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Abstract

The reflections of a monochromatic TEM wave or a step-function TEM pulse

from an R,L admittance sheet terminating the transmissionline are calculated.

TO minimize these reflections the value of R can be determined by a low-

frequency argument”whereasthe choice of the optimum L requires a parametric

study for various values of L. Parametric plots are presented of the reflected
. field components in both the frequency and time domains that allow the

determination of the optimum values for L. It is found that a suitable choice

of L can considerablyminimize reflections.
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1. Introductionand Results

The concept of an admittance sheet as a distributed termination for a

TEM transmissionline was irkroduced in ref. 1. A subsequent note [2]

considered a sloped R,L admittance sheet as a matched termination for a two-

dimensionalparallel-platetransmissionline with coplanar conducting flanges.

The resistanceR was calculated by a low-frequencyargument, whereas the optimum

L to match the transmissionline for an incident TEM seep pulse, was chosen on

the basis of an approximatemethod involving a comparisonof the current induced

on a perfect termination (zero reflection) to the approximate current induced

on the admittance sheet. The resulting R,L admittance sheet does not provide

a perfect termination, and consequently it causes a reflection of the incident

TEM wave. A quantitativecalculationof the reflected field would allow the

evaluationof the performance of the admittance sheet in both the frequency

and time domains.

In this note we consider a two-dimensionalparallel-platetransmission

line with coplanar conducting flanges, to facilitate the mathematical analysis,

terminatedby an R,L admittance sheet. We calculate the reflection of a TEM

monochromaticwave and a TEM unit step pulse for the special case of a perpen-

dicular admittance sheet only. The value of the resistanceR is taken from
t

ref. 2 whereas a parametric study for various L will determine the optimum

inductancecorrespondingto minimum reflection. Our method involves the

derivation of an integral equation for the aperture electric field in the

frequencydomain, and is based on the applicationof the boundary condition

across the admittance sheet coupled with two integral relationshipsfor the

interior and exterior magnetic fields in terms of the aperture electric field.

The reflected TEM mode and the first four TM modes are calculated in both the

frequencyand time domain. In the time domain the reflected TM modes decay

considerablywith diseance and consequently it is important thatthe reflected TEM

pulse should be minimized to make a suitable choice for the inductanceL. This

value of L is approximatelyequal to 1.1 (hZo/c),where h is the height, Z. = 377Q

and c is the speed of light. The value of L obtained in ref. 2 is very close

to ours. The maximum TEM reflection coefficient for the above choice of L is

only 3.2X. In the frequency domain the optimum L to minimize the TEM reflection

over the entire spectrum is approximately the same as in the time domain and the
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maximum absolute value of the reflection-coefficientis 3.5%. However, for a

given frequency the value of L depends on this frequency. The reflection for

the TM modes is minimized when the inductance is zero. In the frequency domain

the correspondingmaximum absolute values for the reflection coefficientsof

the transverseelectric field component are 14%, 7%, 4.5% and 3.4% for the

first four modes respectively. For the case of zero inductance the maximum

TEM reflectioncoefficient is equal to -1/3’at infinite frequency or at t = 0+.

If the incident TE24wave is monochromatic with a frequency below cutoff for

all the TM modes, then the reflected TM modes will be evanescent and the choice

of L is made by minimizing the TEM reflection. This value of L depends on the

frequency of the TEM wave. However, if the frequency of the incident TEM wave

is above cutoff for the first or higher TM modes, then one or more of the

reflected TM modes will propagate anc[the choice of L cannot be made on the

basis of minimizing the TEM mode only. Plots are given of the reflection

coefficients (for the transverse electric field component) of the TEM and the

first four TM modes versus frequency, with L as a parameter (see Figs. 5 thrc)ugh

9), From these plots one can choose the value of L tbt will minimize the overall

reflection if some of the TM modes are propagating.,Notice, however, that fc,r

high frequenciesall the propagating TM modes become negligibly small irrespective

of the value of L, and the choice of L should be made by minimizing the TEM

reflection. This is also true, as we mentioned earlier, for frequenciesbelow

cutoff.

For a detailed description of the plots of the field components which

allow the evaluation of the optimum L see section IV.
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II. Formulationof Che Problem

Consider a two-dimensionalparallel-platetransmissionline terminatedby

a sloped R,L admittance sheet, where R and L are independentof the frequency.

To facilitate the mathematical analysis two metallic flanges of infinite extent

coplanar to the ~erminati.onplane have been added (Fig. 1). The purpose of

this note is to calculate and minimize the reflectionof an incident TEM wave

by suitably choosing R and L. A low-frequencyor equivalentlya late-time

argument can be invoked to determine the value of R [2]. Thus

R=~osin( (1)

where Z. is the free-spacecharacteristicimpedance. A parametric study for

various L will be made to determine the optimum value for the inductanceL.
inc i~za

