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Abstract

2

The reflections of a monochromatic TEM wave or a step-function TEM pulse
from an R,L admittance sheet terminating the transmission line are calculated.
To minimize these reflections the value of R can be determined by a low=-
frequency argument whereas the choice of the optimum L requires a parametric
study for various values of L. Parametric plots are presented of the reflected
field components in both the frequency and time domains that allow the
determination of the optimum values for L. It is found that a suitable choice

of L can considerably minimize reflections.
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I. Introduction and Results

The concept of an admittance sheet as a distributed termination for a
TEM transmission line was introduced in ref. 1. A subsequent note [ 2]
considered a sloped R,L admittance sheet as a matched termination for a two-
dimensional parallel-plate transmission line with coplanar conducting flanges.
The resistance R was calculated by a low-frequency argument, whereas the optimum
L to match the transmission line for an incident TEM step pulse, was chosen on
the basis of an approximate method involving a comparison of the current induced
on a perfect termination (zero reflection) to the approximate current induced
on the admittance sheet. The resulting R,L admittance sheet does not provide
a perfect termination, and consequently it causes a reflection of the incident
TEM wave. A quantitative calculation of the reflected field would allow the
evaluation of the performance of the admittance sheet in both the frequency
and time domains.

In this note we comsider a two-dimensional parallel-plate transmission
line with coplanar conducting flanges, to facilitate the mathematical analysis,
terminated by an R,L admittance sheet. We calculate the reflection of a TEM
monochromatic wave and a TEM unit step pulse for the special case of a perpen—
dicular admittance sheet only. The value of the resistance R is taken from
ref. 2 whereas a parametric study for various L will determine the optimum
inductance corresponding to minimum reflection. Our method involves the
derivation of an integral equation for the aperture electric field in the
frequency domain, and is based on the application of the boundary condition
across the admittance sheet coupled with two integral relationships for the
interior and exterior magnetic fields in terms of the aperture electric field.
The reflected TEM mode and the first four TM modes are calculated in both the
frequency and time domain. In the time domain the reflected TM modes decay
considerably with distance and consequently it is important thatthe reflected TEM
pulse should be minimized to make a suitable choice for the iaductance L. This
value of L is approximately equal to 1.1 (hZO/c), where h is the height, Zo = 377
and c is the speed of light. The value of L obtained in ref. 2 is very close
to ours. The maximum TEM reflection coefficient for the above choice of L is
only 3.2%. 1In the frequency domain the optimum L to minimize the TEM reflection

over the entire spectrum is approximately the same as in the time domain and the



maximum absolute value of the rgflection“cbefficient is 3.5%. However, for a

given frequency the value of L depends on this frequency. The reflection for

the ™ modes is minimized when the inductance is zero. In the frequency domain
the corresponding maximum absolute values for the reflection coefficients of
the transverse electric field component are 147, 7%, 4.5% and 3.47% for the
first four modes respectively. For the case of zero inductance the maximum
TEM reflection coefficient is equal to ~1/3 'at infinite frequency or at t = O+,
If the incident TEM wave is monochromatic with a frequency below cutoff for
all the ™ modes, then the reflected TM modes will be evanescent and the choice
of L is made by minimizing the TEM reflection. This value of L depends on the
frequency of the TEM wave. However, if the frequency of the incident TEM wave
is above cutoff for the first or higher TM modes, then one or more of the
reflected TM modes will propagate and the choice of L cannot be made on the
basis of minimizing the TEM mode only. Plots are given of the reflection
coefficients (for the transverse electric field component) of the TEM and the
first four T™ modes versus frequency, with L as a parameter (see Figs. 5 through
9). From these pioté one can choose thé value of L that will minimize the overall
reflection if some of the TM modes are propagating. Notice, however, that for
‘high frequencies all the propagating TM modes become negligibly small irrespective
of the value of L, and the choice of L should be made by minimizing the TEM
reflection. This is also true, as we mentioned earlier, for frequencies below
cutoff.

