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● I. Introduction

The calculation of electrostatic capacitance is an old subject. People
.

have been calculating the capacitances of wierd-shaped objects f~r well over

a hundred years. Examples of capacitance calculations are given in even the

most elementary texts on electromagnetism, so why should one bother to read

or write a note on this supposedly closed subject? Well> there are at least

three reasons. The first reason is that capacitance calculations are of

considerable importance in the design of high quality satellite simulators,

and the time for such designs has come, A few of the following paragraphs

of this introduction will elaborate on that statement. The second reason

is that the satelli~e simulator application has provoked the development of

an approximate capacitance formula that is particularly applicable to a body

within an enclosure. This approximation’has received little attention in

the literature. The two primary purposes of the present note are to demonstrate

o
its accuracy and to facilitate its application. The third reason for the

●
study of capacitance is less pragmatic than the first two, but for the author,

at lease, it is more forceful: calculating capacitance is fun.

Returning to the more practical justifications of this note, ‘letus

take a few paragraphs now to say what a satellite simulator is supposed to

simulate and why it is necessary to calculafiecapacitances in order to design

one properly. A satellite simulator is intended to recreate the environment

of an orbiting satellite exposed to the direct y-rays and X-rays of a hig’h

altitude nuclear detonation [1], [2]. The incident photons eject electrons

from the satellite materials, and the ejected electrons are the source of

what has been called the system generated EMP. A satellite simulator, as it

is currently thought of, would simulake the required environment by means of

.

a large metallic vacuum chamber within which the satellite under test would

be situated. A collimated photon beam would be incident through one wall of the

vacuum chamber, and would eject electrons from the test object.

The ejection of electrons from a satellite in orbit leaves the satellite

with a positive charge. The positive charge gives the satellite a positive

potential with respect to infinity. The magnitude of this positive potential,

o

which is directly proportional to the positive charge and inversely proportional

to the electrostatic capacitance of the satellite, determines what fraction of

4



e
the ejected electrons escapes completely from the system and goes off to infinity,

Similarly, the ejection of electrons from a satellite in a simulator gives the
.

satellite a positive potential with respect to the simulator enclosure, and

this positive potential is one of the major factors determining what fraction

@

of the electrons ejected from the satellite end up on the walls of the enclosure.

Thus we see that the potential of the satellite with respect to the enclosure

immediately after the pulse of photons, this potential being directly proportional

to the initial charge left on the satellite by the ejected electrons and

inversely proportional to the capacitance between the satellite and its

enclosure, is an important quantity to consider when designing a satellite

simulator. This potential should be about Che same as the potential with

respect to infinity of the satellite in orbit. Since the ejected charges in

the two cases will be made to be roughly the same, equality of potential means

that the capacitance between the satellite and its enclosure should be close

to the capacitance of the satellite with respect to infinity. This will ‘be

true in the limit of very large enclosures, but construction limitations

restrict one to the consideration of enclosures ‘chatare only moderately large

compared to the size of the satellite. With this res’crietiotito enclosures

of moderate size in mind, it is clear that it is important to be able to

calculate the capacitance between a test object and its encldsure in order

to determine if a proposed simulator would be large enough td make a realistic

test on a particular satellite. Of course, this capacitance criterion is

only one of several criteria that must be used in judging the quality of a

proposed satellite simulator design, but it is ah important one.

There is a second use to which satellite-enclosure capacitance calculations

can be put. If one is satisfied with ‘matchingthe net charge left on the

satellite in the simulator, after the low energy electrofishave returned, with

the net charge left in the actual case (the initial charge knocked off is

assumed to be about the same in both cases), it might be possible to get away

with a fairly small enclosure by giving the satellite a negarive charge before

exposing it to the pulse of photons. This initial charge should be enough -to

make the potential of the satellite with respect to the enclosure, immediately

after the electron ejection, approximately equal to the potential of the

satellite in orbit, immediately after the electron ejeetiozi. The magnitude

5



●
of the required initial charge can be calculated in a tti.vialmanner when the

relevant capacitances are known.
.