Consider now a monochromaticTEM wave ~ = e ex traveling down the

transmissionline. The reflectedwave will consist of a TEM (EX,HY)and TM

(EX,HY,EZImodes. The fields are independentof the y coordinate and the following

relationshipshold:

ikoz -ikoz -i’fnz
Ee = + ~e +fc
x

n cos(2nrx/h)e
n=1

(2)

ikoz -ik Z “a -iynz
Hy = (l/Zo)e - (r’/zo)e 0 - ~ (Cn/Zn)cos(2nnx/h)e (3)

n=1

w

Ez = ~ i(2nm/Ynh)CnSin(2nrx/h)l=Yn’ (4)
n=1

where ~ and Cnls are coefficientsto be determined,k. = u/c, Z = ‘{JUJEO,
n

and y is defined by the relationship.
n

Y: = k: - (2nm/h)2

with y~=1+ (2nm/h)2]+for k > 2nn/h, y = i[(2n~/h)2- k2]% for k < 2nr/’n
o n o

~“for ~ > 0 is theto ensure evanescentreflected waves (z c 0), The symbol (a)
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I positive square root of a. Equations (2), (3) and (4) hold in the region.

z<- (%)h CO& g.

To solve our problem we first cast the boundary conditions in a suitable

form. The boundary conditions are:

EZ=O on the plates (5)

Es=O on the flanges (6)

If we use Maxwellls equation VX& = -iuc~we obtain

From (7) and (8) we can deduce that

= -iuco(cos & E
z
- sin CEX)

gY=-iuzo(~”~) = -iucoEs

and the boundary conditions (5) and (6) become

>=0 on the plates

>=0 on the flanges

It is easy to verify that H satisfies
Y

(7)

(8)

(9)

(lo)

(11)

(12)
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in both regions I and 11 (Fig. 2). To derive suitable integral relationship~, .3.
for

the

and

the magnetic and electric fields, that can lead to integral equationsof #

aperture fields we use Green’s theorem for both regions I and 11 (Fig. 2)

the boundary conditions (10), (11) to obtain

-J
2 aH
=G1l& = H

~ anl IIy

where both Greenfs functions G1 and G1l satisfy

and
aG1
—s
ax

o on che plates

(13)

(14)

(15)

(16) ,

2GII = ~
an

on the terminationplane (17)

With G1 defined by (15) and (16), Ho is the incident TEM magnetic field. The

radiationcondition in region 11 makes the integral at infinity vanish.

‘Recalling (9),equations (13) and (14) become

1 aG1

~ (–~an %y )+iwcoE~ dsl = HIY - Ho

-1
1
iucoEsds

1
=H

2 IIy

(18)

(19)

In this note we examine the vertical case (~ = Tr/2)only (Fig. 3), therefore

we can rewrite (18) and (19) as

M 2

1(

3G1
H (x,z) = Ho -Iy iwsoExG1 - — H

)
dx‘

-h/2
az~ Iy (20)



..J
h/2

::H1ly(Y,d = iucoExG1ldx’
- -h/2

(21)

For the vertical case it is easy to calculate G1 with the additionalboundary

condition

$G1

57= o on the terminationplane (22)

and (20) can be simplified considerably. We will denote this Creen’s function

J
h/2

‘Iy
= Ho - iuzoExG;dx’

-h/2
(23)

The choice of G; subject to (22) changes the meaning of Ho. It is no longer

the incident magnetic field (l/Zo)exp(ikoz). Instead, Ho is equal to

H
inc

= (l/Zo)exp(ikoz)plus the reflected field if the transmissionline is

short-circuited,i.e.,

ikoz -ikoz
Ho = ‘(l/ZC))(e ~e )

We are now in a position to clerivean integral equation for the aperl:llre

electric field Ex by combining (21), (23) evaluated at z = O, with the boundary

condition

where Z = R - iwL is the terminatingimpedance. The nature of the singularities

‘f ‘I and‘II is such that (21) and (23) retain their form even at z = O. Had

we used (20), the presence of the derivative (3G1/3z’)would have produced

the familiar form

j

h/2 aG1
(%)HIY(x,z=O) = (1/2.) - (iu~oExG1 -~H )dx’

-h/2 Iy

Noting that i = -fil= dz, (25) can be rewritten as

(26)



Ex = %(H
Iy - %y)

(27)

Combining (21), (23), (24) and (27) we obtain an integral equation for the

aperture electric field Ex

rh/2
EX(X,Z=O)= 2(2/2.) -

J
iticoZ~G+(x,O;x’,(l)+G1l(x,O;x’,O)]Ex(x’,O)dx‘ (28)

-h/2

$)(kolx - (1)
‘here ‘II

(X,o;x’,o)= - (i/2)H X1l) and Ho (u) is the Hankel function

of the first kind. If we apply equation (2) at z = O we can write Ex as

EX(X,O) = 1 + ~ + ~ Cn cos(2nnx/h)= ~ C cos(2nrx/h)
n=1 n=o n

(29)

where C =l+r. In view of the form of (29) it is advisable to use an
o

expression for G~ that contains trigonometricfunctions. If G1 only satisfies

the wave equation (15) and aG1/3x = O on the plates one can easily obtain

ikolz-z’\ = iynlz-z’l
G1 = (~/2ikoh)e + ~ (1/iynh)cos(2nnx/h)cos(2nmx’/h)e (30)

n=1

No~ice that the derivation of (30) uses the entire region -~ < Z,Z’ < ~,

-h/2 < x,xt < h/2 whereas its usage in the present note is restricted in

region 2,2’ < 0, -h/2< X,X’ < h/2. This is legitimate since both (15) and

(16) are satisfiedby (30) in the desired region Z,zt < 0, -h/2 s x,x’ < h/2.

