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Abstract

The value of the inductance for the termination of a parallel-plate

simulator has previously been chosen on the basis of an analysis which considered

coplanar flanges to extend beyond the terminating admittance sheet. The flanges

were introduced to facilitate that analysis, the underlying assumption being

that the solution with the flanges is not significantly different from the

solution without the flanges. In this note we test this assumption by using

a wedge Green’s function that allows us to vary the angle of one flange while

the other remains coplanar. We find that the effect of coplanar flanges is

small if we compare that case to the case where the flanges are alternately

removed; however, there is a flange orientation of interest that can make a

considerable difference in the choice of the inductance. This orientation

corresponds to the simulator resting on a perfectly conducting ground. Our

results are summarized in a table of normalized inductance values for various

slope angles of the terminating admittance sheet as well as various physically

significant flange orientations for each slope angle. We also present the

appropriate graphs that lead to this choice of inductance values.
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1. Introduction

The value of the inductance for the termination of a parallel-plate

simulator is now being chosen on the basis of’prev<ous results [1]. In Cll,

flanges were considered to be present in order to facilitate the analysis.

The underlying assumption is that the solution with flanges is not significantly

different from the solution without flanges. We have completed a study that

allows us to test this assumption.

Our analysis is based on the use of the Greenfs +unction for the perfectly

conducting wedge. The use of this Green’s function allows one to vary the

angle of either the top or the bottom flange, with Ehe other flange remaining

coplanar with the termination. We have calculated the time dependent ideal

current that would exist on a perfect termination (no reflections) if it had a

step function T~ wave incident upon it. We calculate and plot this current

versus an appropriate normalized time scale with the quantities c, 6, and a

serving as parameters for each plot, The meaning of these quantities is as

follows: ~ is the angle between the termination plane and the bottom plate

of the simulator, 6 an angle that defines the orientations of a flange, and

a is the ratio of the distance from the intersection of the termination plane

and the top plate of the simulator divided by the length of the termination

plane, (See figure 1).

Once the ideal current is determined, we compare it to the approximate

current that would exist in an R, L admittance sheet. The value of R that is

used in this admittance sheet is fixed from a late time argument that is

independent of flange considerations; however, the value of L is chosen so

that the approximate current behaves as much as possible like the ideal current

for a certain required period of time.

Our results show that Baum’s assumption concerning the insignificant

effect of coplanar flanges on the ideal current in the termination is valid

if we compare that case to the case where the flanges are alternately removed;

however, there is a flange orientation of interest that can make a considerable

difference in the choice of L. This is the case corresponding to an orientation

of the bottom flange so that it is an extension of the bottom plate of the

simulator. This orientation corresponds to a vertically polarized simulator
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resting on a perfectly conducting ground. For this orientation of the flange

and c = 90°, the value of L one should choose is approximately twice the value

of L one would obtain in matching the ideal current if the bottom flange were

absent corresponding to a nonconducting ground. The difference in the value

of L one should use for these two extreme cases diminishes as & diminishes.

This is another reason for using sloped terminations. Another way of diminishing

the effect of the ground conductivity on the value of inductance WAS found by

considering a flange angle corresponding to removing and sloping the ground

beyond the simulator.

Our results are summarized in tables of normalized inductance values for

various :, 6 orientations. We also present the curves of the ideal and

approximate currents which led to this choice of inductance values.
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11. Ideal Current When Angle of Bottom Flange is Varied

The analysis of the effect due to varying the angle of the bottom flange

is facilitated by considering figure 1. Later we will discuss how this analysis

can be used to consider the effect of varying the angle of the top flange.

In region 1, Hz satisfies the equation

(V~+k2)Hz= O (1)

2
where V is the two dimensional Laplacian operator and k is the free space

o
wave number. We will also use the Green’s funccion that satisfies the equation

(Vj+k2)G= d(g-~) (2)

in region 1 as well as boundary conditions corresponding to the wedge being

perfectly conducting. This G is found by making use of the scattering solution

contained in the book by Bowman, Senior, and Uslenghi [21 when the incident

field is due to a line source. That is

H =aH(l)(kl&-~l)
Zi Zo

For this incident field, G is given by

(3)

(4)

where H~LS is the total field, incident plus scattered field, when Hzi given

by (3) strikes the wedge depicted in figure 1 with the termination considered

to be perfectly conducting. Using the notation in [22, this quantity is given by

H = H:””” +2
zLS z

where

HG”O” = ~ H(l)[kl?(o,nl)]+ ~ l$%ll(~n )]
z o 0

‘1 ‘2
2

(5)

(6)
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0. . ‘T -$ +@. - 2nlvn
‘1

0. = IT -4 - ~. + 2$1- 2n2vn
‘2

1
R(a) = (P2 +p~ + 2ppo 5Cos a)

and the summation is over the positive integers n
1
and nz satisfying the

inequalities

where further

H: = VD(-V - $ + +.),- vD(~ - @ + O.)

