below
about 100 keV) can be quite important. The actual incident
dose for our example weapon depends on the detailed character-
istics of the photon,,spectrmi and may be referred to other ma-
terials besides alumlnum. This dose would seem, however, to be
one useful comparison between a nuclear weapon (such as our ex-
ample weapon) and a flash X-ray machine or other photon source
as part of a simulator. Besides the total incident dose one
might similarly compare the incident dose rates based on the
time _history of the photon n~er and energy, comparing peaks,

0

rise times, etc. For our example weapon we might take a char-
acteristic time of 10-8 seconds as a rough number for estimates.
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Dividing the dose by this time (tp) gives an average dose rate
during.the pulse as

d
P.

ap5—
‘P

which is included in table 2.1.

(2.32)

As included in table 2.1 another useful number to charac-
terize the photons is the number of photons per unit area.
This is distinguished from the total energy per unit area of
the photons. Let npo be the total (time integrated) number of
photons per unit area at the space system, and szmilarly for
nxo and nyo. Then nposp(~b) is the number of photons per unit
area per unit energy, nponp(t) is the number of photons per
unit area per unit time, and nPosP(4P,t) is the number of pho-
tons per unit area per unit energy per unit time. This number
of photons per unit area is related to the photon energy per
unit area $po as

OP =1‘~pnp Sp(Vp)dVp = np ~p
o 0 0 0 avg

@p
o

‘P. = fl
Pavg

Similarly in a time dependent sense we can write

J
a

OP OP(t) = $Pnp sp(vpft~dvp = +P (t)np rip(t)
o 0 “o avg o

@p @p(t)

np rip(t)= ~ 0 (t)
o Pavg

(2.33)

(2.34)

where @p(t) is the photon power Per unit area waveform normal-
ized so that
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This gives the time dependent photon number per unit area as

electron spectra associated with various
us choose a simple flat plate example of

4P (t)
n“(t) = @

‘P. P P. Vp (t)
avg

(2.36)

These formulas can all be applied to X rays and y rays by sub-
stituting X and y respectively for p throughout. In addition
to the energy per unit area a,nddose one can also look at the
photon number per unit area t:ocompare a nuclear weapon (as in
our example case) to some other photon source for our simulator.
Relating the energy flux per unit area to the dose gives

d ‘R+
P. Pavg P.

(2.37)

dp d(t) = Mp (t)4P @p(t)
o avg o

The mass absorption coefficient then provides a direct relation
between the two kinds of quantities.

One reason to consider t;henumber of photons per unit area
is because this quantity is related to the number of electrons
emitted per unit area of the surfaces on the space system. It
is this emitted charge which is the source for the system gen-
erated EMP. Each photon from the weapon or other source arriv-
ing at the space system produces some number of electrons ~(!p) .
These electrons have some distribution in energy +e and solid
angle Q@ with respect to the incoming photons described by some
distribution function g($P,~61,Qe)normalized such that

,,

H
m

g($p,4e,Qe)dQed4 = 1
\ o all Qe e (2.38)

Of course there can be some variation in rIand g depending on
the specific system geometry and materials and the position on
any particular surface of the system from which the electrons
are being emitted. There is also some time delay for the elec-
trons to emerge from the materials but this is neglected in our
considerations.

Since there is much possible variation in the system geom-
etry then some simple geometry would help in comparing the

photon spectra. Let
uniform thickness,
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uniform material composition,
rection of propagation of the

and perpendicular to &r (the di-
photons). Furthermore let the

flat plate be large enough that edge effects can be ignored and
treat the problem on a per-unit-area basis. Such a geometry
quite naturally divides the electrons into two categories, the
forward scattered and back scattered electrons which can be de-
noted by subscripts f and b respectively on quantities such as
the fractional numbers of electrons aridthe distribution func-
tions for energy and direction. There is still the question of
what plate thickness to choose for the standard of comparison.
Since we are interested in the effects associated with large
current densities of these electrons then perhaps a thin plate,
one electron range thick at the maximum electron energy associ-
ated with a photon of energy ~p, would be appropriate.

Since the photon mean free path is generally much larger
than the range of an electron produced by that photon for most
energies and materials of interest then we might consider an
unattenuated photon flux in the material for this calculation
of the electrons escaping from both sides. This avoids the is-
sue of how thick to make the plate as long as it is thick
enough to have reached the final equilibrium electron spectrum.
Of course the photon mean free path is a strong function of $p
at low photon energies (in the X-ray region) so that for a
given plate thickness which is thicker than the largest elec-
tron range (associated with the largest energy photons) the
plate can be many photon mean free paths thick at the low X-ray
energies giving a significant photon attenuation. Neglecting
photon attenuation in the plate then can lead to a significant
overestimate of the nuniberof low energy forward scattered
electrons while having negligible effect on the backscattered
electrons. Thus our present definition neglecting photon at-
tenuation can be a useful way to compare electron yields from
different photon spectra, but it does not give all the answers.
For other comparisons one can just leave the plate thickness as
a parameter in the problem.

Note that once the electron has left the system surface it
is not followed any farther for the present comparison tech-
nique. Further collisions of the electron with the system sur-
faces can produce yet more electrons coming from the surfaces.
In the case of large photon fluxes per unit area the current
density leaving the system can be large enough to make the
problem nonlinear, altering the electron trajectories. It
would be desirable to make photon spectrum comparisons before
having to solve the nonlinear electron trajectories as a simpler
way to understand something about the adequacy of the photon
spectrum from a source of interest.

n

●

The dose comparison for the photon spectrum depends on the
choice of a material, particularly affecting the results for
low photon energies of interest. For the electron yield calcu-
I.ationsone also needs to choose a material or regard this
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choice as a parameter in the comparison. For first order corn-
parisons one might choose a common material such as aluminum.
Then an infinite homogeneous thick aluminum slab (for example)
neglecting photon attenuation would form a basis for comparing
photon spectra (and numbers) on the basis of electron number
yield, energy, and direction, This type of comparison specifi-
cation can be applied to the dose comparison as well.

Having defined a technique for comparing electron yields
(such as, for example, the one discussed above) one can then
consider various quantitative features of the electrons pro-
duced. This characterizes some important features of the elect-
rons in a few numbers. The fractional number of electrons (c)r
electron yield) produced by the incident photon spectrum is
found by ~ver-ag”lngover fi($p)for both time and energy as

This

. .

can be considered an electron ~eneration
related time dependent elect:ronefficiency

so

J
co

6= (t)np(t)dt
Pavg -w ‘Pavg

Typical electron fractions

(2.39)

efficiency. A
can be defined as

(2.40)

r. r.
= JJ n(~p)sp(+p,t)d+pdt (2.41)

-m o

are somewhat dependent on the inci-
dent photon spectrum as well as the material of interest.
Again aluminum is used as the material for making comparisons,
In reference 6 an estimate is made of the electron fraction as-
sociated with incident X rays, giving an electron fraction of
about 5 x 10-4 at a $

$
of 30 keV with a dependence of about l~fil

far from absorption e ges. Another reference summarizes some
of the spectra and electron fractions for incident X rays show-
ing the increasing electron fractions for low photon energies,,lo
For $

E
about 5 keV the electron fraction can be a few percent,

The p otoelectric process which dominates the low energy photon
interaction has a large influence on this kind of electron frac-
tion variation. Going to higher energies for y
MeV range
process.
about 7 x

the dominant photon interaction is by
The electron fraction for
10-3 (as in reference 6).
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notes deal with electron fluxes in air associated with MeV pho-
tons. Calculations have been made for various photon spectra
giving, for example, an electron fraction for forward scatter-
ing of 3 x 10-3 for a fission y-ray spectrum.1~

The electron fraction discussed here has been for electrons
emitted from both sides of the assumed infinite slab of alumi-
num. one can use ~f($p) for a forward scattered fraction and
vb(~p) for a backscattered electron fraction. For low photon
energies for which the photoelectric process is dominant the
electrons are made to move initially at about a right angle to
the incident photons. This results in roughly equal magnitudes
for Vf and rib,each roughly half of ~. As the photon energy is’
increased the Compton process takes over and the electrons are
ejected predominantly in the forward direction. This results
in ~f approaching rlwhile qb becomes a small fraction of U.

Having the electron fraction in various forms we can look
at the total number of electrons and associated current density.
The number of electrons per square meter leaving the slab from
both sides can be written in time dependent form as

/

02

ne ne(t) = n
P

v($p)sp(~p~t)d+p =
o 00

where the electron emission waveform

~

m
ne(t)dt = 1

-m

The total electron emission per unit

(t)np rip(t)
‘P

(2.42)
avg o

is normalized so that

(2.43)

area is then

/

m

n =
e ‘Po’ -mnPavg /

(t)np(t)dt = n ‘v (Tp)Sp($p)dOp
o P00

= : (2.44)
Pavg‘P.

The current density, taking all leaving electrons from both
sides as contributing with the same sign to this current den-
sity (even though oppositely directed) is just
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o Je(t) = -e ne ne(t)
o

(2.4!5)

e = 1.602 ’00 X 10-19 C

where e is the magnitude of the electron charge and Je is the
net current density leaving. The total charge per unit area
emitted is

J
co

sie‘“ Je(t)dt = -e ne
-m o

(2.46)

If one wishes, the electrons per unit area, current density,
and charge per unit area can be separated in forward and back-
ward components with subscripts f and b respectively simply by
using ~f(~p) and ~b($p) in the inte9rals.

The number of electrons per unit area can also be
to the incident photon energy per unit area (which can
veniently measured) from equation 2.33 as

‘avg ~n =
e.

Vp ‘o
avg

which requires that one know
erage electron fraction. In

the average photon energy

related
be con-

(2.4’7)

and av-

ne ne(t) =
‘avg
YP

(t) @p Op(t)
o“ oavg

a time dependent form this is

(2.4:3)

The current density and the associated charge emitted from the
surfaces of a space system are clearly important effects of the
incident photons from an EMP point of view. This places great
importance on the average electron fraction. If the photons
are specified in terms of energy flux per unit area then the
average photon energy is also very important. Sometimes the
incident photons may be specified in terms of dose. Then from
equations 2.37 we can write

27



.

.

fip d
avg P*

n =
e
o VP =P

avg avg

ne ne (t) =
o

(2.49)

‘Pav
(t)dp (t)

o
$P (t}Mp (t)
avg avg

. .

In such a case it is also important to know the mass absorption
coefficient.

While the time dependent current density of electrons
emitted from the space system is one of the most important pa-
rameters to consider in designing a simulator for the system
generated EMP on a space vehicle, other parameters also affect
the resulting EMP. The resulting current and charge densities
in the space inside and outside of the space system depend not
only on the emitted charge but also on the subsequent spatial
and temporal behavior of the electrons. This subsequent behav-
ior depends on the energy and direction of the emitted elec-
trons as well as the number of electrons. Remember that for
large numbers of electrons the problem is nonlinear. Thus one
must be concerned (for the larger current levels in particular)
with the average energy of the emitted electrons and how this
compares to the energies associated with the position changes
of the electrons in ‘the electromagnetic fields. The vector and
scalar potentials may be more convenient for considerations of
the electron energy +e. For example in the static limit only
those electrons with $e/e greater than or equal to the negative
of the scalar potential of the space system with respect to in-
finity can possibly escape from the space system. While the
average electron energy does not completely characterize the
interaction of the electrons with the fields it still is a first
order way to compare different electron spectra for the fields
they will produce.

Again for our infinite aluminum plate one can separate the
electrons into forward and backscattered parts and consider an
average energy for each with appropriate subscripts added to
the following results. With the electron fraction rl(~p)and
distribution function g($Pr~e,Qe) (normalized as in equation
2.38) we have the time dependent spectrum of the electrons
emitted at each time as
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with

In a

with

e

/

_l”w
n(VP)9(I$

fip o
avg

the normalization

time independent

se (ve,Qe,t)d~ed$edt
P

sense this is

I
lx

se Weme) = se (veirQe,t)dt
P -m P

the normalization

H
w

se ($e , Qe)df~ed$
o all Qe p

e

Adding subscripts f and b with the
dians or half a sphere

1

(2.51.)

(2.52)

(2.53)

normalizations over 27Tstera-
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forward

backward

and usin’gthe presumably known ~f and rtbwhere

Tlf+?lb=rl

(2.54)

(2.55)

then sepf($e~~e,t), Q t), Sepf($e,fle),and Sep ($e,~e)
Rote that‘ep~(~~’t~~ same manner as above.are all readily obtaine

this also invo~ves Calculating ~pfavg(t) and ~pbavg(t) as well
as ~Pfavg and ~pbavg.

Figure 2.1 shows an infinite slab which is perpendicular
to the direction of incidence of randomly polarized photons
(with uniformly distributed polarization angle). Considering
the electrons emitted from some incremental area of the slab
then by symmetry their directional distribution is uniform with
respect to @e and onl

$
depends on ee where Oe is the angle from

a normal to the slab and @e is the azimuthal angle around this
normal from some arbitrary reference axis parallel to the slab.
Forward scatter has O ~ 6e < ‘Ir/2and backscatter has m/2 < ee
< x. The electron distribution function for this slab geometry
~an be written as

(2.56)

I

where g is still considered on a per-unit-solid-angle basis.
The normalization is now

H
‘m 2’IT

J

‘lT
gs(Vp,$e,6e) sin(ee)d$ed~e = 2W gs($p,+e,ee) sin(0e)d6e

00 0

= 1 (2.57)

since the incremental solid angle is just

d~e = sin(ee)d$edfle

30
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Subscripts f and b can be used with gs as well as with g.

Besides the electron ‘energy being considered one might
consider something about the electron direction as well. One
might look at the average velocity to see how fast the charge is
moving away from the slab. For O < f3e< m/2 the average veloc-
ity of the forward scattered electrons is reduced in magnitude
beca~se they are not all traveling parallel to the normal vec-
tor n (or along ee = O). The velocity of an individual electron
is given by

i

*

.-
.-

. .

22
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1/2

+ mec
Ve($e?eef$:) = 1 - ~ c:re

(2.59)

where

2’mec = .511 MeV

z 2.998 x 108 m/s

c=&’

(2.60)

and where ~ is the electron rest mass, c is the speed of light
in vacuum, P. is the permeability of free space, So is the per-
mittivity of free space, and ere is a unit vector in the direc-
tion of electron travel. For the slab model we have the average
electron velocity for the forward scattered electrons at the
time of electron emission as

forward
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0 and similarly for the backscattered electrons by changing sub-
scripts f to b and changing the limits on the 13eintegration to
‘lT/2< @e < ~. By integrating C)ver-m < t < @ after multiplying
by n~f(t)–(or neb(t)) time ind~~pendentaverages are alSO ob-
tained. Remember that nef(t) and neb(t) are normalized so that
the complete time integral is cme.

The average electron energy is a significant fraction of
the energy of the photons producing the electrons. For low en-
ergy photons for which photoelectric interaction is important

- the initial electron energy is most of the photon energy but it
loses energy on moving through the slab. Those that leave the
slab can then have roughly half of the photon energy on the av-
erage. At higher photon energies for-which the C6mpton process
is dominant the electron is initially produced at a significant
fraction of the photon energy, say half, making the escaping
electrons still have say a quarter of the incident photon en-
ergy. Thus average electron energy is closely related to aver-
age photon”energy and in the example problem using monoener-
getic photons in table 2.1 the electron energy would have about
the same variation as the photc)nenergy. In considering a dis-
tributed photon spectrum, however, the variation of the elec-
tron fraction rl($p)has some influence, weighting the electron
energy toward those +p values having the larger rI. The average
electron velocity is strongly influenced by the electron energy
and therefore by the photon energy in line with the above dis-
cussion. However, the velocity is not simply proportional to
the energy, shifting the averaging somewhat. The electron an-
gular distribution as a function of 6e also varies with Yp and
+e, also shifting the averaginq process somewhat. Still these
are generally small factors compared to the dominant influence
of the photon energy and even electron fraction dependence on
photon energy.

In this section various aspects of the incident photon
spectrum and number per unit area have been considered from the
viewpoint of average quantities associated with resulting ef-
fects of the photon interaction. This reduces the photons to
some discrete numbers such as energy flux per unit area, number
per unit area, average photon energy, average mass absorption
coefficient, dose, average electron fraction, number Of eleC-
trons per unit area, average electron energy, average electron
velocity, and photon pulse characteristic time. Note that many
of these quantities require the definition of an idealized
space system such as an aluminum slab one electron range thick
and perhaps neglecting photon attenuation in the slab. Many
more characteristic numbers can be defined if one wishes. In
general it will be a difficult task to exactly reproduce the
desired nuclear weapon photon spectrum in a simulator using say
a flash X-ray machine. However one must have some way of judg-
ing if he is even getting close or which parameters are being
exceeded and which are deficient. This allows for progressive
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improvement in the
are rather natural
ism (as elaborated

simulation. The parameters discussed here
ones and these with their associated formal-
above) should form a useful basis for char-

acterizing photon sources for both calculational (design) pur-
poses and experimental measurements.