A precise calculation of capacitance should cake into accoufitthe space

charge created by the initial ejection of electronS. We will not com.idet the

effect of space charge in this note, in the belief that it will have only a

secondary effect on the value of capacitance but a vefy large effect on the

difficulty of its calculation. Another effect that we wiil not take into

account is the detailed construction of the walls of the enclosure. The real

enclosure will probably have wall linings made up of resistive materials for

mode damping and have wire grids close ‘cothe walls for the control of secondary

electrons. We will idealize the enclosure by assuming it to have smooth walls

at a constant potential.

Thus we arrive at the classical electrostatic problem of calculating

the capacitance between an object and a smooth metallic enclosure within which

it is contained.

But there is a

In order to evaluate

one of the myriad of

special way in which we would like to look at this problem.

the usefulness of various proposed simulators for testing

existing satellites, it would be very convenient if the

capacitance between a satellite and a simulator ‘couldbe calculated from two

characteristic numbers, One of -thesenumbers would characterize the satellite,

without regard to the particular simulator it is in. The other number would

characterize the simulator, without regard to the particular satellite it

contains, Such a separation is impossible in general. But, if the satellite

is not too large compared to the size of its enclosure, such a separation is

possible as a fairly accurate approximation. One approximation that accomplishes

this separation is the effective radii approximation ([2], Section V); a precise

statement of this approximation will be given in the,next

purpose of the present note is to examine the accuracy of

The other primary purpose is to facilitate the use of the

approximation by making it easy to estimate the effective

section. ,Oneprimary

this approximation.

effective radii

radius of any given

enclosure. The calculation of the effective radius of test objects has been

discussed elsewhere [3].

a

Following the initial description of the effective radii approximation

in the next section, Section III presentisa study of the ac~uracy of the

6
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8 approximation from a fairly general point of view and a determination of the

order of magnitude of its error when the test object is small compared to the

size of the enclosure. The four examples of Section IV demonstrate the results.
of Section 111 and build further confidence in the overall accuracy of the

approximation.

Sections V through VII are concerned with the calculation of the effective

radii of enclosures. Section V presents an outline of the most important

available methods. Section VI gives two specific examples of effective radius

calculation; in one case the enclosure is a circular cylinder with flat end

caps and in the other case the enclosure is a rectangular parallelepiped.

Section VII is a discussion of certain bounds that can be put on the effective

radii of enclosures. The numerical results of Section VI can be quite useful

in conjunction with the bounds discussed in Section VII; this is demonstrated

by an example.

In Section VIII, we review the most significafitresults of ‘thenote and

o suggest several possible extensions of the work.

o

There are a large number of interesting and useful papers in the literature

‘chatdiscuss the calculation of electrostatic capacitance. Indeed at one time,

a very long ‘timeago of course, this subject held a great deal of fascination

for physicists of a mathematical bent. But in the last fifty years or so, the

flow of capacitance papers has trickled off to a torrent. It was therefore

decided that it was possible to survey the work of this period, at least, and

come up with a reasonably useful list of publications. Section IX contains

this list. We have managed to make a specific reference to most of the works

in the list at least once in this note, There has been a good deal of selection

in making the list. Publications were only included if they were interesting,

or if they contained useful results, or if they contained extensive further

bibliographies,and there are undoubtedly some papers satisfying one or more

of these criteria that have been neglected out of ignorance. The list must

therefore be considered as suggestive and somewhat subjective, rather than

exhaustive. It is offered in the hope that it will reduce the pain of the

literature search for other workers who become interested in the subject of

capacitance calculation.

7



11. The Problem and its Approximate ‘Solution

Figure 1 is a representation of the problem to be studied. We will keep

as uniform a notation as possible throughout this note. We will denote the

body representing the satellite under test by B, its surface by Sb, and the

outward normal from its surface by
%“

We will denote the idealized simulator

enclosure by E, its surface by Se, and the inward normal from its surface by

n. The volume between Se and Sb will be denoted by V. We will denote the

capacitance between B and E by C, and we will denote the capacitance of B,

when it is isolated in free space, by C .
b

The electrostatic potential within

‘V will be denoted by ~(~), while the electrostatic potential outside B when

E is absent will be denoted by x(z). Rationalized MKS units will be used

throughout.