+VD(-T-+-$O+2Q) -VD(T-+-40+2Q)

ye) =*
~
‘H(l)[kR(ip)]

sin Bv
o

0
cosh(p/v)-cos(6/v)

R(ip) = (p2 + p: + 2ppo cosh p)%

(7)

(8)

(9)

(lo)

(11)

(12)

(13)

(14)

(15)

For the case of interest $ = @o = !2and the expression for G(P,po) reduces to
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“J
m

“ ‘l)(klp -pot) +~sin~ Ho[kR(ip)]G(P,PO) = -~Ho
o

We now use G(p,po) in the Greenfs theorem

dp
(16)

cosh(p/v)-cos(n/v)

J I~HzvjG - GV~Hz]dSo = i*[HZVOG - GVoHz]dLo

‘A

and (1) and (2) in order to arrive at

I
d

Hz(p) = - G(p,po)(fi”VoHz)dPo
o

(17)

(18)

The area over which we integra~ed in (17) is depicted in figure 1. It is the

area bounded by the wedge having an angle 2fland the dashed contour. The

differential arclength, dQ as well as the outward normal, 3, are also depicted.
0’

We also made use of the facts that A*V H vanishes on the conducting portion
Oz

of the wedge while fioVoGvanishes on the entire wedge. Both of these quantities

vanish sufficiently fast at infinity so that the contour integral vanishes

at infinity.

We now simplify (18) further by noting that

ii.vH = iilJEE
Oz o P.

e
(19)

and that

E = Ey sin &
P.

(20)

so that

J
d

HZ(P) = [1~ dpG(p,po)sin Es: at (21)
o

0

where P indicates the Fourier transform. Equation (21) is our desired equation

for both the source and termination problem, The main difference in these

problems is the specification of Ey(po,t) along the plane which corresponds

to either a distributed source sheet or distributed termination.

6



● ✎

In the derivation of (16) we implicitly used the fact that the only

integers which satisfy (11) and (12) were nl = n2 = O. Both (11) and (1.2)

are simplified to

lnl(2~ - 2$2)is-n (22

and

ln2(2m - 2Q)l<?r (23)

The largest value that 2Q can have for the flange angles of interest is 3rr/2

and for this case n
1
and n2 can each equal 1. This is the.case only when

& = Tr/2and the bottom flange corresponds to an extension of the bottom

plate of the simulator. This corresponds to the case where the simulator is

resting on a perfectly conducting ground. This particular case yields a

closed form analytical solution and will be treated in another section of

this note.

We now consider the case of the termination problem where the angle of

the bottom flange is varied. This case will be treated in detail and the

other cases will make use of the analysis for this case. The electric field

that is substituted into (21) is

(24)

This corresponds to the electric field of the incident TEM mode that is

propagating between the parallel plates of the simulator. Since we are

considering a perfect termination, this is the total electric field on the

termination sheet because the reflected field is zero. The quantity, Vo,

is the distance measured along the termination from the top junction and

t = O when the incident wave first strikes this junction. Substituting (24)

into (21) we have

~

d

HZ(P,W) = -eoEo sin $ dpoG(p,po)F[6(t -> Cos :)]
o

(25)

We are interested in the time dependent solution for Hz. This is obtained by

taking the inverse Fourier transform of (25). That is
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J
d v

Hz(p, t) = -soEo Sin & dPo~(P, @*6(t - ~°COS ~)
o

where * indicates time domain convolution. Returning to (16) we write

GO@ = G1(P,PO) +G2(P,PO)

where

G1(P,PO) = -+

and

G2(P,PO) =
i sin(m/v)

27rv

H(l)[+ - pol]
o

w H(l)[kR(ip)]

\
dp

o
cosh~p/v)-cos(m/v)

In the time domain Ehese quantities become

U(ct-lp-pol)

a1(P,Po,t9 = -;

I(ct)%-po)z

and similarly

(26)