.-
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III. Some Aspects of the Photon and Electron Simulation

A photon source for the simulator must illuminate a space
system with a photon flux over some area As (= nr~) which we
take as circular (for convenience) with radius rs. One part of
the simulator design is this photon source. The total simula-
tor involves much more than just the photon source, such as the
vacuum tank to hold the space system and various equipment as-
sociated with the vacuum system. Thus one might even have more
than one X-ray machine, for example, for different photon
sources. One might also start out with a not very large flash
X-ray machine and as time goes on replace this machine with
progressively better machines.

There ar~ ‘va”rioustypes of pulsed photon sources one might
use for such a simulator. In order to closely approximate the
desired weapon photon spectrum and time history one might use a
small nuclear device in an underground test context. Due to
the required vacuum system for the space system environment an
underground test could be rather difficult. The lack of re-
peatability on any short time scale limits the usefulness of
such tests. Nevertheless duplicating the weapon X-ray spectrum
can be very difficult for a large flash X-ray machine because
of the comparatively low photo:nenergy for which such X-ray ma-
chines are quite inefficient given the present state of the art,
Thus one cannot completely dismiss the possibility of nuclear
weapon sources for the simulator. While most of the discussion
of the simulator design assumes the use of flash X-ray machine
sources the same design features for the remainder of the simu-
lator can be applied for the most part in the case of a nuclear
weapon source or other type of pulsed photon source.

First consider the localized source which we might call a
point source as shown in figure 3.1A. Such a source would be
typical of presently existing flash X-ray machines. A high en-
ergy electron beam strikes a localized target where photons are
generated primarily as bremsstrahlung. To gain high conversion
efficiency the electrons are made to strike the target with
several (or even 10 or 15) MeV energy. This produces brems-
strahlung with a few MeV energy which are predominantly forward
scattered. This produces a cone of photon radiation leaving
the “point” source. The photon spectrum has typical energies
in the same range as the y-ray spectrum of a nuclear weapon.
The relative number of low energy photons is, howeverl small
compared to the relative number of nuclear weapon X rays.
Nevertheless such machines exist and obtaining large fluxes of
low energy photons in short pulses is difficult by comparison.
Thus such types of flash X-ray machines are interesting for use
with the simulator, at least initially. As time goes on one
might try to improve the quality of the simulation by using
better designs of X-ray machines for this kind of simulator.

.—
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0 Typical high photon eneugy point sources for this kind of
simulator can be characterized by some half cone angle 9C as in
figure 3.1A. This angle is chosen so that for O < 0 < 6C the
photon flux has some desired degree of uniformity: C~llimate
the photon cone at this angle to get rid of unwanted photons
that can interact with the simulator structure but are not go-”
ing to be used to interact with the space system. If ~ is the
distance to the space system from the approximate point source
then the photon simulation radius rs is just

r = 2 tan(flc)= !Lec[l+ 0(0:)]
s for Oc + O (3.1.)

Then given rs because of the size of the”space system this
point source can be positioned so as to just illuminate all the
space system. Given the total photon number, energy, etc. in
this cone then the maximum densities (on a per unit area basi%)
available from this source a:refixed basically by dividing by
As.

For comparison to our example 1016 J weapon at 40 Mm dis-
tance as in equations 2.8 and 2.9 and table 2.1 we have picked
rs =5m. Let us also briefly look at typical large flash X-
ray machines. For sake of discussion consider the operating
characteristics of the Hermes IX machine.~2 This produces a ’70
ns wide bremsstrahlung pulse from an electron beam with elec-
tron energies of roughly 10 MeV giving a 4000 rad dose (in wa-
ter) at 1 m from the tantalum target. At 9° off the beam axis
the photon dose is down to about .6 of the axial value. Thus
for our example machine (neglecting dose conversion from water
and noting that 1 rad is 100 erg/ginor 10-2 J/kg) we then take

exam-pie
machine

Given the rs

example
machine

and
space
system

[“
ec ~ .05 IT= .157 radians

(3.2)
d
P.

= 40 2-2 J’/kg

value we have

[

rs =5m

2= 31.5 m

d=
P.

.04 J/kq

(3.3)
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Comparing this dose to what appears in table 2.1 we see that
this is more dose than our example weapon would give if all o
photons were 100 keV but less dose than it would give if all
photons were 10 keV. Thus a Hermes II type machine looks in
the ballpark as far as dose is concerned, but this neglects ‘
many subtleties. The weapon has a distributed photon spectrum
for which the dose (or perhaps the dose that penetrates to a
certain depth.of aluminum) must be evaluated. .,

There are, of course, various other comparisons between
the example machine (with space system) and the example weapon
(with chosen distance). For example the photon pulse from Her-
mes II has a pulse width of 70 ns while for our example weapon
we use a nominal 10 ns for a characteristic time. The average
photon energy for our example machine is a few MeV while the
weapon photon spectrum is dominated by the X rays with much
lower energy. The same discrepancy is then also noted for the
average energy of the electrons emitted from the space system
(using the previously discussed slab model) due to the close
relation of the energy of the emitted electrons to the energy
of the incident photons. Considering the average electron ve-
locity a 1 MeV (not including rest mass) electron has a speed
of about .94 c while a 10 keV electron has a speed of about .2
c. Of course there is some difference in the direction of the
emitted electrons but the relative speeds are somewhat closer
than the relative energies.

Convert the dose to energy per unit area through a mass
absorption coefficient. Taking an average photon energy13~Z4
of 1.6 MeV we have a mass absorption coefficient of about .0025
m2/kg. Then the energy per unit area and number of photons per
unit area are

example
machine

and
space
system

Comparing the

“Op = 16 J/m2
o

= 1 x 1014 m-2
.nPo

(3.4)

number of photons per unit area to the results
for the example weapon in table 2.1 the comparison is not un-
favorable except for very low average weapon photon energies.
One would come to a similar conclusion about the comparative
number of electrons per unit area emitted from the idealized
space system (slab model) . The energy per unit area is much
larger than that for the example weapon (equations 2.9). Thus
our example machine for some parameters exceeds the example
weapon while for other parameters the example machine is defic-
ient. Thus existing flash X-ray technology can do a partial
simulation of the weapoh photons to the required levels. How-
ever, some aspects are not closely simulated indicating that
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further development of such X-ray machine technology is needed
to better tailor the photon spectrum. The above results indi-
cate that some parameters can even be reduced if needed (such
as the photon energy flux) in the process of better tailoring
the photon spectrum. In building a simulator for the system
generated EMP on space systems one might even begin testing
with a particular X-ray source and then change it for somethinf3
better as tests become more detailed and sophisticated and bet-
ter X-ray source technology is available.

One of the directions one might pursue in developing bet-
ter fiash .X_-ray__m_achige.SEOz..thi.sapp+igqki.on +s,the distribu-
ted photon source concept as illustrated in figure 3.lB. This
kind ‘of simulator does not require large photon fluxes over
small areas. The space system is generally quite large com-
pared to the usual exposure volumes used in TRE tests with
flash X-ray machines. Why start with a very intense photon
flux over some small area and then expand it to a large test
area? By spreading out the photon source over dimensions com-
parable to the space system size the photon intensity near the
distributed source need be no larger on the average than the
photon intensity at the space system. One might even tailor
the direction and intensity of the photons coming out of the
source to improve the uniformity in spectrum, numbers, and di-
rection at the space system. Having a much larger photon
source area one can generate more photons, generate a better
photon spectrum, and/or have a better time history of the pho-
ton pulse. There is now more space in which to cram electron
beams, anodes, etc. allowing o“neto improve various aspects of
the photon output.

This kind of photon source might typically be an array of
small sources_ (cathodes, electron beams, and anodes) arranged
in a pattern of unit cells which fit toge-theras simple planar
geometric figures such as squares, regular hexagons, and equi-
lateral triangles. Each cell can have its own return current
paths, returning the beam current, thereby isolating an elec-
tron beam in one cell from those in other cells. Thus an array
of photon sources can reduce the problem of generating high
current electron beams and make it easier to lower the electron
energy in the beams and thereby lower the average energy of the
bremsstrahlung, although at a decrease in conversion efficiency.
One might integrate all these individual sources into a more
continuous source provided return currents are distributed
throughout the electron beam which is traveling toward the
bremsstrahlung target. Such current paths, say on small wires,,
can effectively isolate one part of the beam from another.
Such added current paths can be oriented such that some are
parallel to the electron beams while others are perpendicular
to the beams to effectively alter some of the macroscopic fea-
tures of the ratio of electric and magnetic fields associated
with the beams (or beam array) . The added current paths might
then be oriented at some optimally chosen angle to achieve
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similar effects. If standing waves of the electron beam in
such a structure are troublesome one might introduce some ran-
dom variations in the positions of such current paths depending
on the details of ,the problem. Figure 3.2 shows some various
neutralizing current path geometries one might consider. Of
course for some cases one may not drift the beam but position
the cathodes fairly close to the anodes so that while the mag-
netic field neutralization is needed the electric field neu-
tralization is avoided. However if the cathodes, or some of
them, are far b&hind the anodes to reduce packing problems and/
or to spread out the cathodes over a larger area than the anode
array (thereby having a convergent electron beam array) then
beam drifting is required and gases, metallic conductor arrays,
and/or some combination of the two might be profitably used.
In addition a magnetic field parallel to the beam may help in
controlling it. In a beam array such a guide field may need to
be periodically reversed to keep the guide magnetic field lines
closed on themselves so as not to significantly fringe out to
the space system.

The cathodes and anodes can also be designed to fit into
the distributed photon source array. The cathodes can be sepa-
rated from one another or some other technique can be used to
allow the return current paths to pass through the cathode re-
gion so as to isolate portions of the electron beam array from
one another. Each cathode might be further segmented in vari-
ous designs such as are used to obtain good field emission
characteristics as required for the beam admittance (or perhaps
here admittance per unit area).

Perhaps more significantly the anode can be split up in
several ways to improve the conversion efficiency from elec-
trons to photons, particularly low energy photons. This can be
achieved by using multiple anodes for the electron beam to pass
through consecutively, each anode being only an appropriate
fraction of an electron range thick. The direction to the tar-
get would be off at some angle from the beam so that the low
energy photons which are produced somewhat isotropically only
have to travel part way through one of the anode foils on the
way to.the space system. This is compared to each electron in
the beam which passes through a large number of anode foils.
Another way to achieve this effect is to make the electron beam
make multiple passes through a single thin foil. If the passes
are all through the same area then the local space charge den-
sity is increased, limiting the current density somewhat. The
multiple pass might be achieved through electric fields by puls-
ing the anodes positive with respect to the cathodes which are
electrically grounded to the pulser body. One might have two
cathodes to each anode, one on either side producing two elec-
tron beams traveling in opposite directions. If one of the
cathodes is in the way of the desired photons it could be made
essentially transparent by making it look like a screen where
most of the cross section area would be holes. To this dual

.
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cathode arrangement one could also add a guide magnetic field
as well as various additional beam directing conductors and
gases. Figure 3.3 shows some of these numerous possibilities.

Magnetic fields can also be used to make multiple pass
anodes. One can simply make the electrons race around as in a
cyclotron by using a magnetic field perpendicular to the elec-
tron beam. The electrons could be made to strike the same foil
once or twice in one circular path. One or more special en-
trances for the electron beam(s) would be needed to inject the
electron beam(s) into the transverse magnetic field. In such a
scheme multiple foils could also be used and the approximate
electron paths need not be circular (or spiral as a better ap-
proximation) but might be helical (with a spiral decay). An-
other scheme might have oppositely directed magnetic fields on
opposite sides of a foil, both fields being parallel to the
foilt by having the foil itself at least transiently carry part
of the guide-field-producing current. Such a combination of
guide magnetic fields would make the electrons circle in oppo-
site directions on opposite sides of the foil and thereby make
the electron cloud drift along the foil as the electrons passed
back and forth through it. Clearly there are many schemes for
making electrons make multiple passes through thin foils so as
to reduce the attenuation of those low energy photons produced
in the anodes which are headed toward the target. Perhaps some
combination of electric and magnetic field geometries with foil
geometries such as those above will prove optimum.

As part of an optimum anode design one can control the
relative distances that electrons and photons of interest travel
through anode foils. Since the space system is in one general
direction from the anodes then the anode foils can be aligned
such that their surfaces are approximately perpendicular to
this direction. The photons of interest then have a minimum
foil thickness to traverse. However the electrons in the beams
need not travel in this same direction. Their paths through
each anode can be significantly larger than the foil thickness
by striking the anode at some optimum grazing incidence angle.
Thereby the electrons can deposit a greater fraction of their
energy while still keeping the foil thin to allow more of the
low energy photons to escape in the direction of interest. The
ratio of electron travel distance through the foil to the foil
thickness is then greater than one and can be thought of as one
of several possible figures of merit for the anode array design.

Since the lowest energy photons that propagate to the space
system come from the last part of the foil thickness (because
of the high photon attenuation in the foil at sufficiently
small photon energy) then the foil might even be laminated or
composed of several thinner foils. The foil nearest the space
system would be chosen to have atomic number Z to optimize to
production of the very lowest energy photons. The next foil
back would be designed with slightly higher energy photon ●
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production in mind, and so on with successive layers. It is
not clear how much improvement if any one can achieve this way
but it is something to consider.

Now we don’t want photons going everywhere with all direc-
tions in this simulator. We wish to illuminate only the space
system, and illuminate it with photons traveling in approxi-
mately one direction. A technique which should then be consid-
ered is collimation. First consider collimation in the case of
a single point source as illustrated in figure 3.1A. The con-
cept of collimation is rather straightforward in this case. At
some position between the idealized point source and the space
system place a thick photon attenuator with a hole in it which
allows only those photons directed toward the space system to
pass through the hole, the rest being severely attenuated.
There is some scattering of photons off the “edge” of the col-
limator hole but such scattering can be considered in the de-
tailed design of the collimator. Multiple collimator assem-
blies can be considered so as to improve the overall co2lima-
tion. Generally one would like the collimator assembly to be
fairly close to the photon source so that the collimator assem-
bly does not approach the space system so closely so as to make
the other items which come after the collimator be placed un-
necessarily close to the space system and thereby increase some
of the electromagnetic distortion associated with the presence
of the simulator structure.

lf one uses the distributed source type of photon genera-
tor as shown in figure 3.lB then the collimation problem is
somewhat more complex. If one attempts to collimate the photon
beam as a whole then the distributed photon source must be
moved far away if it is to look like a point source for a col-
limator to effectively remove the photons not directed at the
space system while removing no photons which are directed at
the space system. Such a collimator for the whole beam then
does not look very attractive because a far away photon source
means small efficiency in getting photons to the space system.
If one notes that the distributed photon source can be made of
many small sources, such as indicated by the patterns shown in
figure 3.2, then the collimation can be done fairly close to
the distributed source. Each small photon source can be colli-
mated in a manner like that shown in figure 3.1A for a single
source. Each small source would then send a photon beam through
a collimator at its own optimally chosen angle to illuminate
the space system (and very little more than this).

One of the undesirable byproducts of the photon source is
electrons directed toward the space system. These need to be
deflected away from the space system such that they do not en-
ter the test chamber. Note that one cannot simply stop these
with a slab of material because the photons knock electrons off
such a slab to replace the removed electrons. Perhaps the
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e
current of such electrons can be reduced, at least for the low

energy electrons by having a very thin layer of low Z (atomic
number) material as the last material on the photon source.
This layer would be one electron range thick at some appropri-
ate small electron energy. This layer should be thin enough tc)
not appreciably attenuate the low energy photons.

The removal of the electrons in the photon beam can be ac-
complished by static electric and/or magnetic field distribu-

. tions. One method would use a negatively charged grid with re-
spect to the photon source and the vacuum chamber to turn the
electrons back. Of course the grid potential has to be larger
in magnitude than the largest electron energy divided by the
electron charge. Note that between the grid wires the poten-
tial does not have as great a magnitude as on the wires. While
the photons themselves knock electrons off the_grid this is a
comparatively small number because of the small wire size in
the grid.15 Of course one can also minimize the electron emis-
sion from the grid by minimizing the atomic number of the grid
material and by the use of low atomic number coatings on the
grid wires. How effective this technique is depends on the en-
ergy of the photons and electrons being generated. For elec-
trons in the 100 keV range this technique should be rather ef-
fective. However, for megavolt electrons the required grid po-
tential becomes rather large. In such cases magnetic deflec-
tion may be more interesting and transverse electric fields may
also be useful. For a distributed source such transverse mag-
netic and/or electric fields may need to be periodically re-
versed in the photon source array so that polarities of the
transverse electron removal fields reverse between adjacent
small photon sources. Certainly one does not want a large mag-
netic field from the photon scurce to appear at the space sys-
tem. A similar technique for turning back the electrons from
the photon source is to operat:ethe anode(s) and other parts of
the photon source(s) at a positive potential with respect to
the vacuum tank etc. This technique can also be combined with
the negative electron repelling grid.

There is in general a fair amount of electrical noise sig-
nals generated by the photon source. This should be shielded
from the space system without much intervening material (which
would emit electrons due to the photon environment) . A grid
with wires running in two or more directions so as to interlace
with conducting connections forms such a shield. This grid can
also be the electron repelling grid.