The capacitance between B and E can be defined

Laplace’s equation for the electrostatic potential,

subject to the boundary conditions

$(r_)= 1

through ‘thesolution of

(2.1)

(2,2)

(2.3)

and a subsequent computation of the total charge on B (identically equal to

C because of the one volt difference in potential between B and E) through

c= =-sOQ
1

&k_.ds.
anb

(2.4)

‘b

The capacitance of B with respec~ to infinity can be similarly defined

through the solution of Laplacels equation throughout the whple infinite region

exterior to B

v2y&) = o ~ outside B, (2.5)

8
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Figure 1“. A’body inside a general

.

enclosure,
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●’ subject to the boundary conditions

and a subsequent

X(Q = 1 ~onS
b

X(Q +0 r+m,—

computation of Cb through an evaluation of the integral

(2.6)

(2.7)

‘Qb ‘-co
\

% ds
Cb

a%
(2.8)

‘b

The value of C will vary as B is rotated and translated within E, but,

with our satellite simulator application in mind, we need to consider only

certain special positions of B. B must still be allowed to have an arbitrary

angular orientation, since a satellite must be subjected to photon pulses

● coming from several angles of incidence while the simulator photon source will

o
be fixed. However, for a given angular orientation, we want to consider only

that position of B within E where C is a minimum. This is in keeping with the

desire to make C as close as possible to Cb, since C will always be greater

than Cb. We will denote the minimum value of C by ~.

Sometimes the position of B that makes C a minimum will be obvious by

inspection. For example, if both B and E have a center of symmetry, a likely

candidate for the minimum C position is the position where the centers of

symmetry coincide. This position is clearly the wrong one in some cases,

for example if E has the shape of a dumbbell, but it is probably the right one

if E is convex. It would seem that E will be convex in any practical simulator

design. We will assume that the coincidence of the centers of symmetry defines

~ for the four examples of Section IV.

An accurate calculation of ~ is quite difficult in general, but for the

case where B and E are both spheres it is easy, Clearly, for two spheres, C

is a minimum when B and E are concentric, and, from standard texts ([4], S2.03),

~ is given by

...., ,...,,.,,.,.,.,.
= ...
b L ..

‘= l-’(rl/r2)‘
Cb

(2.9)
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8 where r~ is the radius of the inner sphere and r2 is the radius of the outer

sphere.

It would be nice if an equation like (2.9) held for a general B and E,

where r~ would be some number characterizing B, regardless of the shape of E,

and r
2
would be some number characterizing E, regardless of the shape of B.

The effective radii

The effective

sphere that has the

respect ‘coinfinity

approximation is based on this wish.

radius of a general B, rl, is defined as the radius of the

same capacitance with respect to infinity as B has with

[2], i.e.,

Cb
‘1 = 4TE (2.10)

o

This parameter has been called the “outer radius” of B by Szego [5] and others.

In the electrostatic system of units the capacitance of a body is equal to its

. 0
-o

‘1
in centimeters.

The effective radius of a general E, r2, is defined as the radius of the

spherical enclosure that has the same ~ with respect to an infinitesimal test

sphere as E has with respect to the same infinitesimal test sphere [2]. BY

juggling equation (2.9), it thus

I_—=

‘2

— —

follows ‘chatr2 is given by

[1

4TE
Mm +-J
r+ol
1

El
(2;11)

where Cl is equal ‘cothe C between E and a spherical B of radius r .
1 The

parameter r2 has been called the “inner radius” of E by Szeg6 [5]. An equivalent,

more easily applied definition of r2 will be given in the next section.

Numerical methods for compucing the r2 of enclosures of arbitrary shape are

discussed in Section V.

