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Abstract

The time dependent sufface current density that is induced on the outer
surface of a planar source array of a parallel-plgte simulator is calculated
and an energy theorem is presented which relates this current to the energy
delivered outside of the working volume of the simulator. Using the calculated
current together with the energy theorem, it is shown that decreasing the slope
of the source array or increasing the slope of the adjacent ground reduce the
amount of wasted energy. For certain finite times of interest, this result is
obtained by using numerical integration; however, in the infinite time limit
analytic formulae are derived that clearly demonstrate the dependences of

wasted energy on the slope angles of the source array and the adjacent ground.
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I. Introduction

As a logical extension of a previous study concerning the effect of flanges
on the sloped termination of a parallel-plate simulator [ 1], we consider the
effect of flanges on the radiating properties of a sloped planar source array.
We relate the angle of the flange to the sloping of the ground adjacent to the
source array and then calculate the surface current density on the outside
portion of the array. It is this current that delivers wasted energy outside
of the working volume of the simulator.

In the calculation of this surface current density, we use the termination
analysis. We show that it is possible to obtain an expression for this current
by making suitable variable changes in the current formulae presented in the
termination study. Even though these currents are simply related, we cannot
make use of the numerical results for the termination current. After obtaining
our expression for the sourcekcurrent, we require a separate numerical integration
to obtain our results. These numerical results are presented as time dependent
plots.

In a previous note [2], Baum used qualitative arguments to arrive at the
conclusion that there was benefit to be gained by decreasing the slope angle of
the source array, &, as well as benefit to increasing the slope of the ground
adjacent to the source, 8§ (see figure 1). 1In order to quantitatively examine
the effect of these two parameters, we derive an energy theorem that relates
the current that we calculate to the wasted energy delivered outside of the
working volume of the simulator. We show that the wasted energy is a triple
integral that must be evaluated numerically when the source is turned on for
a finite length of time. We present tables of the wasted energy for two finite
times of interest and for various &'s and 8's,  For the infinite time limit,
we analytically derive formulae for ratios of wasted energy that show the
effect of varying £ and §. These formulae are algebraic functions of £ and §
that can readily be examined. Both the numerical integration and our analytic
expressions show that the wasted energy can be reduced by decreasing & and

increasing 8.




ITL. Explicit Representafion of the Induced Current

In a previous note on g termination problem for a parallel-plate
simulator [1], we derived an expression for the magnetic field that is induced
on the outer portion of the termination plane. In that note we mentioned
that the source problem treated in this note could be related to the termination
problem. The discussion relating these two analyses is facilitated by referring

to figure 1. Repeating (21) of reference 1, we have

Hz(p) = JodpoGCD,oo)sin EEOF[at ] (L

The quantity Hz(p) is the magnetic field induced on the outer portion (region 1)
of the source or termination plane. The quantities p, g0 d, and £ appear in
figure 1 and are equally appropriate for either the source or termination
problem. The source for the magnetic field is the Fourier transform of the
time derivative of the y component of the electric field on either the source
or termination plane (F[aEy/at]). The Green's function G(p,po) is exactly the
same for either problem and £, is the dielectric permittivity of free space.

For the termination problem Hz(p) was treated in detail when Ey(t) was given by
Ey(t) = —EOU(t - (vo/c)cos £) (2)

where U is the Heavyside step function. In this note we would like to calculate

Hz(p) when Ey(t) is given by
Ey(t) = —EOU(t - (po/c)cos £) 3)

In (2), the termination problem, t = 0 corresponds to the incident wave striking
the junction of the top platevénd upper flange, while in (3), t = 0 corresponds
to the source array being turned on at the junction of the bottom plate and
lower flangé. For out source problem we will label t as ts to distinguish it
from the t of the termination problem. Specifically we are interested in the

inverse Fourier transform of H;(p), F-le(p) = Hz(p,tsL when it is given by

. d -3E
Hz(p> = JodpoG(p,po)sin geoF[§E§J (4)




where
Ey(ts> = -E Ut - (po/c)cos g) (3)