This grid concept is also useful for reducing the electron
backscatter (due to both incident photons and incident elec-
trons) from the walls of the vacuum tank. As shown in figure
3.4 there &re ‘various grid schemes possible. Such a grid
structure can completely surround the space system with the in-
nermost grid forming an approximate Faraday cage surrounding
the space system and keeping out external electromagnetic

(g)
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signals. While this makes the volume internal to the grid a
resonant cavity one can place electromagnetic damping struc-
tures inside this volume as discussed later in this note. The
volume behind the innermost grid can also support resonances
but these can also be damped with resistive loading in posi-
tions to intercept the transient signals such,as at the power
supplies which charge the grids. Resistors can also be placed
in the grid structures or extra electron emitters themselves,
except for the innermost grid since the innermost grid is in-
tended to be an approximate Faraday cage. Various other struc-
tures for electromagnetic damping, such as those to be dis-
cussed later, can also be placed outside the innermost grid and
inside the vacuum tank if desired.

Figure 3.4A shows the case of a single grid at negative
potential inside the vacuum tank. This is perhaps the simplest
type of structure for repelling the electrons from the walls
yet not turning back the electrons arriving from the space sys-
tem. The space system is then at some negative potential (not
quite the negative grid potential) given by the potential of
the test volume before the photon pulse arrives provided that
the space system was at the vacuum tank potential before charg-
ing the grid and leakage currents to or from the space system
can be neglected or compensated for. One disadvantage of this
technique is that if one wishes to transmit electrical signals
on conducting wires from the inner volume near the inner grid
to outside the vacuum tank then conducting wires cannot be used
without introducing large potentials (in magnitude) into the
inner volume and/or at the vacuum tank on the wires of interest.
Note that the tank wall can be coated on the inside with low
atomic number material to reduce the electron emission.

An alternate grid structure is that shown in figure 3.4B.
In this case the innermost grid is electrically shorted to the
vacuum tank wall. Between this grid and the tank wall there is
a low atomic number electron emitter plate maintained at a Pos-
itive potential with respect to the g>id and tank wall. Th~S

emitter intercepts the electrons emitted from the tank wall;
the potential turns back the electrons emitted from this spec-
ial emitter toward the emitter (up to some maximum energy not
quite the magnitude of the electron charge times the bias po-
tential) . This emitter need not be a continuous sheet; there
should be holes throuqh it for electrical connections. It
could be a “venetian ~lind” type of structure to try to have
the direction of maximum electron emission not toward the mid;
it must, however, be opaque to electrons coming from the t~nk
wall over most of its area. This general type of electron
trapping structure has the advantage of allowing electrical
signal paths (wires) to pass frc>mthe tank wall to the grid
without a potential change. However, the potential of the in-
ner volume is not quite that of the grid due to the influence
of the electron emitter structure between the grid and tank
wall.
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In these various electron trapping schemes there are con-
nections which must be made between the various layers (grids,
emitters, tank wall) to maintain them at certain relative po-
tentials. When the photons and electrons arrive at these
structures there will be a significant fast transient electro-
magnetic pulse throughout these structures. The grid struc-
tures etc. must have a high frequency response for maintaining
the desired potentials throughout the pulse within some toler-
ance. The various connections between the layers (shorts and
power supply connections) should then be placed closer than the
fastest times in the pulse. The lead and power supply imped-
ances should also be sufficiently small so as to not limit the
response time for maintaining the desired potentials.

The effectiveness of the grid system for reducing electron
backscatter depends on the electron (and photon) energies. If
the electron energy is low because of the photon source being
designed to give only low energy photons then the grid system
can be quite effective in trapping the electrons. On the other
hand if high energy (say MeV) photons are emitted by the photon
source then the required grid potentials can get to be quite
large. If~ however, the grid is used at a lower potential then
one can still trap the corresponding lower energy electrons.

For trapping the high energy electrons and photons as well
one can use a get-lost hole. As indicated in figure 3.5 such a
“hole” would be located so as to intercept the photons,directly
from the source which pass through the space system. If the
hole is sufficiently deep compared to its diameter then the re-
sulting electrons and photons scattered from the walls of the
hole are attenuated geometrically before returning to the test
volume. One could still have the grid system covering the in-
side of the remainder of the vacuum tank and cover the get-lost
hole as well for extra electron removal and to complete the in-
ner approximate Faraday cage. Inside the hole which intercepts
the main photon beam one can place additional electric and mag-
netic field distributions to bend the electron paths back to
the walls. It is this portion of the tank wall in direct il-
lumination of the photon beam (except for some attenuation from
the space system) which is most significant from the point of
view of electron and photon backscatter.

. .

The question of the energy of the incident photons is
fairly important in determining the number and energy of the

‘electrons emitted from the space system materials. The photon
spectrum from photon sources such as flash X-ray machines will
be limited by technology (which should improve with time). One
might try to compensate for undesirable aspects of the photon
spectrum by coating parts of the space system with materials of
appropriate atomic number to shift the electron spectrum and/or
numbers in the desired direction. Such materials should also
be chosen so as not to interfere with the electrical character-
istics of the system.
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Figure 3.5 gives a rough overall view of the test chamber
geometry, showing the photons incident from one side with the
special backscatter reduction system (including get-lost hole)
on the opposite side. The grid system surrounds the space sys-
tem and isolates it from the vacuum tank wall. The electromag-
netic damping structure is inside the grid structure to couple
to the fields in the test volume; this is discussed in later
sections. The test chamber is evacuated to simulate space con-
ditions. However, some residual gas is left because vacuum
systems are not perfect. How good a vacuum is required depends
on several factors which will now be briefly indicated.

First the residual gas should be small enough that the
number of electrons produced by photon interaction with the gas
is small compared with the number knocked off the space system.
Viewed another way only a small fraction of the photons from
the photon source should scatter off the gas molecules. This
implies that the photon mean free path (for first scatter) be
large compared to the maximum dimension of the test volume.
Second the trajectories of the electrons knocked off the space
system should not be altered by scattering in the gas. This
means that the typical electron ejected from the space system
should on the average scatter significantly less than once in
traveling across the test volume. For this purpose a scatter
is counted as such if it makes any significant change in the
electron’s energy or direction. Third the number of low energy
conduction electrons (ionization) generated in the background
gas by scattering of the high energy electrons (and photons)
should be small compared to the number of electrons knocked off
the space system. This implies that each high energy electron
knocked off the space system should on the average produce much
less than one electron-ion pair in the background gas in travel-
ing across the test chamber.

There are other effects associated with the background gas
and the associated drifting of the low energy electrons in it.
In particular the space system is charged positive by the pho-
ton pulse and the charge is eventually neutralized in space by
ions and low energy electrons.6 In the type of simulator con-
sidered here this could be accomplished by the introduction of
low energy electrons from electron guns connected to the tank
wall and/or inner grid with appropriate power supplies. The
number and time history of such electrons would have to be ap-
propriately controlled. There is also the problem of electri-
cal breakdown in the background gas because bf the grid poten-
tials and the transient fields associated with the system gen-
erated EMP. The background gas number density should be small
enough to avoid such breakdown by allowing the lower energy
electrons moving under the influence of the fields to travel
across the test volume while producing negligible additional
ionization due to collisions.

50

.

@



.

(B There are thus various complex physical processes associ-
ated with the background gas which must be considered in the
design. Some of the more important of these have been briefly
discussed here. Much should be done to quantify these effects
in detail for use in designing specific simulators of the pres-

. ent general type.

One more characterist<c_of the space around a space system
of interest is the presence of a background ma”gnetic field such
as that due tc the earth. Depending on the position of the
space system the amplitude of this field can vary considerably.
In particular as the space system altitude is increased away
from the earth (say to synchronous altitude) the earth’s mag-
netic field decreases significantly. The presence of such a
magnetic field can significantly alter the trajectories of the
electrons kno.cke.d..o.fft.h.e..spacesystem. A simulator (for the
system generated EM? on space systems) which is located on the
earth surface will then need to compensate for the local earth’s
magnetic field and produce the ambient magnetic field desired
on the space system. This can be accomplished by constructing
large coils around the vacuum tank with optimally chosen posi-
tions and currents. APProFN~@te power supplies are needed to
drive the currents in such a coil system unless superconducting
coils (or permanent magnets) are used. Note that if permeable
steel is used for the vacuum tank then the permeability of the
steel and the geometry
and positions required
field.

of the tank influence the coil currents
for canceling the earthls magnetic’>
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Iv. Some Electromagnetic Features of the Test Chamber

Thus far the simulator has been discussed from the point
of view of the photon and electron transport associated with
the various spectra and materials and how this corresponds to a
nuclear weapon and a space system in space. Other aspects of
the ambient space environment such as the earth’s magnetic
field also influence the electron motion and have been briefly
discussed. In this section we consider one of the most impor-
tant aspects of the simulator design, namely its electromagnet-
ic performance in simulating the electromagnetic conditions of
space as far as the space system response to the system gener-
ated EMP is concerned. The problem is the presence of the vac-
uum tank, backscatter reduction grids, and other large objects
associated with the simulator which interact with the transient
currents on the space system and thereby change the response of
the space system.

Starting with the vacuum tank, if it is metal then it
scatters the fields associated with the currents on the space
system and in the space around the space system. One could try
to reduce the scattering from the vacuum tank by segmenting the
tank walls with insulators at some increase in problems of
maintaining a vacuum. One might also try to make a dielectric
vacuum tank to reduce its electromagnetic interaction with the
fields. However, if there are grid structures surrounding the
system to reduce electron backscatter, these grid structures
strongly interact with the transient electromagnetic fields.
In particular if the innermost grid is an approximate Faraday
cage (for noise suppression) then the vacuum tank walls are
somewhat shielded from the space system (except for the elec-
trons passing through the grid) and the innermost grid, not the
tank walls, is the most important for its electromagnetic in-
fluence on the space system.

Assuming then an approximate inner conducting boundary,
such as the innermost grid (or tank wall if impedance loaded
grids are used), then one must account for the interaction of
this boundary with the space system. Such interaction should
be reduced to acceptable levels. ‘Thenext several sections
consider some aspects of this interaction and some techniques
for reducing it.
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v. Capacitance Between the Space System and the Test Chamber

One of the distortions of the space system response asso-
ciated with the walls of the test chamber is the increased ca-
pacitance of the space system. This is a low frequency param-
eter. In free space far from any other objects the space sys-
tem has a certain capacitance to infinity. The electrons
knocked off the space system charge it to some positive poten-
tial with respect to infinity. Inside the test chamber the
space system capacitance is increased thereby decreasing the
potential of the space system for the same number of electrons
escaping to the walls. This lqwer potential means that elec-
tro-nsof lower energy can escape to the walls thereby increas-
ing the charge left on the space system after the low energy
electrons have returned to the space system. The presence of
the electron cloud affects this capacitance. In this note we
only consider the capacitance without the electron cloud around
the space system. Note t-hai-incalculating’ the capacitance the
presence of grids and lossy damping systems should be counted
as part of the test chamber walls; these items can increase the
capacitance and such effects should be included.

A simple first estimate of this capacitance increase can
be obtained by considering a spherical capacitor as shown in
figure 5.1. The potential between the concentric conducting
spherical shells is just

Qv=—
4meor

where Q is the charge on the inner sphere.
just

c Q

[1

11-1
‘E=4~&oq-q

(5.,1)

The capacitance is

(5.2)

where rl and r2 are the radii cjfthe inner and outer spheres
respectively. The reference capacitance or capacitance to in-
finity of the inner sphere is

The relative capacitance can be computed from

[1
-1

c ‘1—=
cm l-—

‘2

(5.3)

(5.4)
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9P The relative capacitance increase

[1
-1

ACc-C~=lrl—=
cm cm -F--’ 1

2

[1
-1,

‘121-7 ==
‘2 2

which for rl/r2 + O is

2
AC ‘1

(( ))
‘1—=—

C. . r2 ‘o ~

is

[1
-1

‘2 ~—-
‘1

(5.5)

(5.6)

This relative capacitance increase is one figure of merit for
this type of simulator; it should be kept small compared to 1.

The relative capacitance increase can be calculated for
various shapes of space systems and inner chamber walls (in-
cluding grids and damping structures) . A useful approach to
this problem is to approximately separate the space system ge-
ometry from the chamber geometry. To do this one can define
effective values of rl and r2 from two separate electrostatic
boundary value problems. Consider the space system with some
net charge in free space and calculate Cm, its capacitance to
infinity. Use this to define #

c;-

‘1 ‘~ (5.7)
eff

This is a special type of mean radius for the space system.

As one goes farther away from a charged space system in
free space the equipotentials are approximate spheres. Finding
the best fit for the center of these approximate spheres in the
limit of large rad~us for the equipotential surfaces defines an
electrical center rcl for the sl?acesystem. The electrical
center can also be equivalently defined from

; =“Jspace (5.8)
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where p(~) is the charge density on $he system. Note then that
for a coordinate system centered on rc~ the system has no elec-
tric dipole moment. The leading term in the potential and
electric field expansion comes from the electric monopole mo-
ment (or total charge) given by

Q=.1 P(:)dV (5*9)
space
systern

The position of the electrical center of the space system is
sometimes cbvious from the symmetry of the space system or of
the idealized shape representing it.

Having reduced the space system to an effective radius and
an effective center let us do something similar for the test
chamber. Assuming that the space system is very small compared
to the inner test chamber dimensions (including grids, damping
systems, etc.) then replace the space system by an arbitrarily
small charged sphere of radius ro. Move this test sphere in-
side the test chamber until its capacitance to the test chamber
is minim~zed. Find the limit of this position as r. + 0. This
defines rc2r the electrical center of the test chamber. In
some cases of test chamber geometries the position of this min-
imum may not be unique and/or there may be relative minima in
the test volume. However such cases are not very useful for
test chamber design if one wishes to test only one space system
at a time.

Having found the electrical center ~c2 of the test chamber
one can then find the effective radius r2eff for the insid$ of
the test chamber. With the small test sphere centered on rc2
calculate the capacitance and use

(5.10)

which comes by replacing rl by r. and r2 by rz f in equation
4.2 and then taking the+limiting case of a smaf$ test sphere.
Note that the position rc~ of minimum capacitance for the small
test sphere is that position which maximizes r2eff.

In calculating r2eff one must include the various equip-
ment attached to the inside of the tank walls. This includes
the grids for electron capture and the electromagnetic damping
system which may be also sparse like a grid so as to emit few
electrons in the photon and electron environment incident on it.
The innermost of these sparse structures is the most important
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0 for determining r2eff. As a first rough estimate of r2eff one
could simply choose an average radius from the geometric center
of the test chamber (assuminf,~appropriate symmetry) to the in-
nermost conducting (even fin~tely conducting) materials which
would be placed inside the vacuum tank connected to the tank
walls through various impedances, etc. Since these structures
are somewhat sparse then r2e~.fis somewhat larger than an esti,-
mate which assumes these strictures a conducting surface at the
innermost position. The actual r2eff is increased and the
extra distance can be estimated for grid like structures using

.’ various boundary value problems such as for two dimensional
grids.16

By use of the technique of spherical inversion the inter-
ior boundary value problem fc)rr2eff can be converted into an
exterior boundary value ~robl.emin which the arbitrarily small
test sphere centered on rc2 is converted into an arbitrarily
lar~e sphere approaching infinity.17 The inversion is centered
on rc2. By this procedure the calculation of r2e$f is con-
verted into a calculation for rleff (with appropriate conver-
sion factors) with a somewhat.altered shape. One can then
choose an appropriate geometry (such as an ellipsoid) for the
inverted exterior geometry and invert it back to an interior
problem of interest so_a_sto tabulate r~eff for various inter-
ior chamber shapes.

For the exterior problem such as used for calculating
rleff, the effective radius of a space system, there are many
shapes that one could consider and tabulate. One of the sim-
pler of these is the ellipsoid which has a closed form solution
in terms of an elliptic integral.17 An ellipsoid with three
‘separateprincipal-axis radii,gives some flexibility in trying
to approximate objects of interest. By using such a shape to
enclose a space system of interest one can obtain an upper
bound on rleff. Such a shape inscribed inside the outer bound-
aries of a space system (if conducting) can be used to obtain a
lower bound on rleff. An average of upper and lower bounds can
be used as an approximation of rleff.

This low frequency capacitance between the space system
and the test chamber is one of the definable parameters for the
interaction of the two. There are various detailed boundary
value proble~s to be+solved and tabulated for rleff and r2eff
(as well as rcl and rc2 in some cases). Various geometries
such as ellipsoids, el~iptic cylinders, rectangular parallele-
pipeds, etc. can be considered. For cases that the internal
test chamber dimensions are not much larger than the external
space system dimensions then the problem does not quite split
into a separate consideration of the space system and test
chamber parameters as outlined above. Such more complex mutual
interaction problems can also be considered. Many specific
boundary value problems need to be considered in detail to def-

,)
initively understand this type of system-simulator interaction.
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One effect of the capacitance increase is to allow more
electrons toreach the cavity walls than would escape to infin-
ity from an object in free space. The potential between the
space system and the cavity walls is also less than the poten-
tial to infinity for the same object in free space. This ef-
fect can be partially compensated by giving the space system an
initial positive charge. This charge can be introduced through
a high value resistor string (with small cross section) from a
power supply connected to the innermost electron trapping grid
(and damping structure) or to the tank wall. The resistor
string would have large enough resistance that no significant
current can flow through it during times of interest for the
simulated system generated EMP. This technique has a drawback,
however, in that it alters the electron trajectories outside
the space system at early times during the pulse, whereas a
state of no initial charge would give a more realistic simula-
tion at early times. Of course, one could test the space sys-
tem with various different initial charges in the same simula-
tor. After tests this charging system can also be used to dis-
charge the space system.