(See also appendices I and V.) Using (30) we can simply construct G; as

G;(x,z;x’,z’)= G1(x,z;x’,z’)+ G1(X,Z;X’,-Z’) (31)

This form secures that 3G~j’az’= O at Z’ = O which is needed to derive (23).

Thus G; in (23) has the form (z’ = (1 > Z)

-ikoz ~ -iynz

‘i = (l/ikoh)e + ~ (2/iynh)cos(2n~x/h)cos(2nmx‘/h)e (32)
n=1

To obtain G; in (28) we simply set z = O in (32). One can verify that if (29)

and (32) are substitutedin (23) the resulting form for HlY(x,z) is the one

given by equation (3). (See appendix 1.) It is also interesting to notice that
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if (26) were used instead of (23) one could still derive integral equatiorl(28).

This point is examined in appendix II. Using (29) and (32) evaluated at 2; = O,

we can cast (28) into an infinite system of algebraic equations with the Cln’s

as unknowns. This can be done in two steps. First we perform some algebraic

calculations to simplify the integral expression in (28)

J
hl2

% = iusoZGIExdx’
-h/2 -—

I
h/2

=
{

iucoZ [(l/ikoh) + ~ (2/iynh)cos(2n~x/h)cos(2nrx‘/h)]
-h/2 n=1

or

and

I~ C COS(2m~x’/h)dx’
nm=O

11= (z/zo)co+ ~ (Z/Zn)cos(2mmx/h)Cm
m=1

\

h/2

12 = iacoZ G1l ~ C cos(2mmx’/h)dx’
-h/2 m=O m

= (ko/2)(Z/Zo)
\

“2H(l)(k Ix_ :
x’\) ~ Cm cos(2m~x’/h)dx’

-h/2 0 0 m=O

(33)

(34)

Equation (28) can now be rewritten as

~ C cos(2mi’rx/h)
m = 2(z/zo) - ~ (Z/Zm)cos(2mnx/h)C

m=O m
m=O

(35). .

- (ko/2)(Z/Zo)
)
‘h’2H(~)(k \x -Xf!) ~Cmcos(2mnx’/h)dX’

-h/2 0 0 m=O

The second step towards casting

involves the application of the

(alreadyused in the evaluation

(28) into a system of algebraic equations

orthogonalityproperties of the cosine functions

of I ) on (35) to obtain
1
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(1 + AOO + Z/ZO)CO + ~ A09CP = 2(z/zo)
!+0 “ ‘

[$ + Am + pm(z/2zo)lcm+ ~ AmACL = O
@m

--l

(’w?)

m+O

where p = ko/ym and
m

H‘1 ‘LH(l)[(koh/2)IU -A = A&m = (1/8)(koh)(Z/Zo)mk u’l]cos(mmu}cos(t~u’)dudu’
-1 -1 0

(37a)

In appendix 111 we show that a simple ~ransformationcan si~plify (37a)and the

results are

A
\

!-tm+l
= (1/8m)(koh)(Z/Za)2dyH$)(kohy/2) ‘-~:timQ (sin I,Try+ sin m7ry)

o .

+ (-l)L-m+l ~~inimy - Sin my)
l-m

\

(37b)

Am = -(1/8)(koh)(Z/ZO)2dyH$)(k~hy/2)/__ sin g~y + (y - 2)c05 !.ny] m + 0
0

.

A
f

= (1/4)(koh)(Z/Zo)2dy(2 - y)H(l)(kohy/2)00
0 0

For numerical integration the limit y = O causes difficultiesbecause H(1)
o

is singular, therefore the following decompositionis required

I
2

H
dyHj’)(6y)f(y)= 2dy$)(~y)f(y)- f(0)[l+ (2i/~)~ln(~y/2)+y]]}
o 0“

+ f(0)[2 + 4iy/7r- 4i/n + (4i/r)lnfil

(1)The above result is based on the limiting form of Ho for small argument

H~l)(z) + 1 + (2i/~)[ln(z/2)+Y], 2+0

where y = .57721566490153(Euler’sconstant), We introduce,as it was done



in [2], the parameter 6 defined by

(38)

so that

z/z = 1 - i(koh)6 (R= .2.) (39)
o

Thus flcan be viewed as a normalized inductanceand a parametric study on S will

determine the optimum L.

Before we solve (36) for a given finite koh, we examine the two extreme

cases of zero and infinite frequencies first. When koh + O it is easy to show

that Ami = O for all m and L. The system of equations (36) is then reduced to

co s 1 (r=()), Cm=o m#O

Therefore, the choice R = 20 is indeed a perfect match in the zero frequency

limit, i.e., there is no reflection.