(27)

(28)

(29)

(30)

(31) ●

62(P,Po,t) =
c sin(m/v) JmU(ct-R(ip)) dp

2
(32)

VT
cosh(p/v)-cos(m/v)

0 ~(ct)2-R2(ip)

where c = (POEO)+and U is a step function. In order to obtain (31) and (32)

we used the following relation which can be found in the book by Morse and

Feshbach[3] or in a note by Baum [4]. That is

f

m~(1)
o (kR)e-iwt do = -4ci U ‘et-R)

-co
/(ct)2-R2

Now we use (31) and (32) to define H and H as
‘1 ‘2

Hz(p,t) = Hz (p,t) +Hz2(p,t)
1

(33)
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where
E

I

d u<ct. +-po I)
Hz (p,t) =-$

(

d-p
sin < dpo’ *6t–

1 0
-Q Cos <

0
4(ct)*-(p-po)2

c )

E
o

/

d U[ct-(d-po)cos ~ - lP-PO1]
H ‘—sin~dp
‘1 ‘Zo o

0
~(ct-(d-po)cos &)2-(p-Po)2

similarly

E
H o

= - — sin(n/v)sin 512
‘2 T*ZOV

where

/

w
dp

J

d U[ct-(d-po)cos g-R(ip)]

12 = ~ cosh(p/v)-cos(n/v) Odpo

~(ct-(d-po)cos &)2-R2(ip)

We have used the relations Z. = (p /C ) and v = d - p H%
00 0 will be

o“ ‘1evaluated by casting it in a form that was treated in detail in a previous

note by Baum [1]. If we rewrite (36)
,

as

then we can identify our Hz as
1

E
H=-$
‘1 o

using v = d - P and again V. = d - ~
o

U[ct-vo Cos ‘5-IV-VOII

{Kct-vocos c)//v-v 1)2-1}~
o

[jsl +jiS*I ‘

or
E

H ‘>[U(~)-j ]
‘1 o ‘4

We will not define js or j~2 here; they were only mentioned to facilitate
1

comparison of the integral contained in (39) with the explicit integrals

evaluated by Baum. The quantity j 1s4 (Baumts notation) is now implicitly
defined by expressing (41) as

(35)

(36)

(37)

(38)

(39)

(40)

(41)

the
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E

[
Hz (P,t) = : U(T) +( T- ~-r)arccos

[

a sin C-T cos g

1
T 1

0

-:U(T-
[

(1-a)sin E+T cos g
T2)arccos T 1]

*

(42)

where
= Ct-v Cos c

‘i d Sin <

=“J-COS g
‘1 —sin &

‘2
= (1 - a) lyny

a.=v/d= l-p/d (46)

We now return to Hzn (p,t) and we will cast (38) into a form that can be

better handled analytical~y and numerically.

m

JJ
d

‘2 = ‘p
dpOl?(p,pO)UIT

o 0

where

T =ct- ad

F = A(p)((T + apo)2

12 is of the form

+ ap- - R] , (47)
u

- R2)-%

A(p) = (cosh(p/v)
-1

- cos(T/v))

We write 12 in this form so that we can concentrate on

limits of integration that would allow us to eliminate

(48a)

(48b)

(48c)

(48d)

determining the appropriate

the unit step function in

(47). The arguments concerning how this is accomplished can be understood by

referring to figure 2. The region that the original integration is to be taken

over in (47) is the semi-infinite rectangle O = PO < d and p > 0. Depicted

in figure 2 are plots of PO versus p corresponding to the argument o-fthe step
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function equal to zero. That is

T+apo-R=O

The explicit function that is depicted is

~

PO(P,T) =
Ta-pb+i(Ta-pb) 2+(1-a2)(T2-p2) ]

l-a2

where

b = cosh p

Two important values of po(p,T) are

and

po(~,T) = O

T-p
PO(O,T) ‘~ for T > p

(49)

(50)

(51)

(52)

(53)

The largest value that po(p,T) can have is po(O,T). To see this, we consider

the derivative

9po(p,T)

ap =
-Psifhp [l-M]

sin <

where
->2(ob-Ta) (1 + sin2~(T2-p2)/(Pb

M = \pb-Tal
- Ta)2)

Since we will be interested only in the case T > p we can see that

IMl <1

Referring back to (54) and adding the requirement p # O, we see that

~po(p,T)

ap
< 0 forp > 0

(54)

(55)

(56)
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Thus , PO(P,T) is a monotonically decreasing function of p for any T. This

implies that the curve po(p,T) versus p will never cross the line P. = d

if po(O,T) < d and this curve will cross the PO = d line only once if

@(),T) > d. The case p = O will be treated separately in the next section.