Part of the charge (negative) that escapes to the tank
walls should ideally return to the space system (if it were in
space) at some time characteristic of the round trip time of
electrons of less than, but near, the energy of the electrons
that escape from the space system. One might do this through
resistive paths to the space system, but this would have the
significant disadvantage of only returning these electrons to
chosen discrete positions on the space system conductors. Fur-
thermore such resistive paths would complicate the design of
either or both the equipment for placing an initial charge on
the satellite and the paths for returning electrons to the
space system. One could better place electron guns at various
positions around the tank wall (or on the innermost electron
trapping grid) to reintroduce electrons with an appropriate
slowed down waveform and at appropriate energies.

Note that capacitance increase is only an approximate way
to characterize the increase in electron loss to the tank wall.
In the presence of space charge the capacitance changes. Thus
one can define a capacitance change under space charge limited
conditions. Such calculations would be a helpful addition to
the usual capacitance calculations. However in the real trans-
ient situation such a steady state calculation with space
charge will not be accurate either.
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96 VI ● General Considerations for the Use of Discrete Loading
Antennas on the Wall of the Test Chamber

Now move to somewhat higher frequencies, frequencies such
that the associated wavelengths are of the order of the dimen-
sions of the internal vacuum chamber dimensions. In such a
frequency range a cavity is resonant at various discrete fre-
quencies if the cavity is lossless. Among other problems to be
considered the cavity resonances excited by the electrons
emitted from the space system (and other sources such as the
photon generator, electrons from the walls, etc.) need to be
considered. These resonances should be damped to improve the
simulation at late times (compared to the characteristic times
associated with the cavity size). There are various detailed
designs for the damping system one might use. However, all
these designs must have the characteristic of not greatly in-
terfering with the desired electromagnetic characteristics of
the cavity at other significant frequencies, such as with the
capacitance reduction at low frequencies or with the reflection
reduction (from the cavity walls, damping structures, etc.) at
higher frequencies. There are many desirable performance char-
acteristics for the type of simulator under discussion. The
optimum simulator design for ~3ivensimulator and space system
sizes is one which takes all of these performance features intc)
account and compromises .~ong them so as _toobtain the best

4)

overall performance and minimizes the “errors” associated with
the simulator across the entire frequency band of interest.
What is best in one frequency band may be incompatible with
good performance in other frequency bands and would then be
discarded in favor of other approaches.

One way to introduce loss into the cavity resonances is by
the addition of small electric and magnetic dipole antennas
with lossy impedance loading onto the cavity walls. These
would be placed so that the electric antennas would couple to
the cavity modes at positions where the electric field perpen-
dicular to the cavity wall is large. Similarly the magnetic
antennas would be placed so that they are coupled to large mag-
netic fields tangential to the cavity wall. These types of
damping structures are indicated in figure 6.1 for single elec-
tric and magnetic dipole antennas as well as combinations of
these. Note that for any one location on the cavity wall (in-
nermost grid for electron trapping) there are three field comp-
onents of interest associated with the cavity modes, one elec-’
tric and two magnetic. Correspondingly there are one electric
and two magnetic dipole moment components of interest that can
be induced in loading antennas on the cavity wall. For the
lower order cavity modes with antennas small compared to the
cavity dimensions the antennas can be considered electrically
small. Va.riou.snotes deal.with the characteristics of such
electrically small antennasO-18~19
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0 The load impedances (ZL in figure 6.1A) on the electrically
small dipole antennas can have various characteristics. They
might be frequency independent resistances. They could also be
an inductor plus a resistor on the electric antennas or a ca-
pacitor plus a resistor on the magnetic antennas. The element
values could be chosen to make the antenna with its loading im-
pedance resonant at some desired frequency such as a cavity
resonance frequency and thereby increase the damping of that
cavity resonance if the resistance is optimally chosen. A
damped cavity mode, however, has a complex resonance frequency
and this prevents a lossy rescmant coupler from attaining an
arbitrarily large rate of energy extraction from the cavity
fields. Using active devices in the load impedance one can
perhaps increase the damping coefficient, but at a cost of com-
plexity. Certainly it would be good to do some detailed calcu-
lations for such small loading antennas with various types of
impedances. However, there is a fundamental problem with small
an-tennas-which leads to low damping efficiencies, namely the
antennas are small leading to small coupling to the cavity
fields. One can avoid this problem by making large distributed.
coupling structures as will be discussed later.

Another problem with resonant damping structures is that,
there is not only one mode to damp. There are many cavity
modes (including degenerate modes) to damp. This leads to many
resonant frequencies for even the lower order modes that one
would consider in.the response of such a cavity to a rather
broadband EMP. It is not sufficient to damp only one mode.
This requires that the individual damping antennas operate at
many discrete frequencies or be broadband enough to cover the
same frequency band, or that the various modes be damped by
separate damping antennas thereby leading to a large number of
such damping antennas.

One of the disadvantages of using discrete damping anten-
nas on the cavity wall is mode conversion. If one determines
the cavity modes and resonant frequencies for an unloaded cav-
ity and then introduces a disc:reteload not only are the var-
ious re-sonancesshifted but the original modes are coupled to-
gether. Equivalently this can be considered as shifting the
mode distributions over the inner cavity surface. As an exan-
ple the spherical symmetry of a spherical cavity is destroyed
by the introduction of discrete damping antennas so that the
individual spherical vector wave functions do not give the re-
sulting natural modes of the cavity with damper(s) . If there
is only a little damping of the cavity modes due to small
coupling to the small loading antennas, then the damping anten-
nas can be considered as perturbations in using the undamped
cavity modes. However, small damping is not what is wanted for
a good simulator.

One would like the resonances to damp out in say a cycle
or less. Thinking of the damped resonances as complex resonant
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frequencies, then damping corresponds to moving poles off the
iu axis (s = Q + i.ubeing the complex frequency plane) so that
the magnitude of the real part of s at the pole in the left half
plane is of the order of (or larger than) the magnitude of the
associated imaginary part of s. If Sa = Qa + iua is the reso-
nant (or natural) frequency then Qa (or -Oa) is what is referred
to as the damping constant. One would like to minimize lua/!_lal
for each resonance Sa of concern.

If one wishes to damp many low order cavity modes using
discrete small loading antennas then many antenna positions are
needed. This results from the many mode patterns for the vari-
ous resonances and the resulting variation among the modes of
the positions on the cavity wall for maximum coupling and for
the positions of nulls. To illustrate some of these problems
consider the spherical cavity as illustrated in figure 6.lB.
In this figure only the mode with smallest resonant frequency
is shown; this is the E~,l or TM1 ~ mode. One can couple into
this mode where the magnetic fiel~ is maximum or where the
electric field is maximum as shown in figure 6.lB. However,
this mode is degenerate and can be rotated through any angle
about the coordinate center. One can find three independent
orientations for this mode with say the electric field maximum
(magnetic field null) positioned on the x, y and z axes to de-
fine the linearly independent modes. TO couple to the electric
field maxima of the three modes requires at least three elec-
tric dipole antenna dampers; for coupling to the magnetic field
maxima requires at least two magnetic dipole damper positions
with two magnetic dipole components for the loading antennas
used at one of these positions (or magnetic dipole loading at
more positions) .

As one goes to higher order modes for a sphere the degen-
eracy is more severe requiring more discrete damping antennas
for the higher order modes. The modes for the s herical cavity

5arise from the spherical wave functions given by O

f(k)(yr)Yn,m,a(6,@)~(~) (y:) = n
‘n,m,a

f(~)(yr)
= f(fi)’(yr)Pn,m,a(O,@) + n Yr dn,m,a(O,$)n

62



.

+-($)

IM,CJYZ)= vx W:,(Y‘y;)]
(6.1)

The spherical harmonics are

Y e(e,$) =
/

P:(coS (e)) ~cOs@$’) ~~sin (MO) =0, 1, 2, ““*
nrmro

3SI,rn,a(e’$)= ‘syn,rn,o(e’o) = ‘r x %,m,o(g’o)

3 e(e,$) = 36
n,nt,o

where the index a stands for e
subscript
functions

is a unit vector for
are

(even) or o (odd) and ~ with a
that coordinate. The Legendre
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P:(E) = (-l)m(l

Pn(G} = P“(g) =

The spherical Bessel functions are

. .

n
1)

denoted by f~$~(yr) where

(6.3)

.’

f(l)(yr)n = in(yr) = injn(kr)

(6.4)

f(2) (yr) = kn(yr) = i-n-2h~2) (kr)
n

where the propagation constant is

where the psrmittivity s, permeability I-L,and conductivity a
depend on the specific uniform, isotropic medium under consid-
eration. Ot

??f
forms of spherical Bessel functions such as

yn(kr) and h (kr) can also be used as convenient. The spher- 0
ical Bessel !?unctionscan be calculated from

(6.6)

A prime superscript on a spherical Bessel function indicates
the derivative with respect to the argument. Solutions of Max-
well’s equations caribe constructed in spherical coordinates by
linear combinations 0$ these wave functions. For solutions
without sources only M and N functions are needed for the
fields as
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0

which has
as giving

‘1,1

which can

(6.7)

where a tilde - indicates the Laplace transform and where the
wave impedance is

“m (6.8)

Solutions for the interior modes of a perfectly conducting
sphere are found by setting L = 1 (to constrain that the fields
be well behaved at r= O) and by constraining that the tangen-
tial electric field be zero cm the spherical surface r = a.
There are two types of modes, The En,n! or TMnfnl modes are
based on the electric field in terms of * functions; the Hn,nl

ff~g$;~ns.
modes are based on the electric field in terms of

The E1,I mode in figure 6.lB is associated with
n= landm= 1 in the fifunctions. The resonant frequencies
for the E modes are found from

[un,n,in(un,n,)]’ = O

which has the first few zero:; ([oin(o)l‘ being excluded) at

%,10 z i2.744, ‘2,1(,
= i3.870 (6.10)

which can be set equal to ya to obtain the resonant frequency,,
The H mode resonant frequencies are found from

in(v ,) = Onfn
(6.l:L)

the first few zeros (the zero at in(o) being exc~ud~~d
identically zero fields) at

s +J4.493 ,
‘2,1 = &i5.763 (6.12)

be set equal to ya to obtain the resonant frequencies.
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The mode functions on a spherical surface are vector
sphe$ical harmonics. The normal electric field appl es only to
the N vector wav~ functions and is contained ih the $ spherical
harmonics. The M type electric fields have no radial electric
field and so electric loading antennas on the cavity wall do
not apply for Hn,n~ (o$ TEn,n’) modes. The tangential magnetic
fiel~ is given by the R spherical harmonics for E modes and by
the Q spherical harmonics for H modes. One can consider the
patterns of the fields at r = a and some texts have a few plots
of this for various modes.21 For the higher order modes these
patterns on r = a become rather complex with many sign rever-
sals for the various field components. Correspondingly they
are highly degenerate and a linear combination of such degener-
ate modes (for a single resonant frequency Sa) forms a “new”
mode with shifted null positions (many of them) for a particu-
lar field component. For discrete damping antennas enough an-
tenna positions are needed for each Sa to couple to all the de-
generate modes so that there is no combination which gives
nulls for the appropriate field component at all the positions
of the coupling antennas for that Sa.

As a convenient example the spherical cavity is being con-
sidered in this note. However, one might distort this geometry
somewhat in a real simulator of the type presented by this note.
This will remove some or all of the mode degeneracy and split
the associated resonant frequency into several such resonant
frequencies. This cavity distortion still leaves one with many
modes and more resonant frequencies to damp. One should also o
note that the presence of the space system in the test chamber
will also alter the resonant frequencies and modal distribu-
tions and each different shape and size of space system will
alter these somewhat differently. Thus the optimum positions
and impedances associated with resonant dampers can change be-
tween tests, thereby complicating matters.

In order to quantify the attainable damping for the vari-
ous modes using discrete damping antennas on the cavity walls
there need to be some detailed boundary value problems worked
out; these are beyond the scope of the present note but will
hopefully be done in the future. From the present discussion,
however, it is clear that there are significant disadvantages
in this technique. These disadvantages are removed somewhat by
the use of continuous damping structures as are discussed next.
The continuous damping structures at least have the advantages
of being large and thereby coupling more efficiently to the
modes, as well as coupling to most or all of the cavity modes.
The use of a large number of discrete damping antennas becomes
a continuous damping structure in the limit of an infinitely
large number of damping antennas. One might note that some
combination of discrete and continuous damping structures may
also be useful but
to determine their

such designs require
advantages, if any.
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e VII. Impedance Loaded Shell Inside Cavity and Away from the
Wall for Damping Cavity Resonances

Let us go on to consider simple continuous damping struc-
tures. With an assumed spher~.calcavity of radius r = a as in-
dicated in figure 7.1 let us include a spherically symmetric
damping structure inside the perfectly conducting surface at
r a. This use of spherical symmetry in the damping structure
ke=ps the mode distribution unchanged with respect to f3and $;

the ,rdependence of the modes is changed in general, however.

Consider a spherical shell of radius r = b and sheet im-
pedance 2s as an example of a continuous damping structure as
shown in figure 7.1. The cavity parameters are those of free
space with

(7.1.)

With Zs/Zo and b/a as parameters (although Zs may be frequency
dependent) one may consider the damping of the cavity modes.

First consider the E modes which have the form for O z r ‘:
b as

E( p(l)
;(:,s) = &fn,m,a(Y:)

o

and for b < r < a as

E
i(z,s) =

{

+(1)
&M ‘(2) (y:)}
o 1 n,mra(yz) + a2Mn,m,a

(7*:))

(7.:3)

Constraining the tangential electric field at r = a to be zero
gives
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o ~l[yain(ya) 1‘ + a2[Yakn(ya) 1‘ = O

and constraining the
through r = b gives

(7.4)

tangential electric field to be continuous

(al - l)[ybin(yb)]’ + a2[ybkn(yb)]’ = O (7.5)

The surface current density on the surface r = b is,-

3+($,s) = +5(:,s) (7=6)
s

r=b

and the tangential magnetic field is discontinuous through r = b
according to

This gives another equation for the coefficients as

[ybin(yb)]’
~{ (al - l)in(yb) + a2kn(yb)] =
o yb

For convenience we have the Wronskians

w{in(~),kn(c)} = in(~)k;(~) - i:(c)kn(~) = -L-2

W{~in(L),Lkn(G)} = Lin(q)[Ckn(g)l ’ - [Cin(L)l’Ckn(C) = -1.

Let us combine equations 7.5 i~nd7.8. First substitute for
al - 1 giving

z
‘a2{-ybin(yb) [ybkn(yb)l’ + [ybin(yb)l’ybkn(yb)}Z.

= {[ybin(yb)l ’}2

(7.7)

(7.10)

which reduces to
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= >{ [ybin(yb)]‘]2a2 ~, (7.11) o
Next substitute for a2 giving

>(CL1- 1) {ybin(yb)[ybkn(yb)]’ - [ybin(yb)]’ybkn(yb)}
o

= [ybkn(yb)]’[ybin(yb)]’ (7.12)

which reduces to

- >[ybkn(yb) l’[ybin(yb)l’%=1 ~

Combining equations 7.4, 7.11, and 7.13 then gives

/

[yain(ya)]’ 1 - #[ybkn(yb) l’[ybin(yb)1’
s }

+ [yakn(ya)l’>{ [ybin(yb)l’}2 = O
s

(7.13)

(7.14)

.

Note for 2s = @ so that the damper is removed this result re-
duces to

[yain(ya)]’ = O , [kajn(ka)]’ = O (7.15)

as required for a lossless spherical cavity. For 2s = O it re-
duces to

[ybin(yb)]’ = O (or [kbjn(kb))r = O)

(7.16)

[yain(ya)]’[ybkn(yb)]’ - [yakn(ya)]’[ybin(yb)]’ = O

the first of these giving the interior resonances for a sphere
of radius b and the second giving the resonances between two
spherical shells (perfectly conducting) of radii b and a.