Next we consider the case koh + M. In appendix IV we show that

12H(1)o (kohy/2)f(y)dy= f(0)(2/koh)+ 0[(koh)-3’2~
o

and if B ~ O equations (37b) yield

A
ml

= O[(koh)+l, m+!2

A~ = (Z/2Zo)+ [(kOh)+], m#O

A
00

= Z/Z. + OC(koh)%]

(40)

Substitutingequations (40) into (36) we can easily show that as koh + CO,

co =“1 (r=O) and Cm = O for m ~ O. The zero inductancecase is interesting,

For 6 = O equations (37b) assume the form
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Am = ; + o[(koh)-~?, .m+O

A = 1 + O[(koh)-%
00

If we substitute these expressionsinto (36) we obtain, in the limit koh * ‘“,

Co = 2/3 (r=-1/3)and Cm = O form # O. This result is not surprising. In

the limit of infinite frequency the interaction is local and the situation

corresponds to

sheet with R =

where ZL is the

After the

for the case of

a TEM wave incident upon a infinite (in the xy plane) resistance

Z.. The reflectioncoefficient is given by

ZL-ZO
r a—

ZL+ZO

load impedance equal to

re-

completion of this work

a sloped R,L admittance

zo’zo/(zo+ 2.) = %Zo. ‘1’’hUs

1/3.

and in an effort to simplify the analysis

sheet we realized that we can arrive

at the systems of equations (36)without using equation (18). The details are

--l
,/

given in appendix V.
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I

a. Frequency domain,

In the previous

III. Numerical Results
...’=.;:

section we detertninedthe Cm’s for zero or infinite

frequency. For an intermediatefrequency we have to solve the system of

equations (36) approximately. The solution is based on the assumption that for

a given frequencY there is an integer N such that all CMTS with M > N are

negligibly small compared to the irAcidentfield (the choice of M depends on

the desired accuracy) and can be set equal to zero. The truncated system c}f

equations can then be solved numerically to determine the C ‘s. This must be. m
done for each frequency. Since we also want to calculate the reflections in

the time domain we should choose a maximum frequency to use in the Fourier

inversion. To do that we should take two factors into account. First, as we

showed, in the previous section, in the high frequency limit there is no

reflection (if S + O). Second, our results in the frequency domain Correspond

to a monochromatic TEM wave or the Fourier transformof a 6-functionTEM pulse.

In this note we are interested in minimizing the reflectionsof a TEM step-

function pulse and the Fourier transform of u(t) is i/u. For this case all

the reflection coefficients should be multiplied by a term proportional to

l/koh. Therefore, we can select an upper frequency beyond which we can set

all the Cm’s and ~ equal to zero. How about the case B = O? We found that

as koh + @ the Cm’s go to zero but ~ + - 1/3. For the step-functionpulse

the corresponding r in the high frequency limit would he of the order l/koh

and consequently it would behave like the Fourfer transformof a step-f[inction

pulse and the initial value of r(t) should be equal to -1/3. (For (?+ O,

r(O+) = O.) Thus irrespectiveof the value of B we will set all the Cm’s and

r equal to zero when the frequency is larger than a maximum one and we will

correct the initial value of r for the case 6 = 0,

Only I“and the Cm’s for the first four TM modes were calculated to any

desired accuracy. To obtain this accuracy, the matrix (NxN) that was inverted

was progressively larger than 5x5 w:Lthincreasing frequency. The higher

modes (m > 4) have negligibly small amplitudes in the propagating region

(koh > 2mr) and even the first four dominant modes decay rapidly with

distance in the time domain (see next subsection). The maximum normalized

frequency (koh)maxwas chosen equal to fifty. This number is high enough

to secure that the reflection coefficients are ~egligibly small for

larger frequencies. In addition koh = 50 is sufficientlylarger than the
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resonant (cutoff)frequenciesof the first four TM modes. This is important
‘1

r

because the reflection coefficientsfor the field components H and Ez are
Y

proportionalCo y~l = k:~[l - (2nr/koh)]-%and consequentlya Fourier inversion

integralshould include the region around koh = 2nn to insure sufficientaccuracy

(see next subsection).

b. Time domain.
..-,.

In this note, we are also interestedin the reflectedmodes Lf the
,

incident TEM wave is a unit step pulse E: = u(t - z/c). The Fourier trans-

form of a unit step u(t) is i/u, and consequentlywe can invert equations

(2), (3) and (4) co obtain the reflectedmodes. If we suppress the
thx-dependence then the m modes have the representations

1~=(i/2m) = (l/k)C~(k)exp[ik(zf-T) - ikz’p~l]dk, m> o (41)
-m

J
m

E = (1/21r)
mz (2mm/k)C~(k)~k2- (2mm)2]-%exp[ik(z’- T) - ikz’p~l]dk,q> 1 (43)

-*

where p~l = ‘{m/ko,koh ~ k, Z’ = z/h, C’ = Cm for m ~ O and C’ = C - 1 = [’.m o 0
The time variable T is equal to et/h and for any cross section z = Zo, T = O

correspondsto the time when the reflectedpulse first hits the plane z = Zo.