For a detailed description of the plots of the field components which

allow the evaluation of the optimum L see section IV,



II. Formulation of the Problem ) o

Consider a two—-dimensional parallel-plate transmission line terminated by
a sloped R,L admittance sheet, where R and L are independent of the frequency.
To facilitate the mathematical analysis two metallic flanges of infinite extent
coplanar to the termination plane have been added (Fig. 1). The purpose of
this note is to calculate and minimize the reflection of an incident TEM wave
by suitably choosing R and L. A low-frequency or equivalently a late-time

argument can be invoked to determine the value of R [2]. Thus
R=2Z sing (1)

where ZO is the free-space characteristic impedance. A parametric study for
various L will be made to determine the optimum value for the inductance L.

ikez,
= e

, in .
Consider now a monochromatic TEM wave E < e, travelling down the

transmission line. The reflected wave will consist of a TEM <Ex’Hy) and ™
(EX,Hy,Ez) modes. The fields are independent of the y coordinate and the following

relationships held:

ik z ~ik z e ~iy_z
E =¢e +re 9% + Z C cos{2arx/h)e (2)
X jat

n=1
ikoz —ikoz o | -iynz

Hy = (1/z_)e - (r/z )e - nzl (C_/Z )cos(2nmx/h)e (3)

o —i‘YnZ
E = )} i(2nm/y_h)C_ sin(2nmx/h)e (4)
A =1 n n E

where T and Cn's are coefficients to be determined, ko = w/c, Zn = Yn/weo,

and Y, is defined by the relationship

2 .2 2
Y, = ko - (2nm/h)

1 t
with Y, = [kz - (2mr/h)2]2 for ko > 2nm/h, T, = il:(Zmr/h)2 - ki]ﬁ for ko < 2arm/h

1
to ensure evanescent reflected waves (z < 0). The symbol (a)? for a > 0 is the



positive square root of a. Equations (2), (3) and (4) hold in the region;

z < - (}3)h cot &.

To solve our problem we first cast the bhoundary conditions in a suitable

form. The boundary conditions are:

If we use Maxwell's equation VxH

0 on the plates

0 on the flanges

-iwe E we obtain
o—-

oH

5-}{ = -IMEOEZ
3H

—ZL = ~ipe E
3z 00X

From (7) and (8) we can deduce that

] @
= N =

@l @
8] =

[}

VH +n
y

3H
ax

-iwe (cos & E = sin ZE
o( §E, g x)

~iwe (E'8) = -iwe E
Qo - Qg S

and the boundary conditions (5) and (6) become

It is easy to verify that Hy

oH
—L =0 on the plates
3%
H
—ZL =0 on the flanges

n

satisfies

oH
= —2 cos £ + 3;1 sin £

(5)

(6)
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(9)

(10)

11)

(12)



in both regions I and II (Fig. 2). To derive suitable integral relationships,

for the magnetic and electric fields, that can lead to integral equations of

the aperture fields we use Green's theorem for both regions I and II (Fig. 2)

and the boundary comnditions (10), (1l) to obtain

1/3G 3H
L S 2 - -
J (——- H. o - GI)dsl = H H

2 gn Ly an Iy o
2 %H
11
- G, .ds =H
jl Bnl I Ily
where both Green's functions GI and Grr satisfy
32 32
=+t — ]G = §{x - x")8(z - 2")
2 2
9x Jaz
and BGI
Pl 0 on the plates
aGII
o 0 on the termination plane

(13)

(14)

(15)

(16)

(17

With G_ defined by (15) and (16}, Ho is the incident TEM magnetic field. The

I

radiation condition in region II makes the integral at infinity vanish.

‘Recalling (9),equations (13) and (l4) become

i BGI
[2<ﬁ— HIY + leoEs)dsl = HIY - HO

1
- lemecEsds1 = HIIy

In this note we examine the vertical case (£ = n/2) only (Fig.

we can rewrite (18) and (19) as

h/2 ( BGI

H = - : - t
Iy(x,z) H {-h/2 1meoExGI . le)dx

(18)

(19)

3), therefore

(20)

-



- h/2 |
= i !
o ;;§IIX}?i?} J_h/zlweoExGIIdx @D

For the vertical case it is easy to calculate GI with the additional boundary

condition

|8
]

0 on the termination plane (22)

Q
N

and (20) can be simplified considerably. We will denote this Green's function

1
as GI

h/2
H =4 - [ iweoE Gidx' (23)
0 -h/2 x

The choice of Gi

the incident magnetic field (1/Zo)exp(ikoz). Instead, Ho is equal to

¢ = (l/Zo)exp(ikoz) plus the reflected field if the transmission line is

subject to (22) changes the meaning of Ho' It is no lenger

short-circuited, i.e.,

7 - ik =z -ik z
H = (1/Z) (e ° +e 9 (24)