What is left to determine is whether we

of our original semi-infinite rectangle

or the intersection with the area below

point we need only examine the value of

We find

T+apo-R=T-p>

should integrate over the intersection

and the area above the po(p,T) curve

the PO(P,T) curve. To settle this

the function T + apo - R at the origin.

Oforp=p=O (57]
o

Thus the area over which we integrate is the intersection of the rectangle

Osjo s d, O < p with the area below the Po(p,T) curve. There are now two

cases to consider. They are

and

PO(O,T) a d

Using (.53)and (48a), these conditions become

p+ad<ct<d+p

and

et> d i-p

(59)

(58)

(59)

When condition (58) is satisfied, then (47) becomes

m

II
PO(P,T)

12 = CU(ct - (p + ad)) - U(ct - (p + d))] dp dPoF(p,po) (60)
o 0

When condition (59) is satisfied, then we must solve for the value of p

corresponding to the point where the po(p,T) curve intersects the p. = d line.

e
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This value of PI must be found before we can set the appropriate limits for

the evaluation of 12. Setting

OO(P1,T) = d

and solving for PI, we obtain

[
= arccosh 1 +

(ct)2-(p+d)2
PI 2pd 1

We can now write (47) as

‘I d

J~
w
H

PO(P,T)

‘2
= U(ct - (p + d)) dp dpoF(p,po) + dp dpoF(p,po)

o 0 PI o

Using (48), the three integrals in (60) and (63) can be written as

where

and

m

H
PO(P,T)

/

m

13 = ‘p d~oF(wo) = dPA(p)16
o 0 0

‘I d

~1 J
PI

‘4 = ‘p
dpoF(p,po) = dpA(p)17

o 0 0

m

J\
PO(P>T)

J

m

‘5= dpo ~PoF(P,Po) = dPA(p)16

PI PI

PO(P,T)

j

2
16=0

dpo((T +apo) - R2)-%

j

d
2 -~

17=0
dpo((T+apo) - R*)

(61)

(62)

(63)

(64)

(65)

(66) “

(67)

(68)

The integrals 16 and I can readily be evaluated in terms of inverse trigono-
7

metric functions. The resulting evaluations are

16
= (sin g)-larccos(pb - Ta)/((pb - Ta)2+ (1 - a2)(T2 - P2))% (69)
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17 = (sin 5)
-1

[
arcsin( (1 - a2)d + pb - Ta)/((pb - Ta)2 + (1 - a2)(T2 - P2))4

2
+ (1 - a2) (T2 -

2%
- arcsin(pb - Ta)/((pb - Ta) P )) 1 (70)

This is as

facilitate

J

far as we can evaluate 13, 14, and 15 analytically. In order to

their numerical evaluation we make the following change of variables.

Y = ~-p (71)

This enables us to eliminate the infinite limit of integration. We are now in

a position to present the explicit form for the current in the final form that

was numerically integrated.

The surface current density on the termination sheet, J, is defined as

= HT~Jz - HZ(P,C) (72)

This definition uses the fact tha~ we are considering a perfect termination

so that the total magnetic field on the simulator side of the termination is

just the incident field. Recall that

HZ(PJ) = Hz b,t) + Hz (o,t)
1 2

and that Hz (p,t) is defined in (42) through (46), while Hz2(p,t) is defined
1

in (38) in terms of 12. Subsequently 12 has been defined in terms of 13

through 17. From (24) we know that

~TEll ‘O
= y U(t - : Cos g.)

z
o

(73)

The final equation for the normalized surface current density, j, defined as

z

j=~J
o

(74)

is
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j = I/m U(T - -cl)arccos[~-l(a sin & - T Cos $)]

+ I/m U(T - ~2)arccos[~-1 ((1 - a)sin & + T cos ~)]

+ q/~2 sin qn{[u(~ - -C2)- U(’r- @IA + U(T - T3)IB}

where, repeating (43), (44), and (45)

1-COS g ~
‘1 = sin g

and defining the remaining quantities in (75) as

+ 1-COS ~
‘3 = ‘2 sin ~

q:l/v=7r/(7T+6-g)

/

1

lA=O
A(y)arccos g(i)dy

IB s I +1
‘1 ‘2
. .