This has been accomplished by multiplying equations (2), (3) and (4) by the

correctionphase factor exp(ikz’). ThUS for m = O (TEM) the Z’ dependence

disappears,i.e., the amplitude of the TEM reflected pulse suffers no spatial

decay as expected. The range of the Fourier integration in equations (41),

(42) and (43) involves negative frequencieswhereas the system of equation (36)

has been solved for positive frequenciesonly. This does not cause any

difficultybecause the field components in the ~ime domain are real and the

followingproperty exists

\

m

f(t) = (1/27r) F(k)e-ikT dk
-m

J= (1/2T) a[F(k)e-ikT+ F*(k)eikT~dk
o

(44)
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An examinationof the integrandsreveals that they are singular at k : 0 and

k= 2mn. The k = O singularitycauses no problem because C~/k + O as k+ ().

Thek= 2mm singularity is integrable and must be subtracted out to insure

accurate numerical integration. This can be done by using the relationship
— — .- -.—..

j

m - ik~
e

j

a
=- inJo(Ta) - (n/2)Yo(Ta)- sin k-r-sin~a

dk - (n/2)sin(Ta)(45)
0 ~k2-a2 o ~a2-k2

The integral on the right hand side of (45) can be performed numerically

because the integrand vanishes at k = a. Notice that Yo(Ta) is singular at

‘r= O, but as long as T is different from zero it can assume any desirable

small value. To use (45) we rewrite (44) as

j

a

[F(k)e-ikT + F*(k)eikT]dk =
o

~-e-ikT+(~~~2e-ik~~k
f[

J[rnH(k)-H(a)=

0 ]k2-a2

- ikT
e

( ):

+ H(k)-H(a) -ik~ *
e

~k2-a2

Equation (46) has now a suitable form for numerical evaluation.

Let us now examine the higher modes to see why they decay

As we mentioned earlier

Ym =

Ym =

P;1 = ym/ko and

[k: - (2mT/h)2]+ for k. > 2mn/h

i[(2mn/h)2 -.k:]+ for k. c 2m~/h

Thus

exp[-ikz’p~l]= [exp -k

with distan(:e.

— . 1
z’l~(2mm/k)’- lJ, k. < ~m~/h, ~’ < 0

and as [z’I increases the decay becomes more pronounced.

for k > 2mr/h there is no decay, therefore, there will be

47)

Notice, however, that

a part of the reflected

dk
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pulse (the high frequency part) that will propagate without decay. If We study

the plots of the Cm’s versus koh (Figs. 6, 7, 8 and 9) we can see that they

decrease rapidly with frequency for koh > 2m7T. Therefore, the propagating

part of the reflected pulse will be small. &nis is demonstrated in Figures 16

through 27. An examinationof these plots shows that the pulse suffers little

decay from z/h = -1 to z/h = -2. The reason is,that at z/h = -1 most of the

spatial decay has already taken place because the exponent in (47) is large

(exceptfor k near 2mm).
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SJ. Description of the Plots

We present plots in the frequency and time domain. In the frequency.
domain we assume an incident monochromatic TEM wave E~=e

i~ z
and we plot

the absolute values of the_Cm’s, the expansion coefficients of the apertur~:

electric field given by (29), versus koh for the TEM (m=O,~=Co-l)and the

first four TM modes with $ as a parameter. In the time domain the incident:
inc

TEM wave is a unit step pulse Ex = U(t - z/c) and we present plots of the

field components given by (41), (42) and (43) versus et/h. We should mention

again that these equations do not include the x-dependence. The total field

componentsfor any mode are given by (41), (42) and (43) multiplied by

cos(2mrx/h)for

of the plots is

Figure 5.

Figure 6

to 9.

The rest of

The

Em and H and sin(2mrx/h) for Emz. A detailed description
my’

given below.

tibsolut&value of Ehe TE24reflection coefficient is plotted.

versus koh with @ as a parameter. For

TE14wave with a frequency below cutoff

made by studying this plot.

an incident monochromatic

the choice of L should be

Plots of the absolute values of the transverse electric field

component reflection coefficients for the first four TM modes

versus koh with $ as a parameter, For an incident monochromatic

TE24wave with a frequency above cutoff for one or more TM modes a

study of Figs. 5 through 9 will allow the determinationof the

optimum L to minimize the overall reflection,

the figures are plots in the time domain when the incidentwave.is
inc

a unit step-functionTEM pulse Ex = U(t - z/c).

Figures 10

and 11. Plots of the negative of the electric field component of the TEM

reflected pulse versus et/h with B as a parameter. Since all the

reflected TM modes decay with distance considerably (see figures

below) this plot is the only one that was studied to determine the

value of L = BhZo/c = (l.lhZo)/cto minimize the overall TEM

“- 17



reflection. The reason for plotting the

componentwas a sign mistake in the data

until all the time plots were completed.

negative of the field

which was not detected

The subsequent figures are plots of reflected TM field components versus et/h

with the x-dependence suppressed.

Figures 12

to 15. Plots of the negative of the transverse electric field component for

the first four ‘IM

These plots serve

modes on f3in the

The decay of the reflected TM

16 through 27 by plotting the

modes versus et/h with 6 as a parameter at z = 0.

to illustrate the relative dependence of the TM

time domain.

modes with distance is demonstrated in figures

field components at three planes, i.e.,

Z’h=o, -1, -2 for 6 = 1.1. When the field amplitude was diminutive only

thez~= ()andfi= -1 cases were considered.

Figures 16

to 19. -E versus et/h atz/h= O,z/h= -l,z/h= -2 for .8= 1.1 with

m=l,2,3,4.