We are now in a position to derive an integral equation for the aperture

electric field Ex by combining (21}, (23) evaluated at z = 0, with the boundary

condition

Z(nlxg_I + anII) =E (25)
where Z = R - iwl is the terminating impedance. The nature of the singularities

of GI and GII

we used (20), the presence of the derivative (BGI/az') would have produced

is such that (21) and (23) retain their form even at z = 0. Had

the familiar form

h/2 3G,
3 = = - i - — '
(1)HIy(x,z 0) (1/20) f (1w€OEXGI L HIy)dx (26)
-h/2 o
Noting that n = -i, = &, (25) can be rewritten as



Ex = Z(HIy - HIIy) (27)
Combining (21}, (23), (24) and (27) we obtain an integral equation for the
aperture electric field Ex
h/2

=0) = - t et et ' '
Ex(x,z 0) 2(Z[Zo) I-hfziweoZ[GI(x,O,x ,0) + GII(X’O’X ,0)]Ex(x ,0)dx'  (28)
where GII(x,O;x',O) = - (i/Z)Hél)(ko|x - x'[) and Hél)(u) is the Hankel function
of the first kind. If we apply equation (2) at z = 0 we can write Ex as

o -]
Ex(x,O) =1+T + Z Cn cos(2nmx/h) = X ¢ cos(2urx/h) (29)
n=1 n=0 "
where CO =1+ T, In view of the form of (29) it is advisable to use an

expression for G. that contains trigonometric functions. If GI only satisfies

1
the wave equation (15) and BGI/ax = 0 on the plates one can easily obtain

iko|z—z'| @ iynlz—z'l
GI = (l/Zikoh)e + z (l/iynh)cos(anx/h)cos(anx'/h)e (30)
n=1

Notice that the derivation of (30) uses the entire region ~= < z,z' < =,

-h/2 < x,x'" < h/2 whereas its usage in the present note is restricted in
region z,z' < 0, ~h/2 < x,x' < h/2. This is legitimate since both (15) and
(16) are satisfied by (30) in the desired region z,z' < 0, -h/2 < x,x' < h/2.

(See also appendices I and V.) Using (30) we can simply construct Gi as

Gi(x,z;x',z') GI(x,z;x',z') + Gp(x,z5x",-2") (31}
This form secures that acifaz' = 0 at z' = 0 which is needed to derive (23).

Thus Gi in (23) has the form (z' = 0 > z)

-iy z
Yn

-ik z @
Gr = (1/ik h)e ° + 7 (2/iy_h)cos(2nmx/h)cos (2n7x'/h)e (32)
n=1

To obtain Gi in (28) we simply set z = 0 in (32). One can verify that if (29)

and (32) are substituted in (23) the resulting form for HIy(x,z) is the one

given by equation (3). (See appendix I.) It is also interesting to notice that



if (26) were ﬁsed instead of (23) one éould still derive integral equation (28).
This point is examined in appendix II. Using (29) and (32) evaluated at z = 0,
we can cast (28) into an infinite system of algebraic equations with the Cn's
as unknowns. This can be done in two steps. First we perform some algebraic

calculations to simplify the integral expression in (28)

h/2
J iwe ZG_E dx'

1, = ’
1 -h/2 Ix | —
h/2 oo
= J iwe Z[[(l/ik h) + Z (2/iy_h)cos(2nrx/h)cos(2nmx"'/h) ]
-h/2 © ° n=1 n
z 'C'vcos(Zmﬁx}/h)}dx'
n=0 "
or - R B
I, = (z/zo)co + Zl (Z/Zn)cos(Zmnx/h) C (33)
and h/2 E
I, = iwe 2 J G C cos(2mmrx'/h)dx'’
2 ° J-n/2 I h=o ©®
h/2 (1) )
= (kO/Z)(Z/ZO) J Ho (kolx - X’I) Z Cm cos (2mmx'/h)dx’ (34)
-h/2 m=0

Equation (28) can now be rewritten as

=-]

mZO Cm cos (2mmx/h) 2(Z/ZO) - mzo (Z/Zm)cos(mex/h)Cm

[]