●
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Let

and rewrite equation 7.14 as

(7.17)

[yain(ya)]’{zs - [ybkn(yb)]’[ybin(yb)]’}

+ [yakn(ya)l‘{[ybin(yb)]’}2 = o (7.18)

Now if ya = un,n~ is a solution for zs + @ and/or b + a (both
of which give a cavity of radius a) then the shifted resonance
can be written as un,n~ + Aun,nr or u + A for short. Note that
(with zero excluded)

[u ,i (Un,n,)]’ = On,no n
o

(7.19)

Then expand the various,
d/a and small frequency

noting that

yb =(u+A)~=(u

functions in a Taylor series for small
shift A where

(7.20)

+A)(l- $)=u+A-~u-~A (7.21)

Then equation 7.18 can be expanded for small d/a and A as

1A[uin(u)]” + $[uin(u)] ‘“ + ()(A3)
I

/{
“z-

S [uJcn(u)l’+O(A-& -:A)~

.
[
[A-~u ]-~A [uin(u)]’’+O((A-~u-= ‘A)2)~

1
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1+ [ukn(u)]’+O(A-$$
*-gu

0~{[ a. 1
-~A 2{[Uin(U)]”]2

.-

= 0 (7.22)

Retaining only up through second order terms we have

A[uin(u)]’rzs+ ;[uin(u)lf”z~
[

-A A-~u-$
1
A {[uin(u)]r’}2[ukn(u)l’

[ 1

2
+ A-~u- ~A {[uin(u)]’’}2[ukn(u)]’

= 0(A3)+O(A2(A-~u-~A)) +O(@u-$&]2)+0([A-@~A]3)

(7.23)

which can be shortened as

A2
A[uin(u)]”z~ + ~[uin(u)]’” z~

i-
[

du--
a 1[ 1-~A A-~u-~A {[Uin(U) ]’r}2[tdCn(U)]’

=0 (7.24)

Now neglect the A2 terms compared to A and neglect the (d/a)A
terms with respect to d/a or A to obtain the approximation

(7.25}

as the equation for the change in natural frequency for small
d/a but any zs. In another form we write this out more explic-
itly as
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(Aun,n ‘)~zs-~ ‘n,n~[un,n~in(un,n~) ]’’[un,n~kn‘“n,n~ \
)],/

+ [~un,n~[un,n:in(un,n:)lff[un,n:kn(un,n:)l1 ‘o (7.2~)

from which AUn,nI can be readily solved in terms of d/a and zs.
The un,n: for the unloaded cavity are found for the first few
modes (equations 6.10) as

‘1, 10
= i2.744~

U1,20
= i6.117

‘2, 10
z i3.870 ,

‘2, 20
z i7.443

(7.27)

‘3,10
= i4.973,

‘3,20
c i.8.722

The approximate relation of Aun n’ to zs and d/a can now
be determined for the lower order mo~es. Note that as zs + OJ
we have Aun,nl + O as is required physically. Also as zs + O
we have Aun,nl + (d/a)un,n& which is also quite reasonable as a
simple perturbation on the cavity radius from a to b. One
would like to be able to choose an optimum zs for any given d/a.
An optimum zs requires a definition of the optimum Aun,nl. Let
us adopt as our definition of an optimum natural frequency one
which has the maximum argument in the second quadrant of the
complex frequency plane. This maximizes lQal/\ual for the com-
plex frequency. For small Aun,n~, since un,n~ (unperturbed) is
a pure imaginary number, the definition is approximately the
same as minimizing Re[Aun,n~] .

Now zs can be complex if one chooses. If one requires
that it be realizable from passive elements then it is re-
stricted somewhat. For the p:resentlet us make zs a real and
positive number corresponding to a simple resistive shell.
Write an equation for Aun,nl as well as for its real part as

Aun,n,

u
= -($n,nr[zs - :an,n, }-l

n,n~
u

ct:a
n,n’ =U n,n~[unrn~in(un,n~)]’’[un,n~kn(un,n’)]’o
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Differeritiati~g”with respect to zs and factoring gives

or

or

(7.29)

(7.30)

(7.31)

.-

so that the optimum value for resistive zs is

I
(7.32)

which is a rather simple result with the optimum resistive zs
directly proportional to d/a. Substituting this result back

into equations 7.28 we have the small Aun,nl resulting from

optimum resistive 2s as

d
Aun,n, = ‘u l~;,nla n,no

1
~ct ,1jl-1=~-+

(%’ = -an,nt{~an,nll - an,nl}n,n~ n,n’ 1

(7.33)
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T

/a\2-a a .lIi= -Im[an *
2/ay - (a+w=z 2 t

Thus for the optimum resistive zs the
proportional to d/a.

!Imn, n,l

frequency

Starting with the differential equation

-Re[an,n,l}
-1

shift is also

(7*34)

then we can write

U2 +n(n+l)n,n~
a u

=

n,n’ u u ,irl(u
n,n’ n,no n,n~) ‘Un,n$kn(un,nl)]‘

o 0 0
(7.35:)

From a Wronskian (equations 7.9) we have

a =-
n,n’

U:,n ,+n(ni-1)
0
unrn;

(7.36)
- n(n+l)= -un,n; u-n,n’

0

since [<in(~)]’ = O at ~ = Un,n&. Thus ~n,nl is pure imaginary.

The result for a’ can be further simplified. Consider the
spherical Bessel functions. We have the relations

h(2) (~)
n = jn(g) - iyn(~)

(7.37)
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By considering the small argument asymptotic forms
o

in(~) = ~2n::), ,[l+o(G31 , kn(c) = ~-n-l(2n-l)!![l+ O(~)]..

jn(~) = En

. .

~2n+1)1![l+o(G2)l , Yn(g) = -&-n-1 (2n-l)!![l+O(~2)]

.

h(l) (~) = -ig-n-l (2rI-l)!![l+ o(&)] ,
n

(7.38)

h(2) (g) = i~-n-l
n (2n-l)!![l+ O(&)]

one
For

can find the signs of the functions for small arguments.
convenience we also have (to complement equations 6.6)

m

h(l)(g) = i-n-lg-l eigz (n+@)! -B
n 8! (n- ~)!(-izg)

@=o

so that

m

“-n-2kn(+= 1

gives the appropriate functions for incoming waves.

Now letting

(7.40)

(7.39)

u = ip
n~n~ - n,n’ (7.41)

we have

76



-..
an,n’

=U nrn~[un~n$n-(un ~n~)‘-”‘Un,n;kn‘Un,n’)]‘o

= -Pn,n’[pn,n’]n(pn, n’)] ’’[pn,n’hA2)(pn,nl)]’

= ip
.,n,n’ [pn,n,jn(pn,n,)ll’[pn,n,Yn(Pn,n,)1’

(7.42)

since

[pn,n,jn,n, (pn,n,)l’ = O (7.43)

defines the roots pn,nl (= -i~~n,n~)for the unloaded cavity.
All the pn,nl are real (the un,n’ being imaginary) as is re-
quired for a lossless cavity. T~e jn(~) and yn(~) are real
functions for real & (or imaginary C) as well as all their de-
rivatives. Therefore an,nl must be purely imaginary as ob-
served above.

As discussed in another note20 the zeros of spherical Bes-
sel functions fn(~) and combinations like ~fn(~) and their de-
rivatives have only simple zeros for c # O. Thus

[Pn,n ,jn(pn,n,)l” # O

and from a Wronskian one can also show (equations 7.9)

[Pn,nlYn(Pn,n!H ‘ + o

(7.44)

(7.45)

so that

an,n’ + 0
(7.46)

Now the zeros of [pn,nljn(pn,n!)]” alternate between those
for [pn,nljn(pn,nt)]’ and so the sign of [pnrnljn(pn,nl)]” al-
ternates between adjacent roots pn,n~ as n’ 1s varied. When
[&jn(g)l’ changes sign (at its zeros) then [~yn(g)l’ cannot

,change.sign.(from the Wronskian) nor can ~jn(~) change sign
(from the differential equation); the same argument applies
around the zeros of other similar combinations of three terms.
Consider two adjacent zeros of [ jn(~)]’ which we denote by PI
and p“. Write out the Wronskian 5

w{Ejn(C),~yn (E)l=~jn($) [EYn(~)l’- [gjn(&)l’Eyn(g) = 1 (7*47)
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At the endpoints of our interval

(7.48)

Since jn(&) has opposite sign at the two ends p,p’ then so must ‘
[&Yn(&)l’. Thus [&yn(~)]’ must have at least one zero between
p and p’. Considering two adjacent zeros of [~yn(~)]‘ a simi-

.-

lar argument shows that [Ejn(?)]’ must have at least one zero
in this new interval. Combining the two results shows that the
zeros of [&jn(E)]’ and [Eyn(c)]~ must alternate on the real E
axis (neglecting ~ = 0). Thus the sign Of [pn,n~yn(pn,nl)]’
must alternate for adjacent roots (successive n’). Since the
expression for C%nn! has a product of two terms with alternat-
ing signs then lm~an.n~l must have the same siqn for all n’
(for any given n).

--,-.
Considering the result for-aq,nf for large

un,n~ for which it is negative imaginary for positive w gives
for all n,n’ (which are indexed

Re[an,n,] = O , Im[an,n,]

Using this result for an,n~

~1

n,n’ = [l-il-l=*

for positive u)

<o (7.49)

in equations 7.33 gives

(7.50)

which holds for all n,n’ corresponding to the roots pn,n~ .
Thus for optimum choice of zs (which does depend on n,n’) we
have for small d/a the result

Au
l+id=— .

n,n’ 2 a ‘n,n~ = + :Iun,n, ~
a

(7.51)

with real part negative and imaginary and real part positive as
required physically where only positive pn,nl have been consid-
ered. For negative pn,nl the imaginary part is negative.

As examples and to obtain a few numbers we tabulate the
first several anrnt as

al,l = -i2.015 ,
alr2 = -i 5.790

a2,1 =
-i2.320 ,

a2r2 =
-i 6.637

(7.52)

a3,1 =
-i.2.561 ~

a3,2 =
-i 7.346
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Considering the El,l mode for d/a = .1 we have

,29(5
z~ =“gm,”

*’J1,l’U1,10 = .05 + i .05

and for d/a = .2 we have

.&f3~.n
zs ‘ R?(I’15, AUl,l/Ul,Lo = .1 + i.1

(7.53)

(7.54)

Equation 7.51 readily extends these results to other E modes
with optimum choices of resistive zs for the individual modes.

Second consider the H modes which have the form for
O’<r<bas

Eo+(l)
ii(i?,s)= -TN

o n,m,a (y&)

and for b < r < a as

(7.55)

“’ (7.56)

Constraining the tangential electric field at r = b to be zero
gives

Blin(ya) + 62kn(ya) = O (7.57)

and constraining the tangential electric field to be continuous
through r = b gives

(61- l)in(yb) + f32kn(yb)= O (7.58)-

The surface current density on the surface r = b is



and
r =

3J6,+,S) = +W,s)
s r=b

.

(7.59)
9

the tangential magnetic field is discontinuous through
b according to

+
er X {fi(~ts)IK=b+ - ‘(zrs)lr=b-} = ‘s(e!+rs) (7.60) -

This gives another equation for the coefficients as

z

[

[ybin(yb)lr [ybkn(yb)]’

~ (61-1) Yb + 62
}
=,in(yb) (7.61)

o
yb

,

Combine equations 7.58 and 7.61. First substitute for

61 - 1 giving

~f3{-[ybin(yb)l’ybkn(yb) + Win(yb)[ybkn(yb)]’}
02

= {ybin(yb)}’

which a Wronskian relation (equations 7.9) reduces to

s’ = ->{ybin(yb)}’
s

(7.62)

(7.63)

Next substitute fOr 62 giVin9

Zs
~(e~ -l) {[ybin(yb)l’ybkn(yb) -Ybin(yb) [ybkn(yb)l’}
o

= Ybkn(yb)ybin(yb) (7.64)

which reduces to

%
=2+ >ybkn(yb)ybin(yb)

s
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0 Combining equations 7.57, 7.63, and 7.65 then gives

Iin(ya) 1 + >ybkn(yb)ybi,n (yb)I

s J

Z.
- kn(ya) ~{ybin(yb)};~ = o

s

Note for Zs = m so that the damper
duces to

in(ya) = O , jn(ka) = Cl

(7.66)

is removed this result re-

(7.67)

as required for a lossless spherical cavity.
duces to

For 2s = O it re-

in(yb) = O (or jn(kb) = O)

(7.68)

ink -kn(ya)in(yb) = O

the first of these giving the interior resonances for a sphere
of radius b and the second giving the resonances between two
spherical shells (perfectly conducting) of radii b and a.

Equation 7.66 can be rewritten as

yain(ya){zs+

- yakn(ya)

ybkn (yb)ybin (yb)}

{ybin(yb)}2 = o

Expand this solution
ya + = so that

in(v ,) =0
n,no

with zero excluded.

(7.69)

around vn~n~ which is a solution for

(7.70)

Then expand the various functions in a
Taylor series for small d/a and small frequency shift A. Note
that



(7.71)

where v is short for vn,nl and A for Avn,nl . Then expand equa-
tion 7.69 for small d/a and A as

[

2
A[vin(v)]’ + ~[vin(v)]’’+0(A3)

}

.[ Jzs+/vkn(v)+O(A-$;A)\

-1vkn(v) +OIA-$.@ A))

= o (7.72)

Retaining only up through second order terms we have

A[vin(v)] ‘zs+ $[vin(v)]
[

“zs+A @V-
1

:A {[vin(v)]’}2vkn(v)

[ 1

2
- A-;v- ~A {[vin(v)]’}2vkn(v)

= 0(A3) +O(A2[A-~V-~A)) +O(AIA-~V-~A)2)

which can be shortened as

.

.-

0’-

(7.73)
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(D A[vin(v)] ‘z~+ ~[vin(v)l”z~

[

+d ~v+
1[

:A A-$T-
1

~A {[vin(v)]’}2vkn (v)

Now neglect A2 with respect
spect to d/a or A to obtain

‘z.+: v[A-:vl’vin(v)’

or

(7.74)

t.oA and neglect (d/a)A with re-
the approximation

‘vkn(v) = O (7.75)

(Avn,n‘){zs+~vn,n~ ‘vn,n~in,n’(vn,n~)]’vn,n~kn ‘vn,n~)1

- [:vnln:r’vnrn;in?n:(vnrn’)l’vntn:kn(vn?n:)‘0 ‘7”7’)

from which Avn,n! can be solved in terms of d/a and zs. The
vn,n~ for the unloaded cavity are found for the first few modes
(equations 6.12) as

V1,10 = i4.493, ‘1,2C)
= i7.725

‘2,10
u i5.763, v2,2a

z i9.095 (7.77)

‘3,10
E i6.988, ‘3,20

= i10.417

The approximate relation of Avn,n~ to zs and d/a can now
be determined for the lower c)rdermodes. Note for zs + @ that
Avn,n’ + O. As zs + O we have Avn,nt + (d/a)vn,n& consistent
with the results for the E mades. Again let us consider an
optimum zs for any given d/a based on minimizing Re[Avn,n’] for
small Avn,nl as before.

Let zs be a real and positive number corresponding to a
simple frequency independent resistive shell. Then we can
write
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~5f3 =
n,n~[vn,n~in(vn,n~)]‘Vn,n;kn(vnrn;)-v

n,n’ -

For
the

and

the H modes this equation is of the
E modes (equations 7.28) giving the

2s = :li3 1n,n’

a resulting frequency shift as

(7.78)

same form as that for
optimum resistive zs as

(7.79)

d
Avn,n, = –v ~’a n,n~ nln’

(7.80)

These results are the same as those for the E modes
ferent constants in the formulae.

From a Wronskian (equations 7.9) we can write

t3 = -v
n,n’ n,n~

with dif-

(7.81)

since Vn,n&in(Vnrn~) = O at ~ = un,n~o Thus Sn nl is pure
imaginary. Considering only the roots for positive w then we ‘
have

Re[~n,n,] = O , Im[8n,n,] < 0

Using this result for ~~,n’ in equations 7.80 gives

(7.82)

.-

0
84

\



o B:,n, = [l-i]-l = * (7.83)

which holds for all n,n’ (n = 1, 2, 3, .... n! = l.,2, 3, ...).
For small d/a then we have (with optimum z~)

Av ~l+i~v =
n,n’ 2 a n,n~ + $vn,n, I

o
(7.84)

Note that

— .—

so that both E and H modes have the same optimum damping for
small d/a. The values for optimum zs vary depending on n,n’
and on whether E or H modes are being considered.

Considering the Hl,l mode for d/a = .1 we have

.yY~3
zs =.*,

*V1,l’V1,10 = .05 + i.05

and for d/a = .2 we have

$q~.

z
s = i49.3 ,

%,lh,l =.1+i.1
o

(7.86)

(7.87)

Equation 7.84 readily extends these results to other H modes
with optimum choices of resistive zs for the individual modes.

A rather interesting result is that both Aunfnl/un,n~ and
Av t/vn,n~ have the same form with zs scaling with ~n,nl and
~n~~~ in the two cases respecizively. For a given small d/a the
trajectories of Au and Av are the same in the normalized com-
plex frequency plane as zs is varied. Another interesting re-
sult for these trajectories, taking Au as an example, is found
from equations 7.28 as
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a ‘s
ld~~+l=-- -
2aaz~ (7.88)

.— -
du~

For resistive zs with un,n& an the positive imaginary axis this
result leads to

(7.89)

so that the trajectories of Aun,nr and Avn,nr are circles in
the normalized complex frequent

7
plane for resistive zs and

small d/a with radii (1/2)(d/a) un,n~l and (1/2)(d/a)~vn,nlI
respectively.

Note that the simple results only apply for small d/a with
frequency bounded. As one goes to higher order resonant modes
then d/a must be made smaller so that it is still small com-
pared to a (complex) radian wavelength. The value of d/a can
be such as to place the resistive damper at a null of the tan-
gential electric field of a given resonant mode and thus give
no damping for that mode. One can find such unwanted values of
d/a, or equivalently b/a, for the lower order modes by choosing
two values of n’ for a given n and given E or H mode and con-
sidering the ratios

u
b n,n~
—=
au n,n~

where n“!> n“ >
modes are -

or

v
b n,n~
—=
av

n,n;’!o

1. Some of these

(7.90)

ratios for the lower order
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‘1, 10 ‘2,10 ‘3,10
— = .449 , — =!.520 , — s .570
‘1,20 ‘2,20 ‘3,20

(7.91)

‘1, 10

‘1,20
.582 ?