~

YI

IB = A(y)arccos g(y)dy
10

I
1

I . A(y){arcsin[g(y) + e(y)] - ar~sin g(y)}dY
‘2 yl

A(y) = 2y@(y 2q
- 2yq Cos qn + 1)

g(y) = C(C2 + D2)-%

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)
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c = Y2 -2yBcos E+l

D’ = 4y2(52 - l)sin2~

e(y) = 2y sin2E/C(l - U)(C2+ D2)%]

B ‘T sing/(1 -C4) -Cos g

(84)

(85)

(86)

(87)

(88)

r ~ [(B(l - ~) +COS .g)2 - (2 - Q)21/[2(1 - Q)I (89)

It should be noted that the first two terms in (75) represent the surface

current density corresponding to coplanar flanges, while remaining terms

correspond to the effect of bending the lower flange. We have now defined all

of the terms (75) and this is the expression that is evaluated numerically to

obtain the va~ue of the ideal currenti in the perfect termination. Two situations

are not described by (75) without considering a limiting process. They are the

case where p = O and the orientation C = m/2, 6 = o. The case P = O is not e

included because of (56) and case C = T/2, 6 = O is not included because nl and

ri2can each equal 1 and still satisfy (22) and (23). In obtaining (75) we have

not included the contributions corresponding to nl = n2 = 1. In Ehe next two

sections we will obtain analytic expressions for j for each of these two cases.
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where

III. Analytic Evaluation of Current Density at the Bend

We now return to (38) and consider the case p = 0. We rewrite 12 as

J
co

12 =
dp “ ~

o cosh qp-cos q~ O

J
d 1

I . dpo{UIT + apo - R][(T + apo)2 - R2]-fi}
o

0 ~=()

(90)

(91)

J
d .%

10 = dpoUIT - po(l - a)][(T + apo)2 - p:]
o

First consider the case

Then

O<TSd(l-a)

J
T/ (l-a) 1-/2

10 = dpo[(T + apo)2 - p:]
o

(92)

(93)

which can readily be evaluated to give

10 = (IT- E’)/sin & (94)

It is easy to see that (94) should be independent of T. Imagine that (93) was

evaluated by making the change of variables PO =’Ty. Then the T dependence

would cancel in (93) in both the integrand and the limits of integration. We

now consider the case

d(l -a)<T (95)

For this case

I
d

I
2 .2-$.

. dpo[(T + ape) - po]
o

0
(96)
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10 = (l/sin E)[T - & - arccos[~ ‘l(sin E - ~ cos C)ll

where, using (43), (48a) and (48b) for v = d, (a = 1), we see that

T = T/@ sin 5)

Returning to (90) we write

where

= 11~
12 20

\

m
-1

‘i = dp(cosh qp - C05 q~)
o

(97)

(98)

(99)

(loo)

This integral is readily evaluated by letting =s
-qP

= Y* One then obtains a

standard arctan integral, which after using several trigonometric identities

yields the result

1; = [w/q (1 - q)]/sin qn (101)
e

Using (77), we can express this as

Before we express our final result for 12 we use (44) with a = 1 as well as

(98) to write conditions (92) and (95) as

and

(103)

(104)

Now combining the results ~f this section, the expression for 12 can be

written as
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6-{
12 = sin ~ sin q~

[U(~)[m - ~] -U(T - ~l)arccos(~-l(sin.g - T cos g))] (105)

Noting (37), (72), (73) and (77), we see that the current corresponding to the

bend, j’, is given by

.j’ = (q/n2)sin ~ sin q~12 (106)

which, using (77), can be written as

.?
J = A - {U(-r)(7r- ~) - U(T - Tl)arccos(.-l (sin ~ -. CCJSg))} (lo7)

TrT+6-.g

The total j, including the coplanar contribution given by the first two terms

in (75) with u = 1, is

(d-’s)(T-&)j=+- {U(T) [E + Tr+6-g 1
,+ U(T - ~l)arccos(~-l(sin g -

n%)}
“iCos g))(l “- -_ (108)

The coplanar j can readily be seen by noting the terms which remain in (108)

after setting6 = g,
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Iv. Analytic Evaluation of Current Density for E = n/2 and 6 = O