Using the relation

*
and defining the quantities t and y as

Y=TT-€ (7)
and
¢ = t, + (d/c)cos ¥ (8)
we see that (4) and (5) become
Hz(p) = j deG(p,po)sin €€OF[ *] / (9
o ot
and
*y = =EU(t" - (v_/c)eos ¥) (10)
Ey(t ) = EOU(t (vo c)cos v ]

Comparing (9) and (10) with (1) and (2), we see that we can use the termination
analysis evaluation of Hz(p,t) provided we can separate the t and £ dependence
that are due to G(p,po) from the t and & dependence due to Ey(t). To do this

we present G(p,po) from reference 1. It is

G(psp ) = Gylpsp ) + Gylosp ) (11)

where

Gl(o:obo)r-— = Hél)[klp - 0,13 (129

and

Gch’po) = _1.9.__5_.3_'.1.1__91

27 dp

o

L
. Hgl)[k(p2+p§+2ppo cosh p)™*]
J (12b)

cosh qp-cos qm

The only w dependence that appears in G(p,po) is in k which is the free space




wave number, w/c, where ¢ is the speed of light. The only £ dependence contained

in G(p,po) appears in q which is given by
qg=7/(r+68=8) (13)

where § is the slope angle of the adjacent ground (see figure 1). We are now in
a position to describe the change of variables necessary to obtain Hz(p,ts) for
the source problem from Hz(p;t) for the termination problem. First we exhibit

the functional dependence of H;(p,t) in more detail. It is
Hz(pst) = HZ(O,C,EsQ<€)> (14}
We obtain Hz(p,ts) as
, %
Hz<p’ts> = Hz(p,t sYaQ,(E)) (.15>

*
where t and vy are defined in (7) and (8). Defining

2
‘ j= E; B, (p,t,) (16)

and performing the substitution indicated in (15) in the Hz(p,t,g,q(g)) given

in reference 1, we obtain
j =U(t) - /7 u(r - Tl)arccos[rnl(a sin & + T cos £)]

- 1/7 U(%‘— fz)arccos[%_l((l - d)sin g - T cos &) ‘

2 . 1o -
- q/7° sin qn{[U(r - 12) - U(r - T3>]IA + U(t TB)IB} (17)
where
ct =p cos § | ¢t -p cos &
T o= = — (18)
| d sin & h
l4cos &
1 sin & (19)
5 ’




Aly)

g(y)

e(y)

[

l-cos &
T

v/id =1 - p/d

l4cos £
2 + sin &

a1 -

1
j A(y)arccos g(y)dy
(o]
j A(y)arccos g(y)dy
1
j A(y){aresinlg(y) + e(y)] - arcsin g(y)}dy
71
2597/ 5% - 25 cos g + 1)
1
c(c? + p2y~
2 .
vy o+ 2yB cos € + 1

4y2(82 - l)sinzg

2y sin®2/LQ = a) (c? + p2yH]

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)



T sin &

B8 = T + cos & (32)
2 b

yp=l+T=(Q+D%-1) (33)

P =[(8( -a) - cos )% = (2 = a)2I/[2¢L - o) (34)

In comparing this j with the one contained in reference 1, it is important to
observe that the same symbol, T, is used to define different normalized times
in each note. We did not add the appropriate subscript "s" to the t defined
in (18) in order to avoid this additional notation in the remaining part of
the note.

The j as defined in (17) with appropriate auxiliary definitions is the
form that was treated numerically in order to obtain the data for the plots
of j versus T that are presented in this note. In these plots the quantities
g€, 6§, and o serve as parameters. For o not equal to 0 or 1, the value of j

at T = 0 is unity for any & and 6. When o = 0 we can immediately evaluate j

at T = 0 to obtain
300) = 1 = g/n (@ = 0) (35)

When o = 1 we can use the results of reference 1 together with (15) to obtain

,

an analytic expression for all 7. It is
j = gq/w{gu(z) - Ut = Tl)arccos[r_l(sin £+ 1 cos £)J} (36)
where T, 1s given in (19) with d = 1. From (36) we see that
500 = (&/ma = &/n( + /n = &/DE @=1) (37)

Finally, to take full advantage of the termination results we dpply (15)

to the case § = 7/2 and 6§ = 0, For this case




i =U(t) - 1/m U(t - a)arccos(&/T) - 1/m U(t = (2 = a))arccos((2 - a)/v) (38)

Equation (38) will be'particularly useful for our subsequent energy analysis.