(35)

h/2 (1) ®
HO (koix - x'?)mzocm cos (2mmx'/h)dx"'

- (k_/2)(z/z) J
o) °" Jn/o2

The second step towards casting (28) into a system of algebraic equations

involves the application of the orthogonality properties of the cosine functions

(already used in the evaluation of Il) on (33) to obtain



(L+A +12/2)C + Y A, Cy = 2(2/2)
240
(36)
Ds+a_ +op (2/22)]c + zgm A ,C, =0 m# 0

where Py = ko/ym and

+1

u'|Jeos (mmu)cos (47u’ )dudu'

+1

(1)
. j_le [(koh/Z)lu
(37a)

A =An = (1/8)(kol‘z)(Z/Zo)J_1
In appendix III we show that a simple transformation can simblify (37a) and the

results are

2 g+m+l

Aml = (1/8H)(koh)(Z/ZO)jodyﬁél)(kohy/Z) izi%:;——— (sin 27y + sin mwy)
(_1)2-m+l ' .
+ — (sin lﬁy ~ sin mmy) 2 #m
2 (37b)
(1) 1
A= —(I/S)(koh)(Z/Zo)fodyHo (kohy/Z)[;E-sin oy + (y - 2)cos fny] m # 0
A= (U8 G 2z - e u
oo o o’} yle = yoH o W/ 2)

For numerical integration the limit y = 0 causes difficulties because Hé )

is singular, therefore the following decomposition is required
2 oD S eD .
ayas i) = | arli P @i - 1o+ @umiineyo + 1)
o o}
+ £(O)[2 + 4iy/m - 4ifm + (4i/m)1n g1
The above result is based on the limiting form of Hél) for small argument
(1) .
B 7(2) » 1+ (2i/miin(z/2) +v], 2z =0

where y = .57721566490153 (Euler's constant), We introduce, as it was done

10



in (2], the parameter B defined by

_cL
B = 7 (38)
0
50 that
Z/zO =1 - i(koh)s (R = ZO) (39

Thus 8 can be viewed as a normalized inductance and a parametric study on £ will
determine the optimum L.

Before we solve (36) for a given finite koh, we examine the two extreme
cases of zero and infinite frequencies first. When koh -+~ 0 it 1s easy to show

that Am2 = 0 for all m and 2. The system of equations (36) is then reduced to

CO =1 (I'=0), Cm =0 m#0
Therefore, the choice R = ZO is indeed a perfect match in the zero frequency
limit, i.e., there is no reflection.

Next we consider the case koh +~ o, In appendix IV we show that

2
J Hil)(kohy/Z)f(y)dy = £(0)(2/k n) + o[(koh>'3/2]
o
and if B # 0 equations (37b) yield
- -
A, = OE(koh) 1, m# 2
- L
A = (2/22) + [(koh) 1, m#0 (40)
. . }
A, = z/zO + OL(koh) ]

Substituting equations (40) into (36) we can easily show that as koh > o,
CO = 1 (I'=0) and Cm = 0 for m # 0. The zero inductance case is interesting.

For 8 = 0 equations (37b) assume the form

11



=5
A, = o[(koh) iR m¥ £
A =44 ol (& h)-%] ‘m # 0
Tnm 2 o ’
A =1+ 0 (k h)'lﬁj
Qo Qo

If we substitute these expressions into (36) we qbtain, in the limit koh -y
¢, = 2/3 (T=-1/3) and c = 0 for m # 0. This result is not surprising. In

the limit of infinite frequency the interaction is local and the situation
corresponds to a TEM wave incident upon a infinite (in the xy plane) resistance

sheet with R = Zo' The reflection coefficient is given by

. = 3 '
where ZL is the load impedance equal to Zo Zo/(ZO + ZO) qzo. Thus

r= - 1/3.

After the completion of this work and in an effort to simplify the analysis
for the case of a sloped R,L admittance sheet we realized that we can arrive
at the systems of equations (36) without using equation (18). The details are

given in appendix V.