For the special case E = 7/2 and 6 = O we can satisfy (11) and (12) for--

=n=
‘1 2

1. ‘According to (6) this leads

quantity is now given by

~G.O. = 2Hfl)[klP - Doll
z o

For the angles C and ,6 considered in this

contains a multiplicative factor sin(m/v)

so that using (4) and (5) we have

(;.V.
to a new definition for Hz . This

<109)+ 2H(1)LklP + Po\]
o

sectiom,v = ~. The quantity 11~

and consequently is equal to zero,

‘l)(klp + Pol)iH~l)(k~p - O.l)
G(P,90) = -y o -;HO (110)

The corresponding time dependent Greenls function is obtained by taking the

inverse Fourier transform. Using (33) we obtain ‘

i%,po,t) = G1(P,PO,O+’63(LPOJ) {111) a
whereas in section 11, 6 (p,po,t) is the inverse transform of the first term1

in (110) and is given in (31). The quantity, G3(P,P0, t) is the inverse transform

of the second term in (109) and is given by

a3G3,Poyt)= -c/~((c~)
2
- (p +Po)z)-%(ct - p - po)

Equation (26) is valid for &(p,po,t) given by (111) so that

Hz(m) = Hz (p,t) +-H (p,t)
1 ‘3

where Hz (P,t) is give% as before! by (42) with 5 = n/2, while
1

I
d

Hz (p,t) = - SOEO ‘0)dpo~3(p,po,t)k6(t - ~
3 0

(112)

(114)

Substituting (112) in (114) we obtain
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o
where

E
H (p,t) =-&I
‘3 o

/

d
I = dpo((ct)z - (p + Po)z)-%ct - p - po]

o

A decomposition of this integral is

I = {U[ct - p] - U[ct - (6-+”d)~.}’~ct,,Pdpo((ct)2 - (p + PO)2)-Z
o

~

d
i-U[ct - (p +-d)] dpo((ct)2 - (p + PO)2)-Z

o

(115)

(116)

(117)

Written in this form, 1 is readily evaluated as

I = [ti~ - (1 - a)] - U[’c- (2 - a)]]arccos((l - a)/T)

+ U[’r- (2 - a)][arcs~n((2 - a)/T) - arcsin((l - a)/T)] (118)

where from (43),-c= (et)/d, and a is defined in (46). Using (72), (73), and

(74) we obtain

j=j ~+j3 (119)

where jl is the first two terms in (75) with & = m/2 and j3 is given by

j3 = (-1/m)I (120)

with I given in (118). We can now write an explicit expression for j as

j = l/TrU(T - u)arccos(a/-i) + l/i-rU(T - (2 -a))arccos((l - a)/T)

-1/7r U(T - (2 - a))[arcsin((2 - a)/T) - arcsin((l - a)/-r)] (121)

Using the relation

arccos x + arcsin x = 7/2 (122)
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two times, we can write our final expre~sion for j as

o

j = l/TrU(T - ~)arccos(a/~) + l/ITU(T = (2 - a))arccos((2 - a)/~) (123)

IE iS interesting to note that j given in (123) is exactly

C = r/2 and d rep~aced by 2d. The reason for this,is that

be applied to make the case treated in this section into a

with a termination sheet having length 2d.

jl evaluated at
image theory could

coplanar problem
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The analysis

figure 3. This is

Change of Variables to Obtain Solution When
Angle of Upper Flange is Varied

contained in this section is facilitated by referring to

essentially figure 1 viewed upside down. We orient our

coordinate system in this manner so that we will be able to readily use the

results contained in the previous sections. All of the previous results used

(21) which we repeat here

J

d aE

HZ(P) = [1G(p,po)sin &coF & dpo
0

When Ey given by (24) which is

v

%
= -~yEoU(t - : Cos c)

was substituted into (21), then (26) was obtained. Performing the indicated

convolution in (26) we obtain

~

c1 v

Hz(p,t) = -soEo sin ~ dpod(p,po,t ‘~COS ~)
o

(124)

In the derivation of (21) it did not matter whether ~ was greater than or less

than n/2. We are always interested in che case < $ Tr/2so that, referring to

figure 3, E’ > n/2. Equation (21) is valid for the situation depicted in

figure 3 with all geometrical variables, t excluded, replaced by the appropriate

primed variables. That is

J
d aE ,

Hz,(P’) = [1dP~G(p’,p~)sin E’EOF &
o

(125)

In this primed coordinate system, the incident electric field is given by

E = EoU(t + (p’&)COS ~’)
Y’

(126)