I1T. Energy Theorem

Due to the symmetry of the boundaries of the simulator and excitation we
know that the electric field has no z component, while the magnetic field has

only a z component (see figure 1). We now write Maxwell's equations as

A BHZ
VXE = =1 8, 3T (39)
S
: oE '
VXasz = eo 3{; (40)

where V operates only on the coordinates transverse to z. The tg that appears

in (39) and (40) i1s measured from the time that the lowest element in the source
array is fired and to be consistent , the  subscript "s'" is used. Taking the
scalar product of both sides of (39) with ézHé and of (40) with E, then subtract-

ing and using a standard identity, we obtain

(41)

velExd B 1= - > ——— - -

We now integrate (41) over region 1l (see figure 1) and use the divergence theorem

to obtain

M BIHZIZ eO\BIE_[Z
)dA (42)

d
- | etz ] - eirpa 1]+ | (‘z‘—a—t—““f? E
[e) A s s

The first integral on the right hand side of (42) is over the dashed contour

bounding region 1 and the second is over region 1. The integral on the left

hand side can be written as

d ) d
- f dpn.[_}EXazHZ] = - I

3 dp sin EEsz (43)

o)
. The Hz that appears in (43) is the one calculated in the previous section and
Ey is the source field given in (5). Let us now consider that E_ is given by

Y
the following expression rather than (5). It is

Ey(ts) = —EOEU(tS - (po/C)cos g) - Ule, -t - (oO/c)cos £] (44)




This expression corresponds to each element of the source array being sequentially
turned off after a time £ has elapsed since it was sequentially turned on. The
reason it is now desirable to.comnsider Ey(ts) to be given by (44) rather than

(5) is to avoid infinite energies. It is also physically meaningful to consider
the case where the elements of the source array are only turned on for a finite
length of time since the EMP that is simulated only lasts for a finite time.
Eventually we will allow t to approach infinity and still obtain a meaningful
answer by considering a ratio fo energies which causes the infinities to cancel.
Using (16), (18) and (44) in the integral contained in the right hand side of

(43) we obtain

N

d E d '
- sin & J dpE H = -2 sin & J do[U(T) = U(r - T)]j(a,t) (45)
Yy z Z
o ) 0
where ctm
T = T (46)
‘ We note that j(a,t) for the excitation described in (44) is the same j(a,t)

for the excitation described in (5) for 7 < T. Using (21) to change the p

variable of integration to o, the integral in (45) becomes

d 1.
J do[U(t) - U(r - T)Jj(a,T) = 4 J dalU(t) = U(t -~ T)Ji(a,1) (47)
Q (o]
We can now write (42) as
g2 1
-29 h J dalU(z) = U(r = T)5(a,1) = fdzﬁ{_E_xa H ]
o ° Z Z
, ﬁo.alelz € 8[2[2
+J 2 5t T2 Tae )dA (48)
A s s

where we have used the relation h = d sin &. Equation (48) is a relationship
involving power. We now integrate both sides of this equation with respect

to £ from 0 to t, to obtain our energy relationship. It is

t 2 2
‘ m ) ) m Hy BIHZI €, 8]}1_!
E(E,5,T) = J dts [dln'[_E_XaZHZ] -+ J dts J 5 e -+ Y )dA (49)
' ) o] AN s s
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[\

where

m 1. .
E(5,8,T) = h j dt, J dalU(t) - UCt = T)]j(a,T) (50)
(e}

(o]

oNlom

The first term on the right hand side of (49) corresponds to the energy wasted
through radiation and the second term corresponds to the wasted energy stored

in region 1. The source for both forms of wasted energy is E(£,8,T). Combining
(18) and (21) we obtain a form for a change of variables that will simplify the
evaluation of (50). That is

h ', (1-o)