‘2, 10

‘2, 20
.634

‘3,10
— E .671
‘3,2 o

For small d/a (or b/a near 1) these critical values can be
avoided for the lower order modes. As one goes to higher fre-
quencies then for small d/a one will get no damping if d is an
integer number of half wavelengths for imaginary s (= iu).
This points’out a general limitation on the effectiveness of a
resistive sheet damper for reducing reflections of the higher
frequencies (say from space system resonances) from the cavity
walls. The damping structure can be made of more than one
shell, however, or given some thickness as a liner which is
considered in the next sectio:nfor comparison.

Note that Zs can have forms other than a simple resistance,
but one must be careful because this damping and reflection re-
duction structure has to perform well for many modes and over a
large frequency band. Simply concentrating on damping one res”-
onant mode (say the lowest frequency one, the El,l mode) does
not lead to an optimum simulator design. However, other inter--
esting forms of Zs, including reactive elements, need further
consideration in future notes from the viewpoint of making the
damping structure more effect~Lvelybroadband.

Another task left for a future note is a detailed numeri-
cal study of the mode damping for arbitrary b/a (in the range O
to 1) from equations 7.18 and 7.69 for resistive Z.Swith
()< Zs < @c These equations also are the starting point for
cofiside~ingother forms of zs. Note that the approximate pole
shifts considered in this section are for small shifts from the
undamped modes with resonant frequencies on the iu axis. Other
poles may arise in the left half of the complex frequency plane
with various forms of passive damping structures and these can
also be found and their behavior studied. Additional indices
on the poles (beyond n,n’) may be useful in such cases.
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VIII . ImpedaticeLoaded Liner Inside Cavity and in Contact
with the Wall for Damping Cavity Resonances

As illustrated in figure 8.1 let the region for b < r c a
be a uniform’isotropic medium with constitutive parameters e,
p, a, wave impedance Z, and propagation constant y. The medium
for O < r < b has the parameters of free space which can be
distin~uished by a subscript O (including on 20 and ye).

Consider first the E’modes which have the form for
(l:r<bas

Eo+(~)
if(i?,s)= TMo n,m,a (yo:)

and for b < r z a as

(8.1)

(8.2)

Constraining the tangential electric field at r = a to be zero
gives

~l[Yain(Ya)l ’ + a2[yakn(ya)l~ = o (8.3)

At r = b both tangential electric and magnetic fields must be
continuous~ thereby

[ybin(yb)]‘

al yb

giving

[ybkn(yb)]‘
+ C%2

yb

[Yobin(Yab)1‘
=

‘o
b

(8.4)

alin(yb) + a2kn(yb) = ~in(yob)
o

From these equations first eliminate al to give
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0

perfect
conductor

Figure 8.1 Impedance Loaded Liner in Contactwith
CavityWall forDamping Resonances



.

~2{@in (Ybl[Ybkn(Yb)1 ‘ - [ybin(yb)]‘ybkn(yb)}

= (yb)2 .
~ln(yb) [Yabin(Yob)l~ - $Yb[ybin(yb) 1‘in(yob) (8.5)
o 0

which a Wronskian relationship reduces to
,,

(yb)2 .
a2 = -~~n(yb) [yobin(yob)l‘+ $yb[ybin(yb) l’in(yob)

o 0
(8.6)

. .

Next eliminate a2 to give

al{[ybin(yb)l’ybkn(yb) - ybin(yb) [ybkn(yb)]’}

which reduces to

(yb)2“k (Yb)[Yobin(yob)]‘- Z.
al = yob n

~yb[ybkn(yb) ]’in(yob] (8.8)

Note that if the parameters of the liner
inner cavity then a2 = O and al = 1 (the
from a Wronskian relation) .

are the same as the
latter result coming

Combining equations 8.3, 8.6, and 8.8 gives

[
[yain(ya)]‘ ybkn(yb) [yobin(yob)]‘- $-[ybkn(yb)]‘yobin(yob)~

o

+ [yakn(ya}l’~-ybin(yb) [yobin(yob)l’+
!

$[ybin(yb) l’yobin[yob)f
o

= o (8.9)

For y = y. and Z = 20 so that the damper is removed this result
reduces to
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0
[yoain(yoa)]’ = O

as required. For a + ~ with fixed s, p, and s we have

=

Consider

-1
@iF{l + O(cr-%

(8.10)

(8.11.)

the asymptotic forms of the spherical Bessel functions
for large arguments as for IGI + ~ with larg(~)l ~ 7r/2- 6 with
6>00 From equations 6.6 we have

~in(~) = e;~[1 + O(G-1)1

-3[1 + o(~-l):l~kn(~) = e

e~[~in(~)]’ = ~[1 + O(~-:L)]

[Zkn(C)I’ = -e-L[l + O(K-L)]

For IGI + @ with larg(~)l = ~/2 we have

-~][1 + o(~-1)]Gin(G) = +[ec + (-l)n+L e

-C[l + ()(~-l)jLkn(L) = e

-L] [1 + o(~-1)][Gin(C)l’ = ~[eC + (-1)11e

[Gkn(G)l’ = -e-G[l + O(U-l)]

Define

(8.1;!)

(8.13)
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(8.14)

and rewrite equation 8.9 as

[yain(ya)]’{ybkn(yb) [yobin(yob)]’-zl[ybkn(yb) ]’yobin(yob)} . .

+ [yakn(ya)l’{-ybin(yb) [yobin(yob)l’+zk[ybin (yb)l’yobin(yob)1

= o {8.15)

Now let y +~ (from a + ~) with Iarg(y)l ~ m/2 - 6 with 6 > 0
giving

~ya
‘L)]{-e-yb[l+O((yb)-l)l [Y. ~ o~[1 -t-O((ya) bi (yb)l’

+Ze ‘yb[l+O((yb)k ‘1)lyobin(yob)}

‘ya[l+O((ya)
1

eyb
-e -1)1 -~[l+O((yb) ‘1)1[yobin(yob)1‘

eyb
+ Zk ~[l+o((yb) -l)lyobin(yob)

1

= o (8.16)

Neglecting terms proportional to ey(b-a), but not those propor-
tional to ey~a-b) (since a > b) gives

{-[yobin(yob)]f+ z~yobin(yob)}[1+0( (yb)-l)] =O(e-y(a-b)) (8.17]

Note that

Z,=<= @i&=$? (8.18)

so that as ]yl + w with Iyol bounded we have in the limit
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0 [yobin(yob)]’ = O (8.19)

as the equation for the E mode resonant frequencies correspond-
ing to a perfectly conducting cavity of radius b.

As an.aid to considering the solution of equation 8.15 for
small d/a consider first the effective impedance at r = b.
Neglect the form of the fielc[sfor r < b for the moment and
consider the ratio of the tar~gential‘electric and magnetic
fields at r =b. For this
as

purpose equations 8.2 can-be written

&b /r=b
[

\=Eon(n+l) a
(1

in(yb)
.—

yb

1
[ybin(yb)]‘

+
al “ yb

(8.20)E
#(:,S)/r=b = f{alin(yb) +a2kn(yb) }~n,m,a(O,@)

Then choosing ~ and ~ pola$itie$ suc
8

that 3 x 3 is in the ~r
direction and ~oting+that R = -er x (so that the tangential
components of E and H are simply related for all 0,$) then we
have an effective wave impedance at r = b as

[ybin(yb)]‘ [ybkn(yb)]‘

‘b al
—+a

yb 2 yb
‘bE~=- alin(yb) + a2kn(Yb)

(8.21)

Using equation 8.3 for the boundary condition at r = a gives

[yain(ya)]‘[ybkn(yb)]‘ - [yakn(ya)]‘[ybin(yb)]‘

‘b=- ~ - [yakn(ya)]‘ybin(yb) (8.22)

Using the relation
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we can write far the impedance at r = b

(8.23) ‘

-[-yakn(-ya)]‘[Ybkn(yb)I ‘+ [yakn(ya)1‘i-ybkn(-yb)]‘ (8 24)

‘b = ~ ‘[-ybkn(-yb)l “

where a prime indicates the derivative with respect to the argu-
ment (ya, -yar etc.) of the Bessel function.

For large /yal (and thus large lyb~ since d/a is taken as
a constant (small)) we have

%=

=

-1 -%+ouyb)-l
-ya[l+o((ya)-l)~ew[l+o((yb)-l

‘a[l+o((yal-e )le -+]% ‘L)]em[l+O((@)-l) 1

‘a[l+o((ya) ‘ya[l+O((ya)‘Yb[l+o((yb) )1-e-e ‘1)]e )1

e‘d[l+o((ya)‘l)]-e‘Ydil+o((ya)-1)1

eyd[l+O((ya)‘l)]+e‘ydIl+o((ya)-l)~
(8.25)

If Ieyd +
to

‘b =

e-ydl is bounded away from O then this result reduces

eyd - ~-yd
d[l + O((ya) -1) 1

eyd + e-Y

l-e
-2yd

I + e-2yd
[1 + O((ya)-1)1

(8.26)

.

0

Note that for a plane wave incident perpendicular to a slab of
thickness d with a perfectly conducting backing this result is
exact so the result is physically quite reasonable. Also note

that while Iyal is large for this estiimate Iydl need not be
large since d/a is small. For small Iydl this reduces to
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0 %2=\d - ;(yd)3+0( (yd)5)~[l+O((Ya)
Zb=z ,Y -1)1

= spd~l -~(yd) 2+o((yd) 4)\[l+o((Ya)
‘b -1)1

For comparison consider the result for small Iyal.
this we have

Ckn(c) = (2n - 1)!!c-n + o(~-n+~)

[Lk-(~)l’ = -n(2n -
lL ,,

n-l-l
Gin(C) = (2nC+ 1)!!

(8.27)

For

(8.28)
.n+3

+ 0((, )
.—

[~in(~)l’ = (2nn++l?j!! ‘n
n+2

+ O(K )

From equation 8.22 we then have

‘b -n~~~~) (ya)n(yb)-n-l[l+O(ya)]+n~~~~) (ya)-n-l(yb)n[l+O(ya)l

%=T=- =( a ‘(yb)-ntl+o(ya)l+~(Ya)
2ni-ly) ‘n-l(yb)n+l[l+o(Ya)1

-n n+l
~ n(n+ l)(~) - n(n+ l)(~)’

=—
yb -n n+l—[l+O(ya)]

(n+l)(~) + n(~)

1l+n~ -1+ (n+l)~
= n(n+l)

+ 0({:]2)

yb

I(n+l)[l+n~]+ n[l-(n+l)~] + 0([$2) ‘l+O(ya’]

yb -++o(:)]u+o(Yw = ‘(::’):F+O(:)][l+o(Ya)J
=n(n+l) d

‘b = :;;::] :[,+0(:)][l+o(ya)l= :;;;:)a :[1+0(:)][,+o(Ya)l
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This result is quite different from that for large ]yal (but not
necessarily large Iyd/) in equations 8.27. Note that this re-
sult is for E modes and for small ya the Bessel functions cor-
respond to near fields of electric antennas with large E/H
ratios. The result of equations 8.27 corresponds to the far
field form of the functions for which E\H is like the wave im-
pedance of free space (before the perfectly conducting boundary
is introduced) .

In our case of interest lyoal is of order one, so if
IYl ‘~ IYol the results of equations 8.26 apply. The results of
equations 8.29 apply for small Iyal which requires even smaller
~yoal so one is considering frequencies for which cavity reso-
nances are not of concern, but capacitance is of concern (sec-
tion V).

For convenience the equation for the cavity resonances can
be written for the E modes in terms of the impedance at r = b as

‘b [yobin(yob)]’
—=-
Z. yobin(yob)

or in terms of 21

‘b Z . “= - [yobin(yob)]’
——
z 20 = ‘bzk yobin(yob)

(8.30)

(8.31)

Now expand equation 8.31 around un,n~ which satisfies

[unrn,i (Un,n,)]’ = Oon o
(8.32)

for which we have (as in the previous section)

yoa =U + Aun,n: n,n’

[1

(8.33)

yob =yoal-$ =U +Au ‘~u
n,n;

-~Au
nrn’ a n,ng n,nf

Abbreviating these terms as u and A we have
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For Zb
ing to

uin(u)

[ui
n (

‘A]3)~u)]’”+0 (A-$-=

(8.34)

let us use the approximation for large lyal (correspond-
large o) without assuming the size of Iyd I. Also then

expand

ya

yd

z.
X4

a

[s11(0+ SC)]1/2a = (spu)l/2a[l +0(0-1) ]

()

(y a)l/2 Uoa 1/2

o [1+ O(CJ-l)]

I/W

[ 1( )

1/2
ul/2 l+~$+O(A2) ~ [1+0(0-1) ]

00

pyouyoad
—— —— —
Ho Y = P. @ a

=dpu+A.——
a PO yd

combination for yd at the unperturbed resonances

(8.35)

as
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()

1/2
r ~ Ydl~=~ = (sn,n,U(a+Sn,n,S})l’2d=(~) U1’2A [1+0(0-1)1

n,nt o 0
0 m

(8.36)

1Ayd-r= ~:r [l+o(a-l)]

Now expand

~2yd-2~ -e-2r
[l+o(a-1)]: ;

u+A=
~2yd-2~ +e21’ ~r+(yd-r) (8.37)

Dropping the O(a-~) terms for simplicity and expanding in terms
-G A we haveU.L u

Then

From
tion

= 1- e-2r d p ~+O(A)-—
~+e-2r a P. r

we can write

l-e-2r d P u———
~+e-2i7 apo r “ -[@~l

the differential equation

(8.38)

[uin(u)]“

Uln (u) (8.39)

for the spherical Bessel func-
terms (equation 7.34) we have
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(D

4)

[u
n,n

,in(un,n,)]” u~,n,+n(n+l)
o 0 0=

u .,1 (u
n,no n n,n~)

L
un,n~

1 +
n(n+l) =

.
L

un,n’
o

an,n’.—
u
n,n~

(8.40)

where an.nl was introduced in the previous section (equation
7.36). ‘-Thenwe have

Au

I

u
n,n’ ~ d

n,n’o P L l-e-2r
u

~l+r—:-
n,n~ n,n’ U. f l+e-2r 1

(8.41)

Note that
impedance at r

this can also be written in terms of a general
=bas

Aun,n’=~+l ab
u
n,n~

—qaa
n,n’

(8.42)
“

where Zb is evaluated at the frequency corresponding to un nl .
Note that this assumes lZb/Zol << 1 so that the change in he
effective wall’impedance from zero is sufficiently small that
the shift in resonant frequency is also small and that IZbl
does not get too large at (or too near) this resonant frequency.
There are various forms of Zb that one might choose so as to
optimize the shift of the resonant frequency. Equations 8.42
show how much damping they achieve for small d/a (and small
lZb/Zol) with a somewhat simpler form than that in equation
8.40.

In’using a form of Zb in equations 8.42 one should be care-
ful that approximations for Zb are accurate. For example sec-
tion VII considers the case of y = y. but with a surface imped-
ance added at r = b. Such can be found from equation 8.24
(with y = yo) with the parallel addition of 2s. In such a case
Zb would be approximated by expanding yob as a small perturba-
tion from yea. This would not give the simple form of result
for Zb as in equation 8.26 since yoa is of the order of a con-
stant (unless we consider the result for large n’ and thus
large lUn,n&/). For the present we are considering lyl >> Iyol
so that the result of equation 8.26 applies. Equation 8.41
then gives the result for small d/a.
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Now an,nI is negative imaginary (equation 7.49) for posi-
tive imaginary un,n~ 9ivin9 o

u’nrn’
-1<7 ‘~o

n,.n’
(8.43)

In order to minimize the real ,part of Aunrnl we then need

Re [Au 1 ‘n,n;

[

-2r
n,n’ = d ~m p n-e. —

\u a a
n,n~’ n,nr P. ~ 1 + e-2”r1

(8.44)

Let p be real (and typically equal Po). Then we need to mini-
mize Im[v] where

For this purpose approximate

r = (s~((s + se))
l/2d

1/2d[l + c)(c#) ]= (Sva)

= (spa)~/2d

= (&J’2d
With (sn,n~a)/c = un,n~ then we have

giving

(8.45)

(8.46)

(8.47)

o
I.oo
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@

—
=l+ij sech2 (r) - 1

r{
~tanh(I’)j

(8.48)

Since $ is real we wish to f~.ndr. such that

[
nn sech2(ro)

1
- +tanh(ro) = O

0
(8.49)

with

r. = (1 + i)$o

(8.50)
v =
o ~L-tanh(ro)

o

The numerical solution to these equations is

!JO = 1.127

r. = 1.127 + il.127
(8.51)

v’=o .582 - i.417

Figure 8.2 shows v plotted as a function of ~. Note that Im[v]
has a single minimum and smoothly rises toward zero on both
sides of this minimum. Also note that Re[v] starts at 1 and
monotonically decays to zero as $ varies from O to CO.