The time, t, has exactly the same

into (125) and taking the inverse

Hz,(P’) = SOEO sin E’

meaning as before. Substituting (126)

Fourier transform we obtain

~

d
dp;~(p’,p:,t + (p;/C)COS ~’)

o
(127)
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Using the relation

and introducing the definition

t’ = t + (d/c)cos t’

we obtain

I
d v’

HZ1(P’) = COEO sin E’ dp~~(p’,p;,t’ ‘~COS ~’)
o

*

(128)

(129)

(130)

Because of the orientation of the

and ;Z, are oppositely directed.

primed and unprimed coordinate systems, ~z

So (130) can be written as

I
d Vr

Hz(P’) = -$oEo sin ?’ dp;e(p’,p;,t’ -:COS g’)
o

Comparing (124) and (131) we see that we can use all of the results for varying

the angle of the bottom flange in a simple manner to describe the effect of

varying the angle of the top flange. We need only make the substitutions

[+~’ =7’r-~ (132)

p+p’=d-p>v (133)

t+t?= c -1-(d/c)cos ~’ (134)

We will now show that substitution (134) is unnecessary. The only time

dependence for the lower flange results appeared in the form of T given in

(43) by ‘

Accordingly, the t’ dependence for the upper flange case is
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‘rT=

We now substitute the relation

Ct’-v’ ‘Cos <’
d sin ?’

(135)

V’ = d - or (136)

as well as (132), (133), and (134) into (135) in order to arrive at the conclusion

T’=T (137)

In view of (137) we need not make the change of variables indicated in (134).

In order to arrive at the upper flange solution we need only perform the

substitution indicated by (132) and (133). That is replace ~ by n - & and a

byl- a in all of the lower flange solutions. The substitution involving a

comes from dividing all quantities appearing in (133) by d. We will now

perform these substitutions and present our results for j when the angle of

the upper flange is varied. For the general case it is

j = l/n U(T - ~l)arccos[T -1((1 - a)sin E + r cos E)]

+ l/?TU(T - T2)arCCOS[T ‘l(cx sing - i cos t)]

+ q/?T2sin qr{[u(~ - T2) - U(T - T3)]IA + U(T - T3)1B}

where
Ct-v Cos <

T
= dsin~

(138)

(43)

‘1 = (1 -cl) l::y (139)

.

I-cos g
‘2=U sing

(140)

l+COS g
‘3=T2+sin~

(141)

q : l/v = T/(& + 6) (142)
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1A =

lB =

lBI =

I =

‘2

A(y) =

g (y) =

c =

D2 =

e(y) =

B .=

yl =

r =

It should be noted

the second term in

J
1
A(y)arccos g(y)dy

o

lBI + 1B2

I
Y1

A(y)arccos g(y)dy
o

I

1

A(y){arcsi&g(y) +e(y)] - arcsing(y)}dy

Y1

2y’1-~/(y2q - 2yq Cos qn + 1)

C(C2 +D2)-%

y2+2y6cos<i.1

4y2@2 - 1)si.n25

,2%
2y sin2~/[a(C2 +D ) 1

~(sin &)/a+ cos g

I+r - ((1 +r)2 - 1)
k

(143)

(144)

(146)

(147)

(148)

(149)

(150)

(151)

(152)

(153)

[(c4t3

that

(75)

2
- Cos g) - (1 -1-u)2]/(2u) (154)

the first term in (75) is the second term in (138) and

is the first term in (138). Thus, the coplanar

contribution to the surface current density is the same for upper or lower flange

bending, as it should be.

We now will present the solution when the observa~ion point is at the bend.

Previously, this corresponded to a = 1 and now it corresponds to a = 0, It is
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j = + {U(.)[m - & + ‘d~~~m)cl

-1
+ U(T - -rI)arccos (T (sing+~ cos &))(l --)}

where ‘Clis given in (139).

(155)
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VI ● Results

We obtain the values of inductance by’comparing the ideal surface current
m

density that we have calculated, with an approximate surface current density

in an R, L admittance sheet. The approximate surface current density, j , was

calculated by Baum [I] and is given by ,,

j = [1 - exp(-~/6)]U(~)

where the T is the same one used in (43)

~ Ct-v Cos ‘g
‘r-

d sin ~

and

In (157), c is

20 is the free

note, and L is

relation c/Z
o

can express L

(156)

(157)

the speed of light, h is the distance between the parallel plates,

space wave impedance, E is the same angle used throughout this

the inductance to be calculated once B is known. Using the
o

= I/p. where PO is the magnetic permeability of free space, we
—

as

so that once b is determined, L is also determined. In view of (158) we can

consider @ as a normalized value of inductance.