tg ST + o cos g (51)
enables E(£,8,T) to be written as
: Eg h2
o

where 1 .7
I(g,8,T) = j da j dtjla,T) (53)

o o

with T given by (46) and the previous section was devoted to defining j(a,Tt).
For general &, 8§, and T, I(£,8,T) must be evaluated numerically. This is
complicated by the fact that the determination of j, in general, requires a
single numerical integration so that the evaluation of I requires a triple
numerical integration. In order to test the numerical integration we will
evaluate I analytically for special cases. Finally we will obtain the long
time asymptotic behavior of I for arbitrary & and §. The remaining analysis

to be presented in this note will be devoted to analytically treating I.

11




IV. Analytic Evaluation of Emergy for § = n/2 and § = w/2

In order to obtain the analytic representation for this case, we set
£ =6 =1n/2 in (17) and the corresponding defining equations. The resulting

expression is
i =U() - 1/ U(t - a)arceos(a/t) = 1/7 U(t = (1 = a))arccos((l - a)/t) (54)
{

Substituting (54) into (53), the resulting expression to be evaluated is

I=1;+1I, (55)
where 1 .o 1,7 '
I1 = I J da J dr + 1/w I do J.dr(ﬂ/z - arccos(a.T)) (56)
o o o o
and 1l 1. T
l'2 = L J da j de + 1/« J do J dt(m/2 = arccos{(l - a)/T)) (57)
o o o l=a
We now make the change of variables in (57), a' = 1 - «, to show that
I1 = 12 (58)
so that
I = 211 (59)
We now rewrite I1 by evaluating the first integral on the right hand side
of (56) and using the identity
aresin x = /2 - arccos x (60)
in the second to obtain
-I1 = 1/4 + 1/7 I3 (61)

where

12




1 T ‘ .
13 = j do Jdr arcsin(o/T) (62)
O (o]

An evaluation of the T integration can be found in the book by Gradshteyn and
Ryzhik [ 3]. Performing the T integration, and subsequent o integration where

is is trivial, we can write I, as

3

l . . l N 2 . 2 J/
doo 1n o + J dao 1n[T + (T° = a“)™] (63)

1 :
I, =-1/b + T J do arcsin(a/T) - J
o o

3
o

The first two integrals in the right hand side of (63) can be found in many
different tables of integrals or cam be evaluated by integrating by parts.

The resulting expressions are

1
j do aresin o/T = arcsin(l/T) = T(1 - A) (64a)
o
where ,
: -2.%
A=(l-T°% : (64b)
and 1
J doo 1n o = =1/4 (65)
o

The remaining integral is put into a more recognizable form by making the

change of variables

X
v = (1% - o?) (66)

The resulting integral can then be expressed as
T

1 . o L
J dao 1n[T + (TZ - az) 1= J dyy 1n(T # y) 67)
o] AT

The right hand side of (67) is now in a form where it is readily found in many

tables of integrals or it can be evaluated by integrating by parts.

T
J dyy 1n(T + y) = -1/4 + 1/2ET2(1 - A) + 1a[T(¢ + A)]] (68)
AT

13




Combining our results we have
I = 2T aresin(1/T) = T2(1 = A) + 1a[T(L + A)] (69)

This expression is useful as a check on the numerical integration of I for
general & and §., In particular the evaluation of I for £ = /2 and § = 0 was
performed in several ways as part of our debugging procedure. This case will

be treated in the next section.

14




V. Analytic Evaluation of Enmergy for £ = 7/2 and 6 = 0

The evaluation of I(n/2,0,T) was obtained using two different approaches.