12



III. Numerical Results

a. Frequency domain,

In the previous section we determined the Cm's for zero or infinite
frequency. For an intermediate frequency we have to solve the system of
equations (36) approximately. The solution is based on the assumption that for
a given frequency there is an integer N such that all CM's with M > N are
negligibly small compared to the incident field (the choice of M depends on
the desired accuracy) and can be set equal to zero. The truncated system of
equations can then be solved numerically to determine the Cm's‘ This must be
done for each frequency. Since we also want to calculate the reflections in
the time domain we should choose a maximum frequency to use in the Fourier
inversion. To do that we should take two factors into account. First, as we
showed, in the previous section, in the high frequency limit there is no
reflection (if 8 # 0). Second, our results in the frequency domain correspond
to a monochromatic TEM wave or the Fourier transform of a d-function TEM pulse.
In this note we are interested in minimizing the reflections of a TEM step-
function pulse and the Fourier transform of u(t) is i/w. For this case all
the reflection coefficientg should be multiplied by a term proportional to
l/koh. Therefore, we can select an upper frequency beyond which we can set
all the Cm's and ' equal to zero. How about the case 8 = 0? We found that
as koh + = the Cm's go to zero but I - - 1/3. For the step-function pulse
the corresponding I in the high frequency limit would be of the order l/koh
and consequently it would behave like the Fourier transform of a step~function
pulse and the initial value of T(t) should be equal to -1/3. (TFor P # 0,
I'(0+) = 0.) Thus irrespective of the value of 8 we will set all the Cm's and
I equal to zero when the frequency is larger than a maximum one and we will
correct the initial value of T for the case 8 = 0,

Only T and the Cm’s for the first four TM modes were calculated to any
desired accuracy. To obtain this accuracy, the matrix (NxN) that was inverted
was progressively larger than 5x5 with increasing frequency. The higher
modes (m > 4) have negligibly small amplitudes in the propagating region
(koh > 2mm) and even the first four dominant modes decay rapidly with
distance in the time domain (see next subsection). The maximum normalized
frequency (kgﬁmax was chosen equal to fifty. This number is high enough
to secure that the reflection coefficients are pegligibly small for

larger frequencies. In addition koh = 50 is sufficiently larger than the

13



resonant (cutoff) frequencies of the first four TM modes. This is important
because the reflection coeffic1ents for the field components Hy and E are
proportional to Ynl k [1 (2nv/k " - and consequently a Fourler inversion
integral should include the region around koh = 2nm to insure sufficient accuracy

(see next subsection).

b. Time domain.

In this note, we are also interested in the reflected modes if the
incident TEM wave is a unit step pulse Einc = u(t - z/¢). The Fourier trans-
form of a unit step u(t) is i/w, and consequently we can invert equations
(2), (3) and (4) to obtain the reflected modes. If we suppress the

x-dependence then the mth modes have the representations

Ex

(i/2w)J (l/k)Cé(k)expEik(z'- T) - ikz'p;ljdk, m= 0 (41)

[}

i/2vZ )J C (k)[k - (Zmﬂ)zj—%exp[ik(z' - 1) - ikz'p;l]dk, m= 0 (42)

uy

=
[]

mz

(I/ZW)J (Zmn/k)CA(k)[kz - (Zmﬂ)zj-%exp[ik(z' - 1) - ikz'p;l]dk,m =1 (43)

-1
where P, = ym/ko, koh =k, z' = z/h, Cé = Cm for m # 0 and Cé

The time variable t is equal to ct/h and for any cross section z = 2y T = 0

CO -1l=17,
corresponds to the time when the reflected pulse first hits the plane z = z -
This has been accomplished by multiplying equations (2), (3) and (4) by the
correction phase factor exp(ikz'). Thus for m = 0 (TEM) the z' dependence
disappears, i.e., the amplitude of the TEM reflected pulse suffers no spatial
decay as expected. The range of the Fourier integration in equations (41),
(42) and (43) involves negative frequencies whereas the system of equation (36)
has been solved for positive frequencies only. This does not cause any
difficulty because the field components in the time domain are real and the

following property exists

o]

(1/2mn) f F(k)e T 4x

-0

£(t)

(1/21) J [F)e 57 & 7" () et ak (44)
(o]

14
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An examination of the integran&s reveals that they are singular at k = 0 and

The k = 0 singularity causes no

= 2mm,
The k =

accurate numerical integration. This can

e ke
j e

° /kz-a

= - ino(ra) - (n/Z)Yc(Ta)

2

-f

problem because Cé/k +0as k » 0,

2mm singularity is integrable and must be subtracted out to insure

be done by using the relationship

= %::ii? 2 dk - (1/2)sin(ta) (45)

/éz-kz

The integral on the right hand side of (45) can be performed numerically

because the integrand vanishes at k = a.