Figures 20

to 23. -Emz versus et/h atz~= O,z/h= -l,z/h= -2 for B = 1.1 with

m= 1, 2, 3, 4.

Figures 24

tO 27. -El
my versus et/h atfi= O,*= -l,z~= -2 for 6 = L.1 with

m = 1, 2, 3, 4.

3.
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Appendix I

We want to show that if Ex given by (29) is substituted into (23) the

resulting expression for H
Iy

is ecluation(2). We rewrite (23) as

ikoz -ikoz

J

,h/2
H
Iy

= (l/Zo(e +e ) - ius ~ C cos(2mmx/h)
-h/2 0 m=O m

[

-ikoz OJ -iynz
(l/ikoh)e + ~ (2/iynh)cos(2nrx/h)cos(2nmx‘/h)e 1dx‘n=1

Performing the integrationwe obtain

ikoZ -ikoz uE -ikoz

‘Iy
= (l/Zo)(e + e ) - $ Cohe

~ 2QlE -iynz

- n~l $ Cm(h/2)cos(2nnx/h)e
n

Noting that Co = 1 + r, .zOc= Z~l,
-1

uco/yn = Zn we can easily see that the

above equation is the same as (2).

It is also easy to show that if Ex given by (29), HIY(x’,O) given by

(3) and G1 by (30) are substituted in the integral of equation (20) the

resulting HIY(x,z) is identical to equation (3). This indicates the

validity of equation (30) for the Green’s function G .
I
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Appendix 11

In this appendix we show that Ehe pair of equations (20) and (21)

applied at z = 0, together with the boundary condition (27) lead to (28).

We start with (20) by evaluating 3G1/az’. G1 is given by (30) and we want

to take the derivative with respect t~ z! and set z! = 0.’ Eventuallywe will

also set z = O. When z’ = O and z negative, (30) can be written as

iko(z’-z) ~ iyn(z’-z)

‘I
= (1/2ikoh)e + ~ (1/iynh)cos(2nnx/h)cos(2nmx‘/h)e (11-1)

n=1

Taking the derivativeof (11-1)with respect to z’ and setting z’ = O we

obtain

-ikoz ~
aG1/azl

-iynz
= (1/2h)e + & (~/h)cos(2nrx/h)cos(2nnx‘/h)e

Using (11-2), (20) can be written as

ikoz h/2
H (X,2)Iy = (l/Zo)e +

JI
-iwc E G

-h/2
OX I

(II-2)

[

- ikoz
+ (1/2h)e +

Nowwe let z + O in (11-3).

m

m

1[~ (1/h)cos(2nmx/h)cos(2nm?/h)e-’ynzH1ydx’ (II-3)
n=1

Recall that

1/2h + ~ (1/h)cos(2n~x/h)cos(2nmx’/h)= (1/2)6(x- x’)
n=1

Substituting (11-4)in (11-3)we obtain

J
h/2

HIY(X,O) = (l/zo)+ - iucoExG1dx’+ (1/2)HIy(x,0)
-h/2

or

~

h/2
HIY(X,O) = (2/zo) + - iwcoEx(2G1)dx’

-h/2

(II-4)

(11-5)

)

Observe now that at z’ = z = O

20



I

and

The

2G1 = G’
L

consequently (II-5) coincides with (23) evaluated at z = O because

ikoZ -ikoz
Ho = (l/Zo)(e + e ) = 21Z

oZ=o

subsequent derivation of (28) is the one given earlier. A last point has

to be clarified. Notice that equation (26) should coincide with (II-5). A

cursory examinationmay indicate that this is not true, that is, it seems that

the term

~

h/;~ 3G1

~ H1ydx’
-h/2 a=

would contribute (1/2)H
Iy

as we showed earlier. If this is the case,(II-5)

is different from (26), The resolution of the paradox lies in the observation

that the integral in equation (26) is a principal value integral, that is, a

small region around x’ = x must be excluded. In that case the integral of the

&-functionvanishes and the term

contributes zero.

I
h/2 aG1

~ H dx’
-h/2 a= lY

21



Appendix III

We want to simplify the double integral

+1

Ir
1
du’H(~)~(13h/2)lu-I= du u’l]cos(m~u)cos(A7ru’)

-1 -1 0
(111-1)

F& make the following transformation

~.u

u -Uf ==y

In figure 4 we show how the domain of integration is transformed. The

Jacobian is equa~ to unity, Referring to figure 4 we can rewrite (111-1)as

o

H
I+y

I dy du cos mm coszlm(u - y)]H‘l)~(Bh/2)ly/]=

-2 -1 0

21
+

lj
dy ‘l)[(Bh/2)y]du cos mm cos[km(u - y)]Ho (III-2)
o y-1

Ifwesetu+-u, v+ - v in che first integral in (111-2)we can see that

it is equal to the second one and I becomes

(III-3)

We can easily perform the u-integrationto arrive at the expressions for

A~m given earlier.
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In this appendix we