It was obtained by using the program for general £, ¢, and T and then choosing

-3

§ = 10 “m. This served as a check on the program because we can obtain an
analytic evaluation of this quantity. The explicit representation of T is
found by substituting (38) into (53) to obtain

T

1. ‘ . ‘ , ,
I(v/2,0,T) = I = J da j dt[U(t) = 1/m U(t = a)arccos o/t
(o]

[s}

~1/% Ut = (2 - a))arecos((2 = a)/1)] (70)
Using the change of variables
T, = /2 (7L)
and
ay = al2 (72)
we can rewrite (70) as
L T/2 , ‘
Io = 4 jodao JO drO[U(TO) - 1/7 U(TO - ao)arccos ao/ro
-1/m U(TO - (1 - ao))arccos((l - uo)/To)] (73)

Because the integral inm (73) is symmetric about a, = L, it can be written as

1. T/2 ' , ‘
Io = 2 Joduo JO dro[U(TO) - 1/7 U(TO - ao)arccos cxo/'rO

~1/w Uz, - (1 - do))arccos((l - ao)/f0>] (74)

Comparing (74) with (55) and its corresponding defining equations, we see that

15




I(n/2,0,T) = 21(v/2,7/2,7/2) (75)
Using the explicit representation of I(w/2,7/2,T) given in (69), we have

I(/2,0,T) = 2T arcsin(2/T) - (T?/2)(1 - A + 2 1n[(T/2)(1 + 4] (76)

where

| 2.}
A= (- 4T (77)

16




‘ VI. Analytic Long Time Energy Relationship

In this section we will obtain the long time asymptotic behavior of I
given by (53) with j given by (17) which is valid for arbitrary £ and §. We

now express I as

=1 4 1@ (78)

where

[T [ o 4 |
= T | dofU(zr) - /7 U({x - Tl)arccos['c (o sin & + T cos &)
) o

- 1/7 U('f - fz)arccos[f-l<(l - a)sin & = T cos E);l:] (79)

T 1 . )
I<2) = J dt j du(-q/ﬂz)sin qﬂ{[U(T - Tz) - U(r - T3)]IA + U(r - T3)IB} (80)
o o}
The quantities Tis Tos Tgs O IA, and IB have been defined in section II.
Because I(l) is a monotonically increasing function of T, the lower limit is

unimportant in obtaining its asymptotic behavior. We now evaluate this quantity

as
1y _ ()
I ~ IL' (81)
where
T 1.
Iél) = j dt J' doc[l - 1/ arccos['c-l(cx sin £ + T cos . £)]
T e} g
L
- 1/% arccos[r-l((l - &)sin £ -~ T cos g)]] (82)

and T, is chosen so that T 2T and T =T, for any o, i.e., T, = (1 + cos &)/sin &,

Our final expression will be independent of T,. Using (60), we can rewirte

. (82) as

17




T

(1) SRR SPPIIS 05
IL = 1/% J dr [ da[%rcsinET (o sin £ + T cos £)]
T o

L
-+ arcsin[f-l((l - &)sin £ - T cos E)]] (83)
For large 7, the integrand in (83)»behaves like
arcsin[r_l(d sin £ + cos.£)] + arcsin[T_lKI - a)sin £ - cos £)]

~ arcsin(cos &) + arcsin(-cos &) + %—+ l%& = %— (84)

Substituting (84) into (83), adding the requirement T >> T., and performing

L
the integrations, we obtain after combining the resulting integral with (81)

1Dy n T (T + «) (85)

We now consider the long time behavior of 12. First we note

2 _ (2
I I~ (86)

where T

1
dt J dal (87)
B
TL o

Iéz) = (-q/ﬁz)sin qm J

We choose T, so that it is larger than T, for any a, i.e., T, = 2/sin E.

We now refer back to (24) through (32) to determine the large T behavior of

I Examining these equations, we see that

B'
. 1 1
IB*v T = j A(y)dy (88)
(o]
with A(y) given in (27). Making the change of variables

y=eP? (89)

we have

18




1 0
J A(y)dy = j dp(cosh qp = cos qw)—l (90)
0 o
The right hand side of (90) was evaluated in reference 1, and is given by
f dp(cosh qp - cos qﬁ)-l = -g (1 - q)/sin qn 91)
o :

Combining (88), (90), (91), substituting the result into (87), and performing

the remaining integrations we obtain for T >>‘TL

152)- “(1 - Q)/7 1n T (T + =) (92)