Once rl and r2, the effective,radi.iof B and E, have been determined,

the effective radii approximation to ~ can be calculated. This approximation

consists in the assumption that equation (2.9) is nearly correct in general,

i.e.t denoting the effective radii approximation to ~by~, we have

‘E ‘-z ‘1—s—:
l-(rl/r2) ●

(2012)
‘b Cb

11



8 A general discussion of the accuracy of

next section. A further examination of

. four particular examples whose ~ can be

presented in Section IV.

this approximation is given in the

its validity, through -thestudy of

calculated quite accurately, is

.- We can note in passing that, according to equation (2.12), the relative

difference between~ and Cb, which should be small if an accurate,simulation

is to be assured, is given approximately by

-&cb (rl/r2)

Cb
S l-(rl/r2)

There are a couple of further points about

be brought up before we close this section.

The first point is &hat (2,12) is just the

(2.13)

equation (2.12) that should

kind of equazion one wants

for satellite simulator applications. It separates the effect of B and E

●
quite nicely. It is trivial to apply when rl and r2 are known (frotables or

curves are necessary). And the concept of ‘dietwo spheres equivalent to B and

●
E somehow appeals to one’s intuition.

The other point is that the dependence of ~ on the angular orientation

of B does not appear in approximation (2.12). This is necessary if one is to

reduce the characterization of B to a single number. Nevertheless, it is an

indication that one should not expect excessive accuracy from the approximation

in general. But for small (r7/rO), which is the case of greatest practical
AL

interest, the accuracy of equation (2.12) could be quite high. If, in

the angular orientation of B is truly irrelevafit,i.e., if either B or

spherical, one can see that there is a chance of an even higher degree

accuracy. This is more than just wishful thniking, as we shall see in

next section.

addition,

E iS

of

the

12
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111. Accuracy of the Approximation -- Analytical Study

In this section, we will derive estimates of 4, the difference be’cween

(@/Cb) andC/Cb). This is a difficult task if B is almost as large as E.

But if B is not very large compared to E or, equivalently, if (rl/r2) is not

very close to unity, we can make a good deal of progress by studying the order

of magnitude of A as (r /r ) approaches zero. Since, for accurate simulation,

(rl/r2) should be made is ~mall as possible within cost and constructional

limitations, our small (rl/r2) estimates of A should be sufficient for the

present purposes.

We will first study the case where both B and E are of arbitrary shape

(Subsection). We will

(~1/r2) approaches zero.

We will then study

and show, after a rather

show that, in that case, A is of order (rl/r2)3 as

the special case where E is a sphere (Subsection B)

long argument, that then A is of order (rl/r2)5 as

●
(rl/r2) approaches zero. By invoking a special form of the inversion theorem

it will then follow rather simply that if B is a sphere then A is of order

o (rl/r2)6 as (rl/r2) approaches zero. These two special cases that have a

higher order of accuracy for ~ are of more than academic interest. There is

a good possibility that the E of a satellite simulator will be approximately

spherical. We will not examine here the effect on A of small perturbations

from the spherical shape of E, but our results could be useful as estimates

of the kind of A’s one can expect if E is almost a sphere.

For completeness, it might be well to recall that, for the trivial

special case where both B and E are spheres, A s O.

Thus we see, in all cases, that C is a compact representation of an

approximation to ~ that is accurate to a higher order in (rl/r2) than one

might expect. Sometimes this accuracy can be very striking indeed, as we

shall see in a couple

111.A. General Case

of the examples in Section IV.

Let us first set some notation and restate the definition of r2 in a

form ‘chatis more useful for calculation.

The position of B will be denoted by the position vector of its free



● space center of charge, r .
-b

This posi~ion vector is

calculating a (r), the surface charge density 01’ISb,
b–

integral equation

defined by removing

possibly by solving

.-

.