Notice that Yo(ra) is singular at

T = 0, but as long as 1 is different from zero it can assume any desirable

small value. To use (45) we rewrite (44)

j (F)e 57 4 r* () et ar

(o]

Equation (46)7has'now a suitable form for

Let us now examine the higher modes

As we mentioned earlier p-l = v /k_ and
m m o

1
[kg - (me/h)zj

-2
[1]

1

iE(me/h)2 -

<
1}

Thus

2,73
ko]

as
3
]
w
.

[~ L=y
H()  _-ikt ( H(k) e-lkl’)]dk
"/kz-a2 /kz—a2

ok *
e T} ldk

rﬁ(k)-H(a) e-ikT

+ (%(k)—ﬁ(a)

exp[—ikz'p;l] = exp[—k[z’(/(Zmﬂ/k)z =

and as Iz’l increases the decay becomes more pronounced.

L A2oa? /i%-a’

@ =ikt © -1kT
+H(a>j e & <H(a)J ) (46)
o /kz 2 o /k2 2

Vnumerical evaluation.
to see why they decay with distance
for ko > 2mn/h
for ko < 2mrm/h
l], ko < 2mr/h, z' <0 (47)
Notice, however, that

for k > 2mm/h there is no decay, therefore, there will be a part of the reflected

15



pulse (the high frequency part) that will propagate without decay. If we study B
the plots of the Cm's versus koh (Figs. 6, 7, 8 and 9) we can see that they

decrease rapidly with frequency for koh > Zmy. Therefore, the propagating

part of the reflected pulse will be small. This is demonstrated in Figures 16

through 27. An examination of these plots shows that the pulse suffers little

decay from z/h = -1 to z/h = -2. The reason is,that at z/h = ~1 most of the

spatial decay has already taken place because the exponent in (47) is large

(except for k near 2am).
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IV. Description of the Plots

rwerpfeééﬁtiplotéiih thé”fféqdénéfréﬁd time domain. In the frequency

inc_ ikoz
X

domain we assume an incident monochromatic TEM wave E =~ =e and we plot

the absolute va;ggslgﬁﬂthewcm's, the expansion coefficients of the aperture
electric field given by (29), versus koh for the TEM (m=O,F=Co-l) and the
first four TM modes with 8 as a parameter. In the time domain the incident
TEM wave is a unit step pulse Einc = u(t - z/c) and we present plots of Fh?,
field components given by (41), (42) and (43) versus ct/h. We should mention
again that these equations do not include the x-dependence. The total field
components for any mode are given by (41), (42) and (43) multiplied by
cos(2mrwx/h) for me and Hmy’ and sin(2mrx/h) for Emz' A detailed description

of the plots is given below.

Figure 5. The absolute value of the TEM reflection coefficient is plotted
 versus kéﬂ with 8 as a parameter. For an incident monochromatic
TEM wave with a frequency below cutoff the choice of L should be
made by studying this plot.

Figure 6
to 9. Plots of the absolute values of the transverse electric field

component reflection coefficients for the first four T modes
versus koh with B as a parameter. For an incident monochromatic
TEM wave with a frequency above cutoff for one or more TM modes a
study of Figs. 5 through 9 will allow the determination of the

optimum L to minimize the overall reflection.

The rest of the figures are plots in the time domain when the incident wave is

a unit step-function TEM pulse Einc = u(t - z/c).

Figures 10

and 11. Plots of the negative of the electric field component of the TEM
reflected pulse versus ct/h with B as a parameter. Since all the
reflected T™M modes decay with distance considerably (see figures
below) this plot is the only one that was studied to determine the

value of L = BhZO/c = (l.tho)/c to minimize the overall TEM



reflection. The reason for plotting the negative of the field
component was a sign mistake in the data which was not detected

until all the time plots were completed.

The subsequent figures are plots of reflected TM field components versus ct/h

with the x-dependence suppressed.

Figures 12

to 15. Plots of the negative of the transverse electric field component for
the first four TM modes versus ct/h with B8 as a parameter at z = 0,
These plots serve to illustrate the relative dependence of the TM

modes on B in the time domain.