Our resulting asymptotic expression for I is obtained by combining (78), (85),

(86) and (92). The final expression is
I(,8,T) ~¢/m In T (T » ») (93)

where q is given in (1l3). . Our final results are obtained by forming physically
meaningful ratios. Using the relationship between the wasted energy E(£,$,T)°
and I(£,6,T) given in (52) as well as the explicit representation of q given

in (13), we obtain
E(E,8,%) /E(£,0,%) = (1 + 8/(x <= £))"" (94)

This expression shows how the wasted energy is decreased by increasing the slope
of the ground adjacent to the source array (see figure 1). It is also meaningful

to form the following ratio of energies again using (93), (52), and (13)

1-C) (s/m) T
1-(&/m) (1+8/m) "L

E(E,8,%)/E(n/2,8,=) = (95)

This expression shows how the wasted energy is decreased by decreasing the

slope angle of the source array.

19




VII. Results

Because we related this source analysis to our previous termination
analysis [1J, it was convenient to calculate our induced surface current density
for the same values of the geometrical parameters (£,8,a) that were used for
the termination problem. Out data is presented in the following manner. For
each orientation described by a particular £ and &, we present plots aof the
induced current after it has been normalized versus the appropriately normalized
time, T, at the center of the source array (d = ,5). The normalizing relations
are given in (16) and (18). These plots are presented in figures 2 through 5.
In figure 6 we also show how the current varies over the array for & = 7/4 and

§ = 0. We augment this sample of waveforms by presenting the following tables.

) Table 1,
TW'S for £ = 7/2
$ 0 /12 /6 w/4 /3 T

6.47 5.58 4.91 4,39 3.94 2.09

W1 6.46 5.56 4,90 4,36 3.92 2.07
5 6.41 5.51 4,84 4,31 3.87 2.06
6.39 5.49 4.81 4,28 3.86 2.14
1.0 6.39 5.49 4,81 4,28 3.86 2.20
Table 2,
TW'S for € = 1w/3
.8 0 /12 /6 /4 /3 m
[0
4,68 4,15 3.70 3.31 2.97 - 1,94
.1 4,72 4,18 3,73 3.34 3,01 1.94
5 4.87 4,34 3.90  3.53 3.21 1.95
.9 5.06 4,54 4,12 3.77 3.48 2.23
1.0 5.12 4,60 4.18 3.84 3.56 2.38
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. ' Table 3.

T 's for £ = /4
8 0 T/12 w/6 w/h w/3 T

4.05 3.58 3.16 2.79 2.54 1.96

.1 4,11 3.64 3.23 2.87 2,60 1.99
.5 4,40 3.96  3.57 - 3.2 2.95 2.18
.9 4.76 4,34 4.00 3.71 3.46 2.46

1.0 4,86 4,45 4,12 3.85 3.62 2.68

Table 4.
TW'S for £ = 7/10

8 0 m/12 w/6 wl4 /3 T
2.30 2.19 2,12 2.06 2,02 1.88
' .1 2,52 2.41 2.33 2.27 2.22 2.06
5 3.84 3.69 3.58 3.51 3,46 3.30
.9 5,82 5.72 5.52 3.10 2.28 1,18

1,0 6.34 6.30 * * * *

%*
The value of j at T = 0 is given in (37) as j(0) = .1/(.9 + &/7) and is below

+1 for these special cases.
Table 5.

g /2 /3 /4 w/10

% 0 1.00 .58 41 .16

L1 .10 W17 26 L1h R
.5 .50 .29 £21° .08
‘ .9 .90 .38 .04 .02
T 1.0 11,00 1,73 2,41 6.31°

*
The initial value for o = 0 is given in (35) as j(0)

+The initial value for o = 1 is given in (37} as j(Q}

g i e = TR, e N i TR 2. 3 e e £t g T AR Y o P K % e = 7 55 T S ok e At R 8 S et LT e g S AT S e e
———

1 ~¢&/m. -1
g/nm 4+ §/n - &lm) .