A~m as koh + ~. Consider

An

1=

Appendix IV

make an asymptotic evaluation of the coefficients

the intetgral

‘H(l)
~ (6y)f(y)dy, B = koh/2

o

examination of equations (37b) reveals that f(y) can be expanded in a

Maclaurin series, i.e.,

I2H(1)(6y)[f(0)+yf’(0) + ““]dyI= o
0

First we examine

10 =
J

2H(1)
~ (By)dy

o

Using the integral representation

H(l)(~y) = (-2i/n)
J

‘ei$y cosh t ~t
o

0

in (IV-3) and interchanging the order of integrationswe obtain

\

a

10 = (-2i/n) dt
o

#m

1
= -(2/7Tf3) dt

o

!

a
I
o = -(2/IT@) dt

o

I
2
eiBy cosh t

dy

e2iB cosh t

cosh t

2i6 cosh tR
cosh t

As @ + cvwe can use stationary phase to show

~

m e2ificosh t
dt — =

cosh t
o

and (IV-5)gives

~

03

+ (1/7T6)
dt

cosh t
o

+ 1/6

(Iv-1)

(IV-2)

(IV-3)

(IV-4)

(IV-5)
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)(XV-7) .“::.”;.

If we evaluate the rest of the terms in (IV-2)we find that the dominant term

is of order 8-3/2 and consequentlywe can rewrite (IV-1)as

I
2H(~)[(koh/2)y~f(y)dy~= = f(0)(2/koh)+ 0[(kah)-3’2].
OQ
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Appendix V

The systems of equations (36) can be alternately derived as follows.

We start with boundary condition (27) and substitute HIIy
by its integral

representation (21).

J
h/2

EX=ZH -Z
ry

iucoExG1ldx’
-h/2

From equations (2) and (3) we find that

<n

EX(X,O) = 1 + r + ~ cm cos(2mnx/h)
m=1

HIY(x,O) = (1- I’)/Zo- ~ (Cm/.Zm)COS(2m~x/h)
m=1

(v-1 )

(v-2)

(v-3)

The electric field Ex is continuous across the admittance sheet, therefore

we can combine the previous equations to obtain

m ‘n

~ C cos(2mnx/h)= 2Z/Zo - Z ~ (Cm/Zm)cos(2mmx/h)
m.() m m=O

h/2 a
- iucoZ jl Cm cos(2m~x’/h)G11dx’ (v-4)

-h/2 m=O

Application of orthogonality relations of the cosine functions on (V-4) yields

the desired system of equations (36). The above formulation avoids the

questions arising from using the Green’s function G1, but it also confirms

the validity of representation (30). Naturally,the relationship between the

coefficientsof the expansion of the aperture electric field to the coefficients

of the expansion of the interior aperture magnetic field is contained in

equation (18) which was omitted in the above formulation.

25



r-a’
m

: .’%E-.-+- Z——. —.— .—. — - @

I y -\/

Figure 1. Geometry of the two-dimensionalparallel-plate transmissionline
terminatedby a sloped R,L admittance sheet with coplanar
conducting flanges.

‘%.2 I



‘1

N
-4

—

/“
\

\’
\“ II

~ ‘\ II

\

ii

i

I # 1’
I

~,’\,&l \. \ \’

/ ‘\

\
-\;

\ \’\ I
I
/“

/

I

I

Figure 2. Regions I and II used to derive the integral relationships in the text.



;(+h/2)
inc

_L

g

L

x

Hint~
~

—.— -—. — .—-— -—- Z

‘o I
I

-h/2)

Figure 3. Geometry of the transmissionline with a perpendicular”
admittance sheet considered in detail in this note.



u
A

\

4-1-—.—-..—
T“

...
I

u’

u

.. /

U=l+y ~=y-1

Figure 4. Integrationregions resulting from transformationof variables U,U’ to u,y.



.4
I I I I I 1’1 I I I I I I I I I I I I I I

.

lrl

.3

1

@ parameter

TJM Mode

.2 A

.1

.09

.08

.07

.06

.05

“.04

● 03

.02

/

u

WkA1’i”/ \\ Ah J
.-

.01 I 1 I I I I I I I I I I I I I
.1 . .2 .3 ,4 .5 .6 .7.8.91 ~h 2 3 5678910 20 30 40

0

Figure 5

-.,’



I

I

I‘1“
I

,

.1

.6
I I I I I I I II I II I I

f3=l.1
.5 — 6 parameter

-.4– First TM Mode

.3 .

.2

I

.1

—

—

w’ /%/

.J-_-4?cI
v

I i I I I I II I I I I 1 I I 1 1 I I
.1 ‘7.- .3 .4 .5 .6.7.891 kOh 2 34 56789,10 20 30 40

Figure 6
( I



.7

.6

.5

,4

.3

.2

FJ

.1

.09

.08

.07

.06

.05

.04

.03

.02

,01

0

Figure 7

3

.:, ..
w



.6-

*5

.4

.3

.2

::9

.08

.07

.06

.05

,04

.03

.02

.01
,

Figure 8

n
G
m
o
nl
l-h

1.1,.8,
fi .4,,2-

33



.“5
1 1 t i i I t I I

.4
.0 c

@ parameter
.3

Fourth TM Mode

.2

Icql

:;9 .
.08 _

.07 — “

.06 —

.05 —. ,

.04 —

.03 —

.02 —

.01
.7.8.91 ~h 2 3 45678910 20 30 Lo

o

Figure 9

34



●3

.2

“Eox

.1

.