The decay of the reflected TM modes with distance is demonstrated in figures
16 through 27 by plotting the field components at three planes, i.e.,
zh= 0, -1, -2 for 8 = 1.1. When the field amplitude was diminutive only

the zh= 0 and zh= -1 cases were considered.

Figures 16

to 19. -me versus ct/h atzh= 0,zh= -1,zh= -2 for 8 = 1.1 with
m=1, 2, 3, 4.

Figures 20

to 23. -E , versus ct/h atz/h= 0,z/h= -1,z/h= -2 for 8 = 1.1 with
m=1, 2, 3, 4.

Figures 24

to 27. -—HIny versus ct/h atzh= 0,zh= -1,zh= -2 for 8 = 1.1 with

m=1, 2, 3, 4.
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Appendix I

We want to show that if Ex given by (29) is substituted into (23) the

resulting expression for HIy is equation (2). We rewrite (23) as

ikoz -ikoz h/2 E
H. = (1/2 (e + e )y - iwe C cos{2mmx/h)
Iy o] /2 0 =0 m

-ik 2z o ~iy_z
&l/ikoh)e ° + ) (2/iynh)cos(2nnx/h)cos(2nwx'/h)e n ]dx'
n=1

Performing the integration we obtain

ikoz -ikoz wso -ik z
HI}’ = (l/Zo)(e + e ) - o Cohe

© Zwso -iynz
- ) Cm(h/Z)cos(anx/h)e
n=1 'n

Noting that Co =1+T7T, €,¢ = ZO s wso/yn = Zn we can easily see that the
above equation is the same as (2).

It is also easy to show that if EX given by (29), HIy(x',O) given by
(3) and GI by (30) are substituted in the integral of equation (20) the
resulting HIy(x,z) is identical to equation (3). This indicates the

validity of equation (30) for the Green's function GI'

19



Appendix II

In this appendix we show that the pair of equations (20) and (21)
applied at z = 0, together with the boundary conditiomn (27) lead to (28).
We start with (20) by evaluating aGI/az'. GI is given by (30) and we want

to take the derivative with respect to z' and set z' = 0. Eventually we will
also set z = 0. When z' = 0 and 2z negative, (30) can be written as
A iko(z'-z) e iYn(z'-z)
Gp = (l2ik h)e + ) (1/iy_h)cos(2amx/h)cos (2nmx'/h)e (11-1)
n=1

Taking the derivative of (II-1) with respect to z' and setting z' = 0 we

obtain
-ik z © -iynz
BGI/az' = (1/2h)e % + Z (1/h)cos(2nwx/h)cos (2nmx'/h)e (IT-2)
n=1
Using (II-2), (20) can be written as
1koz h/2
H, (x,z) = (1/Z )e + J ;-ime E G
Iy o -h/2 ox 1
ﬁikoz = —iynz
+ [CI/Zh)e + )} (1/h)cos(2nmx/h)cos(2nm¥/h)e }HIy dx' (II-3)
n=1
Now we let z - 0 in (II-3). Recall that
1/2h + Z (1/h)cos(2nmx/h)cos (2nmx'/h) = (1/2)6(x - x') (II-4)
n=1
Substituting (II-4) in (II-3) we obtain
h/2
= - 3 1
HIy<X’O) = (l/Zo) + J 1msoExGIdx + (l/Z)HIy(x,O)
~h/2
or h/2
- - i 1 -
HIy(x’O) = (2/20) + J 1wsOEx(2GI)dx (II-5)

-h/2

Observe now that at z' =z = 0

20



= !
ZGI GI

and consequently (II-5) coincides with (23) evaluated at z = 0 because

ikoz -ikoz
HO = (l/Zo)(e + e ) = 2/ZO
z=0
The subsequent derivation of (28) is the one given earlier. A last point has

to be clarified. Notice that equation (26) should coincide with (II-5). A

cursory examination may indicate that this is not true, that is, it seems that

the term
h/2 BGI
J 327 Bpydx’
~h/2 y

would contribute (l/Z)HIy as we showed earlier. If this is the case, (II-5)

is different from (26). The resolution of the paradox lies in the observation
that the integral in equation (26) is a principal value integral, that is, a
small region around x' = x must be excluded. 1In that case the integral of the