Next then we define

un,n’
Pn,n’ :l+aovo

n,n’
(8.52)
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has valueswhich for the various n,n’

W1 = .208 + i.568 , !J7*= .386 + i .441

~ .0297

s -.130

+ i .696 , .348

.309

find

+ i .468

+ i .495

the conductivity for

~2,2 (8.53)

+ i.810,
‘3,2

Given a particular un,nl we can
optimum damping (with real p? from

(8.54)

or

(8.55)

frequency shift (for real U) isThe resulting resonant

Aun,n’
un~n:

which for u = PO is

Aun,n,
~d

u ~lln,n,
n,n~

(8.57)

examples considerAs
for v =
have

the conductivity and frequency shift
Ell,lmode for d/a = .1 for which we‘JO. Consider the
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aodzo = 9.260 , AyyJl,JQ = .0208 + i .0568 (8.58)

and for d/a = .2 for which we have

aodZo = 4.630 , Aul,liul,lo ‘ .0416 + i .1136 (8.59)

Equations 8.55 and 8.57 readily extend these results to other E
modes.

Compare the liner results (equations 8.53 and 8.57) for
the optimum damping for each E mode to the corresponding results
for the shell (equation 7.51). Note for the shell that the
magnitude of the damping coefficient is .5(d/a)lul for small
d/a. However, for the liner the optimum damping is different
for each mode and the magnitude of the damping coefficient is
greater than .5 for small n’ while it is less than .5 for large
nF. For small n’ (say n’ = 1) also note that the damping is
greater for larger n. In all, the optimum damping with the
liner is about the same as with the shell. For the lowest
order mode, the E~,~ mode, the liner gives a coefficient of
.568, or about a 14% improvement (again for small d/a and p =
Po).

Second consider the H modes which have the form for
O~r<b

3(;,s) = o n,m,a(yoz)
~ fi(l)

Eo+(1)
fi(;,s)= -=No n,m,cf(yo~)

(8.60)

and for b < r < a as

I

+(1)
ii(~,s)= E. S M

+(2) +)
1 n,m,o (Y~) + @2Mn,m,a(yrlj

(8.61)

Constraining the tangential electric field at r’= a to be zero
gives

~lin(ya) + f32kn(ya)= O (8.62)

.-
‘*

-
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At r = b both tangential electric and magnetic
continuous, thereby giving

[ybin(yb)]’
.

‘1 + $2yb

Eliminating (31gives

62{ [ybin(yb)l’ybkn(yb) -

= in(yob)

fields must be

[ybkn(yb)]’ ~ [yobin(yob)]’

‘yb ‘~ yob

= [ybin(yb)]’ybin(yob)

which reduces”

i32 = [ybin(yb)

to

]‘ybin(yob)

ybin(yb) [ybkn(yb)]’}

.
- Z (yb)4.

~ ~ln(Yb) [ybi (yob)]’n

Z (yb)2.
1 (yb)[ybin(yob)l ’~ yob n

*

Eliminating 82 gives

Sl{ybin(yb) [ybkn(yb)l’ - [ybin(yb)]‘ybkn(yb)}

= [ybkn(yb)]’ybin(yob) - ~ ‘yb)2kZ. ~ n(yb)[Yobin(yob)]’

(8.64)

(8.65)

(8.66)

which reduces to

% =
-[ybkn(yb) ]‘ybin(yob) + $ ~kn(yb) [yobin(yob)]‘

-.v w

Note that if the parameters of the liner
inner cavity then-f32= O
Wronskian relation) .

Combining equations

and 61 = 1 (the

and

are the same as
latter due to a

(8.6’7)

the



.

~-[ybkn(yb)l’yobin(yob) + ~yain(ya)l z ybkn(yb) [yobin(yob)]”
J

1+-yakn(ya) [ybin(yb)l’yobin(yob) - ~ ybin(yb) [yobin(yab)l’~

= o (8.68)

For y = y. and Z = Z. so that the damper is removed the result
reduces to

in(yoa) = O

as required. For o + ~ with fixed s, p, and s we can.use
asymptotic forms of equations 8.11 through 8.13 to give

eya

~[l+O((ya)-l )l~e‘yb[l+O((yb) ‘1)]yobin(yob)

+zke ‘yb[l+O((yb) ‘1)][yobin(yob)1‘
I

1

~yb
+ e-ya[l+o((ya)-l)l ~[l+o((yb) -l)lyobin(yob)

~yb
- zg~[l+O( (yb)-~)l[yobin(yob)l’~

.

(8.69)

the

9

= o (8.70)

Neglecting terms proportional to eY(b-a), but not those propor-
tional to eY(a-b) gives in the limit

in(yob) = O (8.71)

as the equation for the H mode resonant frequencies correspond-
ing to a perfectly conducting cavity of radius b. In terms of
the normalized liner wave impedance ZI we have

,
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o yain(ya) {-[ybkn(yb)l ’yobin(yob)+ziybkn (yb)[yobin(yob)l’}

+ yakn(ya){[ybin(yb)l ’yobin(yob) -zRybin(yb) [yobin(yob)l’}

(8.72)

This is the equation for determining the natural frequencies
for the H modes for arbitrary d/a (with O : d/a : 1).

For the H modes the wave impedance at r = b can be found
from the fields there which are

3(2,s) E {Slin(yb) +~:lkn(yb)}~n,m,o(et$)r=b = o

(8.’73)

where again a prime “indicates
the argument (yb, -yb) of the

E.

.{[

in(yb) kn(yb)

a(~,s) ~=b = -~ n(n+l) !31~+ ~2~

J [ybin(yb)I‘ [ybkn(yb)]’
l~n,m,a(e,$lt

+ @l
(

—+62yb yb f ~

Comparing $r X i to ~ and noting that ~r x ~ = b we have

~=-
Slin(yb) +@2kn(yb)

‘bsz [ybin(yb)]’ [ybkn(yb)]’
’61 Yb —+s2 yb

(8.”?4)

Using equation 8.62 for the boundary condition at r = a 9ive~s

yain(ya)ybkn(yb) -yakn(ya)Ybin(yb)
1 (8.’75)

‘b = ‘yain(ya) [ybkn(yb)l’-yakn(ya) [yb~n(yb)l

Converting the in functions to kn functions from equations 8.23
gives another form for the impedance at r = b as

- [-yakn(-ya)1[ybkn(yb)1 + [Yakn(ya)1[-ybkn(-yb)I
(8.76)

‘b = [-yakn(-ya)1[ybkn(yb)1‘+ [yakn(ya)][-ybkn(-yb)] ‘

the derivative with respect to
Bessel function.
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For large Iyal with small d/a we have

o

-eya[l+o((ya)~~)le-m[l+o((ybj-11] ~
‘w[l+O((yb)-l)]+e-ya[l+O((ya)-L)]eW[l+O((yb)-~]]

‘b= -e‘a[l+O((ya) )Ie - ‘ya[l+O((ya)-l)]eW[l+O((yb)‘1)]

.
‘yd[~+o((ya)~~)1eyd[l+O((ya)-l)]-e= (8.77)
‘yd[l+o((ya) 11‘d[l+O((ya)-l)]+ee

If leYd +
duces to

‘b =

which is
modes;

For

e-Ydl is bounded away from zero then this result re-

+ o((ya)-~)l

l-e -2yd

~ + e-2yd[1 + O((ya)
-L) 1 (8.78)

the same result (equations 8.26 and 8.27) as for the E

small !Ya! the normalized impedance at r = b reduces
(from equation 8~75) to

‘b A( a- 2rl+ly) ‘+l(yb)-n[l+O(ya)1
-+(ya~-n(yb)n+~ ‘1+‘(Y’)]

%=T=
-+( an+l(yb)-n-l[l+O(ya)]-~(ya) ‘n(yb)n[l+O(ya)Jan-i-ly)

-n-l

(:) -[y=yb
-n-1 ~[l+O(ya)]

n(:) +(ni-1)(~)

11+- (n+l)~-

}

l+n~+o(F]2)
= yb

[ al+(n+l)~-n:]+o((:) z) ’l+o(y~)l
nl+(n+l)~

(8.79)



*

.

0 ‘b
= s~b~

[
[l+o(~]][l+o(ya)]=svd l+o(~]][l+o(ya)]

Note th.a.t_the_re.suit...fo~ sm.al_l__Iya I differs from that for large
Iyal. For small lyal the H modes have Zb inductive while the E
modes (equations 8.29) have Zb conductive and capacitive (in
parallel). This result is quite similar to that for large Iyal
in equation “8.78,particularly if /ydl is small for which we
have

‘b
= yd[l + O(yd)][l + O((ya)-1)1 (8.80)

This result for the H modes is quite different than that for
the E modes. Note that the E modes differ from the H modes in
that the E modes have large radial electric fields near the
cavity wall (or damper).

As in the case of the E modes let Iyoal be of order one
(bounded above and below) with Iy I >> Iy. I so that the result
of equation 8.78 applies for the H modes. In terms of a gen-
eral impedance at r = b the equation for the cavity resonances
can be Mitten for the H modes as

‘b ‘b Z
yobin(yob)

—= .—
Z. z Z. = ‘bzi = - [yobin(yob)]’

Expand this equation around vn,n~ which satisfies

in (v )0=n,n~

(8.81)

(8.82)

for which we have

yoa ‘v + Av
n,n~ n,n’

‘(8.8.3)

yob
[1

- tiv -d
=yoa l-$ “v + AV

n,n’ nln’ a n,n~ ~Avn, n,
o

Abbreviating these terms as u and A we have
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(8.84)

where the second derivative term in the denominator is zero be-
cause of the differential equation (equation 7.34). .

The results of equations 8.35 through 8.38 for Zb can be
carried over for the H mode case with v replacing u giving

Then we can write

_-++jl-e-2rdpv
~+e-2rapoI’

*
For a general impedance at r = b we have

Avnrn,
~g- 1 ‘b

v —qav
n,n~ n,n~

o

(8.85)

(8.86)

(8.87)

o

For the special impedance form in equation 8.85 we have

Avn,n, ~d

[

-2r
+p-= 1

vn,nr 0’ 1 + e-zr!
o

(8.88)
. .
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where v has been considered in equations 8.45 through 8.51.
The minimum real part of Av is found at r = r. for which v = Voo
For p = PO the optimum Av for small d/a is then found from

Avn,n,

v = @ - Vo] = [.418 +
n,n~

u

which is conveniently independent

i .417]: (8.8!2)

of n,n’ for the relative fre-
quency shift. Note that the damping coefficient magnitude is
.417(d/a)lvl. This is less damping under optimum choice of a
than is achieved for the_E mode damping for small d/a. For the
H modes the”li”nergives less damping than the shell (equation
7.84) for which the magnitude of the damping coefficient for
small d/a and p = P. is .5(d/a)Ivl.

The optimum choice of liner conductivity is found from
equation 8.55 with u replaced by v giving

.

As examples consider
for p = PO. Consider the

P.

lJ
2.541

~
o

(8.90)

the conductivity, and frequency shift:
H~,l mode for d/a = .1 giving

crodzo= 5.654 , ‘v~,@~,lo ‘ ●0418 +

and for d/a = .2 giving

Equations 8.89 and 8.90 readily extend these
modes.

The results for small dla for the liner
ply only for frequency low enough or d small
small compared to a radian wavelength. Note

i .0417 (8.91,)

i .8345 (8.92)

results to other H

of thickness d ap-
enough that d is
that the liner

cannot be-placed at a position of ~ero electric field for an
unperturbed mode since the liner has finite thickness. In this
respect the liner is superior to the sheet considered in section
VII. The liner can be used to give a more uniform reflection
coefficient for high frequency waves incident on the cavity
wall from inside the cavity. This is considered further in the
next section.

111



The liner parameters E, P, a can have various more comp~ex
forms if desired. Again, however, one should be careful to
choose these parameters to give good mode damping over a large
range of frequencies corresponding to many modes. This ques-
tion needs further detailed study.

A future note will hopefully numerically study the mode
damping characteristics for arbitrary b/a from equations 8.15
and 8.72. Various forms of s, p, and a can then be considered.
One must also be concerned with the realizability of these pa-
rameters using three dimensional arrays of lumped elements.
There is some advantage in also using only passive elements in
such an array.
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IX.

well

Impedance Loaded Liner Inside Cavity and in Contact with
-——=

the Wall for Reducing High Frequency Reflections

Having considered the resonances-of the test chamber as
as sheet and liner dampers for damping these resonances

let us consider this phenomenon from another viewpoint, that of
reflections from the cavity wall (including sheets, liners,
etc.). Cavity resonances correspond to a combination of out-
ward and inward propagating waves which are related to each
other such that the fields are well behaved at r = O (satisfy
Maxwell’s equations with no singularity there).

With a ,space system in the test chamber as indicated in
figure 9.1 the cavity modes are changed. Some of the reso-
nances are associated with the resonances (natural frequencies)
of the space system. The reflections from the walls of the
test chamber alter the natural frequencies of the space system.
A convenient way to consider the reduction of the effect of the
cavity walls on the space system resonances is to minimize the
reflection coefficients of the outgoing waves from the space
system at the cavity walls.

Considering a spherical.test chamber with a space system
at the center of the test chamber, let us represent the fields
radiated from the space system in terms of outward propagating
spherical waves and consider the reflection coefficients for
converting the outward propagating waves into inward propagati-
ng waves. This does not include the nonlinear effects associ-
ated with the electron cloud which extends out toward the chamb-
er walls. It is a limited,,but useful, view of the problem.

Since the space system ideally has linear dimensions small
compared to 2b, then the radian wavelengths corresponding to
resonances of the space system are also small compared to b.
The cavity resonances without the space system present are also
closely spaced between resonances, in the sense that lAs/sl is
small between adjacent resonances for large resonant frequen-
ties Isl for which there are many wavelengths across the cavity.
As the natural frequencies
sideration of a continuous
tion from the cavity walls
of reflection reduction is
quencies.

becoma closer together then a con- -
frequency dependence of the reflec-
is more significant. The viewpoint
then most appropriate at high fre-

Consider first the E waves (those with a radial component
of the electric field) for O < r < b as
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system generating
waves which propagate
toward cavitywall

Figure
for

Representthis
regionby electric
and magnetic
dipoles@ and =)
and otherhigher
order terms, o
(Thereisalso
a monopole term
associatedwith
net charge.)

9.1 Impedance Loaded Liner in ContactwithCavityWaU
ReductionofReflectionofWaves Back Toward theSpace System
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(9.1)

where the -yo~ argument indicates the incoming wave and re is a
reflection coefficient for the E waves. Note that at r = b the
reflection coefficient can be written somewhat differently so
that it can be directly related to the impedance Zb considered
in the previous section. Nc}tethat in the definition of the
spherical vector wave functions (equations 6.1) the kn(-yor)
functions can be used, but the functions fn(yr) and their de-
rivatives use yr as the argument. In the case of kn(-yor) it
is convenient to shift the derivatives to those with respect to
-yr so that derivatives are with respect to the argument of the
Bessel function.

Equating the rati~ of ~angential electric and magnetic
fields at r = b (with er x il= -~) gives

[yobkn(yob)]‘ [-yobkn(-yob)]‘
+ re

~= yob yob

20 ‘bz~ = - kn(yb) + rekn(-yb)

[yobkn(yob)]‘ + re[-yobkn(-yob) ]‘
=-

yobkn(yob) - re[-yobkn(-yob)l (9.2)

where the primes indicate derivatives with respect to the Bes-
sel function argument, yb ox -yb in this case. Solving for re
gives

‘b
[yobkn(yob)1‘ + ~ yobkn (yob)

r o=-
e ‘b[-yobkn(-yob)]‘ - @-yobkn (-yob)]

o

(9.3)

From section VIII the appropriate impedance for the liner
plus perfectly conducting wall, Zb, is given by equations 8.22
and 8.24 for E waves. Note that the propagation constant in
this case is y instead of y. so that the net result is rather
complex. Note for CJ+ ~ (large Re[y]) with s = iu that Zb + O.
With Zb = O we have
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r =-
e

[yobkn(yab)]’

[ynbkw(-yAb)]{
u Al u

corresponding to a perfectly conducting wall at r = b.
s = iu and notj.ng.that

11

then on the

r =-
e

lrel =

fL

imaginary frequency axis for Zb = (1we have

[ikobkn(i.kob)]‘

[ikobkn(ikob}]‘

1

(9.4)

For

(9.5)

(9.6)

\

Similarly if yo = y so that there is no added liner one
can substitute from equation 8.24 and obtain

[yobkn(yob)]’

‘e=- [-yobkn(-yob)]‘ (9.7)

which also has magnitude 1 on the iu axis. Note that re could
be defined so that for a + ~ one would have re + -I.rthereby
referencing the reflection coefficient to r = b. This would be
accomplished by replacing re by re[-yobkn(-yob)l’/[yobkn (yobll~
in equations 9.2 and 9.3. Suppose then we define

[-yobkn(-yob)l’
Pe ❑ re [yobkn(yob)l‘

(9.8)

This removes the phase delay from r = O to r = b and back and
is convenient to use in some cases.