(1
o

..

!3paranteter

TEM Mode

.1 \

2 3
ct/11 4

Figure 10

5 6 7

3.5



.07
1 i I i I

.06

v’?

B patameter

.05
TEM “Mode

%=.8

-.04

-.05

-.06[

.

,

.

●

-Eox

-*

-*

-.

-,
0 “1 2 3 4 5 6

et/h



)

.2:

.1[

.1!

.06

.03

-*1X

o

-.03

-.06

-,09

-.12

-.15 I I I I I I.
u 1 L 3 4 5 6et/h 7

Figure 12



)

.12

.09

.06

,03

-=2X

o

-.03

-.06

-.09

-.12

-..15

(

.

.

Figure 13



.10

1

.08

.06

● 04

.02

-E3X

o

-.02

-.04

-.06

-.08

$ parameter

Third TM Mode

z/h = O

6=1 .1,V I I I
1 2 3 4 5

et/h 6 -7

Figure 14 .

39



. 0[

.0(

● 04

.02

-E4X

o

-.02

-.04

-.06

-,08

),..<..--,-r-,?

.

.
c1 1 2 3 4

et/h

Figure 15

5 6

.

40

7



.2]

.,

. .

.(

.C

.0

-Elx

-, 0

0

0

-. 1

-. 1,

~~–

$ = 1.1

First TM Mode

I

.

.

b

z/h=-l

\

/

z/h=-2

1 L 5
“Ctlh 4 5 6 7

< Figure 16



.1

.0

.0(

.0:

-E2X

(

-. 0:

-.06

-.09

,-.12

-..15

..- -—-. . .—.—-L .

“j

i/h=-l

u’,’
1 1 I \ I I I
1 2 3

et/h
4’ “ 5 6

Figure 17



j

.0(

.04

.02

*10

.08

/-

-E3X

/

o

-. 0

-.0(

‘.08

o

I

Iv

~=() ..

:h-1

I
1 .2 3

et/h 4 5 6S7

I

!
I

,.

Figure 18 .

43



*

. 0[

.0(

● 04

● 02

-*4X

c

-.02

-.04

-.06

-.08

8 = 1*1

Fourth TM Mode

I I 1 I I I
o L 2 3 4 .5 6 7et/h “

I

Figure 19 .



,28

.24

● 20

.16

.12

,08

.04

-Elz

o

-,04

-.08

-,12

-.16

$ = 1.1

First TM Mode

z,

Figure 20



). .

f3= 1.1

I
-.12

-.15

z/h--l \“

l“”

Second TM Mode

-1

-.181 I I I I I I
o L “2 3 4, 5 6et/h

46



.12

.10

.08

.06

.04

.02

-E3Z

o
I

-.02

-.04

-.06

-.08

/9

8= 1.1

Third TM Mode

!z/h=O

o 1 2 3 4 5 6 7
ctlh

Figure 22

47



.0{

,0(

● 04

.02

-*4Z

o

-.02

-.04

-.06

-.08

.

.

. .

z/h=-l

/h=O
Fourth TM Mode

I I I 1 !
1. 2 3

et/h 4 5 6

*

“)...

Figure 23



-,
. - -..,.— —.. ..—..+ ~. — . ..,. — .—z .-—. . .- . . . .- . . . ~.

,10

.08

,06

.

● 04

.02

-Z H
o ly

o

-.02

-.04

-.06

-.08

-.10

-.12

I
I

I
\
z/h-O !3= 1.1

First TM Mode

-1

-1
I
1

\

.~.
L 7

et/h

Figure 24 ‘

49



.0:

● CM

.05

● 04

.03

.02

.01

-z H
o 2y

o

-.01

-.02

-.03

-.04

0

9
—

1

I 1 I I I I

f3= 1.1

Second TM Mode

/ I I I I I. .
1 3 4et/h

Figure 25

5 6 7

\’

50



)
.0

.0

.0:
.

-ZH’
o 3y

(

-.01

-.02

-.0:

,-.04

-.05

I

1

(

:/h=O -
e = 1.1

Third TM Mode

.

z/li=o

i
Figure 26

51



● 0’

● 0:

.0:

.01

-z H
o 4y

c

-.01

-.02

-.03

.,

.

$ = 1.1

Fourth TM Mode

A

I I
o 1 2 3 4et/h 5 6 I

Figure 27

52



Acknowledgement

Thanks go to Dr. Carl E. Bauruand Dr. Raymond W, Latham for helpful

comments,Mr. Richard W. Sassman for carrying out the numerical calculatic~ns

with a sense of humor and Mrs. Geargene Peralta for her everlastingskill in

typing the manuscript and drawing the figures.

53



,,

1. Carl E.

Lines,”

References

Baum, “Admittance Sheets for TerminatingHigh-FrequencyTransmission

Sensor and SimulationNoCe 53, April 1968.

2. Carl E.Baum, “A Sloped Admittance Sheet Plus Coplanar ConductingFlanges

as a Matched Terminationof a Two-DimensionalParallel-PlateTransmission

Line,” Sensor and Simulation Note 95, December 1969.

54