§=function vanishes and the term

— H. dx'

h/2 3GI
9z Iy

-h/2

contributes zero.
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Appendix III
We want to simplify the double integral
+1 1 (1)
I= J du [+ du'Ho C(8h/2) [u = u'|{Jcos(mmu)cos(mu’) (II1-1)
-1 -1

We make the following transformation

a=u

u=-u''=y

In figure 4 we show how the domain of integration is transformed. The

Jacobian is equal to unity. Referring to figure 4 we can rewrite (III-1) as

o 14y (1)
1= J dy j du cos mmu cos[ ¢w(u - y)]HO Cn/2)|yl]
-2 -1

2 1
+ J dy j du cos mru cos[ 4m(u - Y)]Hél)t(sh/Z)y] (111-2)
o] y~-1 .

If we set u + - u, v+ = v in the first integral in (III-2) we can see that

it is equal to the second one and I becomes

2 1
I =2 J dyHél)[(Bh/Z)y] J cos &7{u - y)cos mmudu (I11-3)
; o y-1

We can easily perform the u-integration to arrive at the expressions for

A given earlier.
im
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Appendix IV

In this appendix we make an asymptotic evaluation of the coefficients

A, as k h + =, Consider the integral
m o]

2.(1)
- I= J H (By) £ (y)dy, R = koh/z (TV-1)
o - - -

An examination of equations (37b) reveals that f£(y) can be expanded in a

Maclaurin series, i.e.,

2
1= [ 3P et +yer @ + ey (1v-2)
[e]
First we examine
=[5 (e (1v-3)
O-OO Byy

Using the integral representation

Hil)(sy) = (=2i/m) j gtBY cosh t dt (IV=4)

o}

in (IV-3) and interchanging the order of integrations we obtain

© 2 .
. (=2i/7) f dt f o8y cosh £ 4o

. _ I =

o)
o) o)
ro 2iR cosh t o at

= -(2/78) J de cosh t + (1/78) f cosh ¢t

o o
® eZiS cosh ¢t

I, = =(2/78) Jodt = * 1/8 (IV-5)

As B » = we can use stationary phase to show that

1
=08 9

e eZiB cosh t
I dt cosh t
o]

and (IV~5) gives
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/2)

I =1/8+ 0(5'3 (1Iv-7)

If we evaluate the rest of the terms in (IV-2) we find that the dominant term

3/2

is of order B~ and consequently we can rewrite (IV-1) as

2
- { 8O0 e /2y T (ddy = £00) 27k ) + oL ) "/ 2,
o
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Appendix V

The systems of equations (36) can be alternately derived as follows.

' We start with boundary condition (27) and substitute H y by its integral

II
representation (21).

h/2

E = ZH -2 J iwe E G__dx' v=-1)
X Iy -h/2 o x IT

From equations (2) and (3) we find that
[¢-] .
E (x,0) =1+ + J C_cos(2mrx/h) (V-2)

X “ o Tm

m=1

HIy(x’O) = (1~ I')/Zo - Z (Cm/Zm)cos(mex/h) ‘ (v=-3)

m=1

The electric field Ex is continuous across the admittance sheet, therefore

we can combine the previous equations to obtain

I C_ cos(2mmx/h) = 22/2_ -2 ] (C_/Z )cos(2mmx/h)

m=0 é m=0
h/2
-4 1] 1 -
lwsoZ j-h/z mzo Cm cos (2mmx /h)GIIdX (V=4)

Application of orthogomality relations of the cosine functions on (V-4) yields
the desired system of equations (36). The above formulation avoids the

questions arising from using the Green's function G., but it also confirms

I’
the validity of representation (30). Naturally, the relationship between the
coefficients of the expansion of the aperture electric field to the coefficients
of the expansion of the interior aperture magnetic field is contained in

equation (18) which was omitted in the above formulation.
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Figure 1.

Geometry of the two-dimensional parallel-plate transmission line
terminated by a sloped R,L admittance sheet with coplanar
conducting flanges.
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Figure 2.

Regions I and II used to derive the integral relationships in the text.
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inc l

I_E x
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-h/2)

Figure 3. Geometry of the transmission line with a perpendicular
admittance sheet considered in detail in this note.
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Figure 4.

Integration regions resulting from transformation of variables u,u' to u,y.
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