The procedure we used for determing B is as follows. We plotted the ideal

surface current density versus T for various ~, 6, and a. We then plotted j~

versus T on the same graph for a value of 6 which caused j
B
to approximate the

ideal surface current density, j, over a range of T having practical interest.

The lower limit of -cis chosen to be O despite the fact that the ideal current

does not start at T = O. The reason for this lower limit is that any real
..

current would start at T = O. The upper limit, T = 3, is chosen because this

corresponds to matching the currents for a real time corresponding to 3(h/c)

and this is considered sufficiently long to decide on the value of a component,
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L, that is designed to perform for early times. In figures 4 through 16 we

present the curves that lead to the choice of the 6’s that appear in the

following tables.

Table 1

g = T/2
7

0 .1 .5 .9 1.0

Lower Flange 6’s

o 1.8 1.8 1.9 1.9 1.8

r/6 1.3 1.3 1.5 1.5 1.5
1

Upper Flange 6’s

‘i’r .9 ,9 1.0 l.O 1.0

c1

T/6

Tr/3

IT

7r

Table 2

~ = T/3

o .1 .5 .9 1.0

Lower Flange 6’s

1.6

1.1

1.1

.9

1.6

1.1

1.2

1.0

1.5

1.2

1.1

.9

1.4

1.1

1.0

.7

1.4

1.1

1.0

.7

Upper Flange 6’s

1.0 1.0 1.0 .9 .9
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Table 3

E = T/4

(5
o

I
.1 .5 .9 1.0

Lower Flange f3’s

o 1.1 1.1 1.3 1.2 1.1

Tr/6 1.0 1.0 1.2 1.0 1.0

m .9 1.1 .9 .7 .6

Upper Flange (3’s
I

l-r 1.0 I 1.1 I 1.0 I .9 I .9

Table 4

t = IT/lo

o .1 I .5 .9 1,0

Lower Flange ~’s

‘K .6 .7 ,8 ●5 .5

In table 2 we included

did not include 6 = Tr/3. In

8 = m, because for ~ = n/10,

the coplanar case, 6 = n/3, because reference [11

table 4 we only included one flange orientation,

the data for the ideal current was extremely

close to the data presented in reference [11. Even for-d = m, the ultimate

choice of B is the same one would obtain by considering coplanar data; however,

a slight effect can be seen by comparing figure 13 with Baum’scoplanar data.

In general it is found that as & decreased the effect of varying the flange

angle made progressively less Percentage difference be~ween the coPlanar ideal

current and the ideal curren& corresponding to a bending of the flange.

Our final choice for the value of B appropriate to a given inclination

angle, ~, is based on the following argument. We believe that the expression

for the approximate current given in (156) is likely to be a more valid expression

near the center of the termination. In addition, it seems that if one had an

exact expression for the current in an R,L termination rather than (156), one

would choose to match the exact current and the ideal current calculated in
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this note at a = .5 in order. to determine 6. Thus, we considered only the

cases corresponding to a = .5 in deciding on our value of @ for various g,

6 orientations. In the presentation of the 6’s for C ~ n/10 we use Baum’s

data [I], since for these angles, the coplanar ideal current can be used for

deciding the value of i?without concerning ourselves with the angles or even

the presence of the flanges.

Table 5

E
*

no flanges perfectly conducting ground removed (6 = 7r/6)
ground (6 = O)

n/2 6 = 1,0 $= 1.9 B = 1.5

7/3 .95 1.5 1.2

T/4 .95 1.3 1.2

Tr/lo .8 .8 .8

T/20 .8 .8 .8

Tr/40 .6 .6 .6

*
The values in the “no flange” column are the average values of B corresponding

to the removal of the top flange and the removal of the bottom flange.

The values of p presented in table 5 together with (158) determine the

value of inductance. The value of the resistance to be used in the admittance

sheet comes from late time arguments that are independent of flange considerations.

For completeness, we talcethat result from Baum [1]

R=Zo sing (159)

A general observation can be made concerning the results summarized in

table 5. The values of inductance to be used in the termination when the

ground that the simulator rests on is either nonconducting or perfectly

conducting can be made closer to each other in either of two ways. We can

either decrease ~, or for large <, we can remove ground beyond the simulator,
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