For small Iyobl the reflection coefficient reduces to

._
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r =
e

.=

Pe =

-n(yob)
‘b‘n-l[l +O(yob)] + ~(yob)-n[l +O(yob) 1
0

“

-n (-yob)
‘b‘n-l[l +O(yob) ] - ~(-yob)-n[l +O(yob) 1

u

(-l)n(l + O(yob) 1

(-l)n+l[l +

-1 + O(yob)

O(yob)lre

Note that
small [Sl

this assumes fixed o > 0 so that small Iyobl implies
and thus a constant non zero Zb from equations 8.29.

For large lyobl the reflection coefficient reduces to

r
e

yob ‘b
-yob

-e [1 + O((yob)-l)] + ye [1 + O((yob)-l)]
o (9.10)=-

yob ‘b -yob
-e [1 +O((yob)-l)l - ~e [1 + O((yob)-l)]

Referenced to r = b we have

For large

Pe =

w

(9.11)

l-y
o [-yobkn(-yob)1‘

Iyob I this is

1- ‘b
~[1 + O((yob)-l)l
o.

1+ ‘b@ + O((yob)-l}]
u
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‘b - ‘O
Zb -1-Z. (9.I.2)

This last result i.sexactly what one would expect for a plane
wave normally incident on a plane stratified structure with an
impedance Zb at its front (input) surface. This last form will
be-later us~d with the high frequency form of Zb in order to
discuss minimizing Pe in a broadband sense.

Consider next the H waves
of the magnetic field) for O <

3(;,s) =
0/ n,m,a(yo:) +

~ jfi(2)

Equating
atr=b

(9.13)

{

Eo +(2)
ii(:,s)= -r Nn,mra(yot)

o

the ratio o
$6

tangential electric and magnetic fields
(with er X = ) gives

‘b
kn(yob) + rhkn(-yob)

~ = ‘bzL = - [yobkn(yob)l’ [-yobkn(-yob)]‘
+ rh

yob yob

yobkn(yob) - rh[-Yobkn(-Yob)]
=-

[yobkn(yob)]‘ + rh [-yobkn(-yob)]‘
(9.14)

Solving for rh gives

(9.15)

For a + @ (large Re[y]) with s = iu there results Zb + O.
With Zb = O we have

,–

0
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‘h =

,yobkn(yob)

[-ynbk=(-y-b)1 (9.16)
w lL u

corresponding to a perfectly conducting wall at r = b. For
s = iu and noting the conjugate symmetry of the kn functions

‘h =

lr~l

ikobkn(ikob )

[-ikobkn(-ikob)]

Similarly if yo = y so that there is no
can substitute from equation 8.76 and obtain

yoakn(yoa)

‘h = [-yoakn(-yea)]

which also has magnitude 1
the reflection to r = b by

‘h

Ph

(9.17)

liner one

(9.18)

on the iu axis. One can reference

[-yobkn(-yob)]
Phs-rhybky

on(o b)

For small Iyobl the reflection coefficient

(yob) ‘b‘n[l+O(yob)] - ~n(yob) -n-l[l+o(yob)]
n

‘b-(-yob)-n[l+O(yob)] -- ~n(-yob) -n-l[l+o(yob)]
o

(-l)n[l +O(yob) ]

(-1)n+l [l+ O(yob)]rh

-1 + O(yob)

(9.19)

to

(9.20)
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Note that this assumes that
small then Zb from equations
ling one of the yob terms in

For large lyobl the refl

yal is also small. If d/a is also
8.79 is proportional to s cancel-
the above expression for rh.

ection coefficient ,reduces to

-yob ‘b -yob
e [l+O((yob)-l)] - ~e [l+o((yob)-~)l

o
‘h = - yob (9.21)

-e [1 +O((yob) -l] -
Zb yob
~e [1+O((yob) -l)]
o

Referenced to r = b we have

Ph

‘b [yobkn(yob)1‘
,1+7

o Yobk~(yab)

‘bk--‘b [-YO n{-yob)]‘
l-~

o
[-yobkn(-yob)]

For large ~yobl this is

1- ‘b@ + O((yob)-l)l

ph=- 0

‘b1.+ ~[1 + O((yob)-l]]
o

‘b - ‘O

‘b + ‘O

This result is the same as that for
the result for a plane wave normally
ified structure with an impedance Zb
face.

~e for large
incident on
at its fron

IYOW
a plane

t (input)

(9.22)

(9.23)

It is
strat-
sur-

For small d/a with a uniform liner with large Iyal (im-
plied by large ~yob[) equations 8.26 and 8.78 give for both E
and H waves

.—

I
i’

.
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‘b—=
Z.

for large
including
for large

‘b Z Z1-e -2yd
——
z Z. = ‘bzi = ~~ + e-zyd (9.24)

IYa I ‘hich is 9~~nl ~:a~everal alternative ~ondition~,
large s, p, a, The reflection coefficient

E and H wives isIYoal for both,

‘bl-r
o
“ (9.25]

Consider some cases to obtain a proximate forms for the
reflection coefficients. TFirst let yod~p/po << 1 with YO

u real. Let G :>> ls~~ so that weand

~d
z

‘b
q’

with

v

r

+

P

(9.26)

=(1+

real.

i) (~) 1’2d

Then we have

1- + yodv
o

1+ $ yodv
o

2\

(~w) )
-L+; 2yodv+0 (

o

(9.27)
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With y d positive imaginary the magnitude of p is minimized for
small 71yod by minimizing the imaginary part of v. As consid-
ered in section VIII (equations 8.44 through 8.51) for which we
have the optimum choice of $, I’,and v as

r. = 1.127 + i.1.127

v = .582 - i.417o

For a given frequency one
from equations 9.26. The
cient is

(9.28)

can choose an optimum conductivity
magnitude of the reflection coeffi-

IP] = 1 + 2~lyod]nn[vl (9.29)
‘o

which for optimum choice of conductivity gives

IPI =1- .834~
PO

This shows that until

yod 1 (9.30)

yod]~/po approaches 1 only small reduc-
tions of the reflection coefficient are achievable. Larcreu/urn
lowers the frequency for which a certain reduction of lp~ is-‘-
achievable but the most interesting case has B = MO since the
reflection reduction (damping) structure should be sparse to
avoid photon and electron collisions thereby precluding large
volumes of magnetic materials.

‘Now let lyod~ ~> 1 so that we also have Iydl >> 1, at
least on the iu axis. Let a << ~s[s so that we have

(9.31)

.-

●▼

,
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By

order to minimize lp\ one would like Zb/Zo to approach 1.
constraining

I!=fi=zo (9.3;2)
o

the coefficient of Zb/Zo is nearly 1. By making odZo large the
exponential terms are made small. Note that we can still have
Iydl >>1 and ~ << 1s Ic under this condition. Then we have

[

~= ~ -10
20 1T = ‘1 - 2e-2yd + O(e-4yd) ]

(9.33)

and the reflection coefficient is

la
P

-d+ e y = ~~+ e-2s@sd e-adzO-—
‘4s& 4 SC (9.34)

This last result confirms the need for small ff/scand large
6dZo in a proportion that makes the magnitudes of these two
terms about the same. One would like large attenuation along
the round trip path through the liner, but not with the disad-
vantage of a large change of Zb away from 2.. In another form
we have

(9.35)

so that for some large Iydl = Is~d I one can estimate the size
of adZo to make the two terms have about equal magnitudes for
imaginary s and real p, s, and a.

At high frequencies then one can achieve a small reflec-
tion coefficient. This is commonly achieved in anechoic cham-
bers. However, at low frequencies a small reflection coeffici-
ent is difficult to achieve. In this section we have consid-
ered a uniform slab in front c]fa perfectly conducting wall.
Other profiles are possible and some profiles would likely be
better than the present uniform c, p, u for minimizing reflec-
tions. Of course the optimum distribution functions for these
parameters as a function of r are likely different in different,
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frequency bands. At high frequencies approximate techniques
such as a WKBJ solution of Maxwell’s equations are appropriate.

h interesting form of distribution for the constitutive
parameters for r between b and a is

where the identity dyadic is

(9.36)

(9.37)

This form of inhomogeneous anisotropic medium as the damping
and reflection reduction liner still preserves the spherical
symmetry of-the cavity so that the E and H nmdes still have the
same form as before for r < b and do not couple to each other.
For many practical cases one can simply use p = ~. while a + se
has the more general form in equations 9.36 where yr(r,s) and
yt(r,s) are chosen so as to be approximately realizable by ar-
rays of passive elements.

This general fc?rmof liner given by equations 9.36 needs
to be considered in detail from the viewpoints of shifting the
natural frequencies (damping resonances) and reducing reflec-
tion magnitudes. Given forms for yr(r,s) and yt(r,s) one needs
to consider the approximation of these by arrays of discrete
elements. Such arrays do not give the same results as continu-
ous distributions and the differences between the two need to
be quantified. Figure 9.2 indicates such a three dimensional
array. If there is no mutual coupling between elements then Yr
is directly associated with yr(r,s} for currents in the r di-
rection and Yt is directly associated with yt(r,s) for trans-
verse currents. Note that displacement current (~) has to be
added to the current through Yr and Yt when designing Yr and Yt
to approximate the desired yr and yt.

Note that the use of discrete elements in a damper array
also complicates the calculation of the low frequency capaci-
tance of the space system with respect to the test chamber.

\ Some effective position of the surface of the liner can be cal-
culated for such capacitance purposes.

—

.

h placing a liner inside a cavity the array of elements
will need to allow for the wall curvature which will make the
element spacing vary as one looks at different positions around
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the liner. The pattern of the element interconnections may
also need to be changed at various locations to allow for this
curvature. As the pattern and spacing change the element val-
ues Yr and Yt need to be changed so that yr(rfs) and yt(r,s)
are correctly approximated. One should account for the shape
of the small volume associated with each Yr and Yt so as to
have the proper relation between the current density averaged
over the appropriate cross section and the electric field.
Note that the Yr and Yt elements should be small so as to mini-
mize collisions of the photons and electrons from the space ve-
hicle with these elements. These elements also need sufficient
radiation hardness so that their circuit values do not appre-
ciably change and noise signals are reasonably small. In some
cases these elements might be simple resistive wire.

In a spherical cavity with the space system in the center,
waves from the space system reflect back to the space system
because of the symmetry. One might move the space system off
center to reduce this reflection problem. Alternatively one
might distort the cavity shape so as to break up any focusing
action back toward the space system. Other cavity shapes such
as finite circular cylinders, rectangular parallelepipeds, and
ellipsoids are then of interest. The damper design may become
more complex in some of these geometries. Various such prob-
lems need to be considered in detail so as to optimize the test
chamber design.

.,
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Inclusion of Some Other Nuclear and Space Environmental
Effects and Instrumentation in the Simulator

There are various requirements on the design of a simula-
for the system generated EMP on space systems besides those

associated with the quality of the EMP environment generated.
The space system has to be able to function in its normal oper-
ational configuration. This implies various features for the
simulator facility depending on each specific space system.
For power some-spa”cesyst@rnsdepend on solar energy so the sim-
ulator should have light with an appropriate spectrum illumi-
nating the solar panels. Normal operational telemetry is also
needed so that the space system can function as designed. This
presents special problems for telemetry antennas near the tank
walls and reflections of the telemetry signals from various
parts of the simulator.

The space system needs to be positioned properly with re-
spect to the incident photons. This requires special insulat-
ing supports which do not significantly interact with the pho-
ton and electron environment. Such dielectric supports must be
rather sparse... The temperature (and associated heat flow) ap-
propriate to the space system configuration needs to be
achieved. This is also influenced by the space vacuum condi-
tions being simulated. As discussed previously the vacuum con-
ditions are important for the electron transport; likewise the
earth’s magnetic field is also important.

—

—

There are various other nuclear effects that one might in--
elude in a system generated EMP simulator. One might include
late arriving particles (compared to photons) such as neutrons,,
electrons, and other charged and neutral particles. These
would be provided by separate sources near the photon source
and would be time tied to the photon source to have the various
particle fluxes arrive at the proper times relative to the
other particles and with the proper waveforms. One might also
include the low energy photons in what is considered the ther-
mal range as an appropriate thermal flash with a special gener-’
ator.

Instrumentation is important both for simulator performance
and space system response. Electromagnetic fields and related
electromagnetic quantities can be monitored near the innermost
electron trapping grid and vacuum tank wall without too much
difficulty, although transformers with high voltage insulation
may be needed in some cases. For monitoring currents and
charges on the space system one needs telemetry for transmit-
ting pulse waveforms using an appropriate modulation scheme.
Such a telemetry channel or channels must operate without sig-
nificant errors right through the pulse. In other words it
must be radiation
telemetry link on

hard. Furthermore the portions of such a
the space system must be small enough and so
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configured that they do not significantly affect the electro-
magnetic response of the space system and in particular those
quantities being measured. Other instrumentation includes mon-
itors on the performance of the photon pulser and sensors for
the photon environment produced. Various recording instruments
and associated recording and control rooms (or other substi-
tutes) are also needed.

.

,

1

0 ~
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XI. Overall Simulator Geometry

4B
Having considered many features of”this type of system

generated EMP simulator, some in more detail than others, let
us consider what such a simulator might look like from an over-
all viewpoint. There are some features which constitute large
portions of such a simulator. First there is the test chamber
consisting of vacuum tank, electron and photon trapping struc-:
tures, and damping and reflection reduction structures. The
space system is placed roughly in the center of this test cham-
ber. Second there is a pulseclphoton generator. If a point
source type of photon generator is used a conical volume is
needed to expand the photons into the test volume. A distrib-
uted source photon generator c:anbe placed right next to the
test chamber without a large extension as in tie case of the
point source. Of course one might construct a point source
with conical extension and later convert it to a distributed
source with lower photon energy and perhaps use the conical ex-
tension of the vacuum tank to house the distributed source pho-
ton generator. One might alsclhave two photon generators, say
with different photon spectra, connected onto the test chamber
from two different directions. These pulse generators might be
used for separate tests. Note that an entry position into the
test chamber is needed to take in and remove the space system.
There may also be several electron pulse generators around the
boundary of the test chamber for replacing electrons (at a
later time) lost from the test volume to the test chamber walls.

Various supporting features, some of it rather large, are
also needed. Coils with power supplies of some type are needed
around the vacuum tank to control the simulation of the earth’s
magnetic field in the test chamber. One or more instrumenta-
tion rooms are needed for controlling the photon pulserr simu-
lated earth’s magnetic field, vacuum in the test chamber, solar
power to the space system, etc. The space system normal oper-
ating functions need to be monitored and associated telemetry
provided. This instrumentation room or rooms must also record
various transient test data for both the simulator and the
space system. Part of the overall simulator structure might be
large mechanical supports for various items. There is also a
large vacuum pump system to be included. Radiation shielding
is also needed for personnel safety.

such
latin

There are some optional
a simulation facility.
,gother nuclear effects .

items that one might include in
Some of Wese could be for simu-

These might involve very low en-
ergy photons, electrons, neutrons, etc. One might be wary of
introducing neutrons, however, due to the associated activation
problem.

Figure 11.1 shows a few options for the overall simulator
Layout including the test chamber, pulser, space system entry,
and instrumentation (and control) room(s) . As figure 11.1A
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indicates one might have the direction of photon travel paral-
lel to the earth surface. With the simulator laid out like
this, other photon machines can be added which also propagate
photons parallel to the earth toward the space system, but at
some a-ngleother than that of the first photon machine with re-
spect to the test chamber and space system. If there is a
single instrumentation and control room it could be placed
adjacent to the test chamber at a position which minimizes its
distance to the main photon pulser”.

As indicated in figure l;L.lBone might have the direction
of photon travel upward away :Eromthe earth surface. In such a
configuration one might place the simulator on the side of a
hill so that the pulser, instrumentation and control room, and
space system entry into the test chamber could take place on
different levels, all of which would have access to earth sur-
face on their own levels. Additional photon pulsers can be
added which propagate photons horizontally. Such pulsers coulci
be placed on a level about the same as the center of the test
volume so as to have ready access from the earth surface on the
hillside.
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XII. Summary

This type of simulator for the system generated EMP is
quite different from the common EMP simulators which do not
have nuclear radiation as part of the environment. Its major
components are a pulsed photon source (with appropriate col.Li-
mation) and a test chamber which should not significantly back-
scatter photons and electrons (in which respect it is partially
a large vacuum tube) and should not significantly alter the
space system response to the system generated EMP (in which re-
spect it is partially an anechoic chamber) . There are many de-
tailed design calculations needed to optimize the various elec-
tromagnetic characteristics of this type of simulator; this
note considers some of these calculations. There are other de-
sign details to be considered in depth which are not linear
classical electromagnetic such as nuclear radiation transport,
atomic physics, and nonlinear interaction of electrons (and
other charged particles) with the system generated EMP fields.

There is considerable flexibility in the simulator design
in the sense that there are alternative designs of pulsers,
test chamber shape, and physical layout in connecting the vari-
ous major parts together. Such a simulator also can be nmdi-
fied after its initial construction in that new radiation puls-
ers can be added or changed at later times.

The present note deals with simulation of the system gen-
erated EMP on space systems such as satellites. The techniques
discussed here can be modified to apply to EMP simulation for
nuclear source regions in air. Zn such a case one still needs
a pulsed photon machine but the test chamber design and the re-
quired air density are somewhat different, but similar consid-
erations in the test chamber design are still required.~

.
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