.
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Tables 1 through 4 contain the pulse width, To? of the induced surface
current density. This is the length of time, measured in units of h/ec, for
the normalized current to decrease to .l. Table 5 contains the normalized time,
Trs that this current stays at 1lts peak value., Again, Ty is time measured in
units of h/c. For the step function excitation we are considering, it is known
that there is zero rise time to this peak value, and the numerical value of
this peak (plateau) is either a unity or can be readily determined from the
simple.algebraic formulae given below the table. '

Although the current waveforms are of Iinterest, our results for the wasted
energy corresponding to this current can be more readily used to assess the value
of sloping the ground adjacent to the source array. In (52) we showed that the
wasted energy for a particulat (§,8) when the source was turned on for time, T,
is given by

g% 2

CE(E,8,T) = 5 B 1(5,68,D)

o

Our energy results are presented in the following tables.

Table 6.

Values of I(§,8) for T =5

s 0 /12 /6 T/4 /3 m
g A
m/2 1.98 . 1.75 1.58 1.45 1.35 1,01
/3 1.50  1.38 1,29  1.22  1.16 .94
o 1.30 l.22  1.15 1.10  1.06 .90
7/10 .84 .82 .80 .78 .77 .72
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Table 7.

Values of I(£,8) for T = 10

§ 0 w/12 7/ 6 w/b w/3 ™
. \
w2 2.42  2.13  1.91  1.75  1.62  1.15
/3 1.84  1.68  1.56  1.46  1.38  1.07
w4 1.60  1.49 1.0 1.32  1.26  1.02

/10 1.11  1.06  1.02 .99 .96 .85

The values of T used in these tables correspond to the elements in the array
being turned on for a duration of 5h/c and 10h/c seconds. To augment these
tables we repeat (94) and (95)

Ly
E(E,8,0)/E(r/2,8,) = 1—(2)(1+a/w)} -
‘ 1=(&/m) (1+8/m)

EE,8,=)/E(£,0,%) = (1 + 8/(n = £)7L

These relations together with tables 6 and 7 quantitatively show the benefit

of decreasing & as well as increasing .
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Figure

2. . Induced surface current density, j, versus normalized time, 7T, at the
center of the source array, o = .5, for & = 7/2 and six values of §.
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§/m = 1/12.

Figure 3., Induced surface current density, j, versus normalized time, T, at the
center of the source array, o =.,5, for & = 7/3 and six values of 8.
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§/w = 1/12

Figure 4. 1Induced surface current density, j, versus normalized time, T, at the
center of the source array, o = .5, for £ = 7/4 ans six values of §.




1.0

. ; . T y 1.0 ; . ; . . . 1.0 . y T x —
s/m=0 4 §/n = 1/12 4 s Coelm=1/6

1 . 4 .8

E .7 - .7

Figure

5.

Induced surface current density, i,

28"

versus normalized time, T, at the
center of the source array, o« = .5, for & = 7/10 and six values of §.




5 -
1.0 Y T Y ¥ 7 T ; 1.0 T T T T T T
|
9k a=0 . 9t @ = .1 ]
b8k 4
7t . -
b6 F .
3
S5k -
A J
3 F R
2 f :
1t 4
f 4] L 1 1 1, L L
' 0 1 2 3 4 5 6 7
i T *
1.0 T ¥ T T ) L
f 9L o =] N
BF b
TF -
et ]
3
R .
% ,.4- o
(‘.
: 0 I 1 1 1 ! 1!

Figure 6. Induced surface current density, j, versus normalized time, T, at 5 points
. on the source array for & = 7/4 and § = 0.

' "o
)

B

'
‘ i

i

(e

29",




Acknowledgement

We thank Dr. C. E. Baum for suggesting this study, Mr. R. W. Sassman for

computer programming, and Mrs. G. Peralta for preparing this manuscript.

30




References

M. I. Sancer and A. D. Varvatsis, "The effect of flanges on the inductance

'of a sloped termination for a parallel-plate simulator,' Sensor and

Simulation Notes, Note , November 1972,

C. E. Baum, "General principles for the design of Atlas I and II, Part IV:
additional consideratiqns for the design of pulsar arrays,' Sensor and
Siﬁulation Notes, Note 146, March 1972.'

I. S, Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products,
Academic Press, New York, p. 207,'1965.

31 e