●
-0

and then computing

%=[JS;(-S]-’J,y@s*

The value of ~b where C attains its minimum wiii be denoted by ~m

E,

the

(3.1)

(3,2)

in

general. The value of Lb where C afitainsits minimum when B is an infinitesimal

test sphere will be denoted by ~. If B and E haVe a center of symmetry, and

E is convex, it seems clear, on physical grounds, tha’c~m = ~. But in any

case, since the center of charge must be within the smallest sphete bound.i.ngB,

we know from the definition of & that

+0 as the size of B + O,

and, since r
1
is a measure of the size of B, it is safe to assume that

k~m-< I
= o(rl/r2),r.

(3,3)
L

although the left hand side may be actually of higher order in (rl/r2).

Let us denote the Green’s funceion for the interior of E by Ge(r,~’).

This function is defined through

Ge(r,~i) = O if r is on S— e

has a singularity

Ge(r,~’)

atr=
LT 9

but it can

- ~(r,r’)——

be written as

(3.4)

14



e where +(r,r’) is regular at ~ = ~’, symmetric in ~ and ~’,—— and positive within

E ([6], Chap. IX, 53). The potenzial on a small sphere of radius rl, carrying

a charge Q and having its center at r , is given, if $ = O on S by
–b e’

.“ +(&onSb) =*-
01

Thus the capacitance between the small

$ {i@@ + o(y)}
o

sphere and E is given by

[

1 1
-1

c = 4Trs —- 41T[I/J(Zb,Ab)+O(rl)l ,or
1

and thus, according to ouc previous, basic definition of r2 in equation (2,11)

i.e.
.

●
“o

—
where +(~b>~b) is the minimum value of $(~b,rb). From our definition of ~

in the paragraph following equation (3.2) we can thus write

(3.5)

(3.6)

Equation (3.6) is the alternative definition of r2 that we have been working

toward. We will use it in the calculations of Sections IV and VI and also in

this subsection.

Now let us study the behavior of +(r,r’) when both r_and ~’ are in a.—

d-neighborhood of r . Employing a Taylorts series expansion, and using the

fact that the characteristic length over which ~ can be expected to vary

significantly is of order r
2’

we can write

*,Q + (~V(r,r’) = +(r - rJ*v1+(<5rJ + Q’ - rJ’v2v(~jrJ——

i- +(~,<)0[(6/r2)2] (3*7)



● where the subscript on the gradient operators denote the position of the

argument on which they have worked. From the symmetry of v, we know that

V~(r,r’) = V$(r_’,~).—

.-

i.e,

and, by definition,

V+(r,r) = O when r = r——

i.e.

.

● vll/J(&,rJ + v2+(<,rJ = o

-o Thus, from equations (3.8) and (3.9)

vll/d&&J = V21JJ(L-JQ = o,

and so, when r and 31 are close to ~, we can combine equations (3,7) and—

(3,10) and write

~(r,r’) =—— ~(~,~){1 + o[(6/r2)21}

Now let us ‘cryto calculate ~. By a standard application of Green’s

theorem, we can write the inzegral equation for the surface charge on B in

the form

(3.8)

(3*9)

(3*1O)

(3.11)

(3.12)

16
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.-

. .,

_l

~

CJ(~’) ,*(~;<)
1 ‘{l’-!-0[($/r2)2]} \ o(~’)dS’.Ir-r,ld’S’-

@o s – –
(3.13)

t?
b

o ‘b

where

=lr-r_b -t-~-&l—

= O(rl + d).

But, recalling equation (3.3),we see from equation (3.14) that,

(6/r2) is of order (rl/r2). Thus, invoking the new form of the

‘2
and rearranging, we see that the charge density we desire is

@ solution of the equation

1
a(r_’)

1 +* {1 +O[(rl/r2)21} =%
/ I Ids’r-r’

02 % ‘–

where

JS
b

Now, by comparing (3.1) and (3.15) it is

~= 1+*{1
02

Rearranging this equation, and using the

(3.14)

when r = r–b –bm’
definition of

given by the

(3.15)

(3.16)

evident that

+ 0[(rl/r2)21}.

fact chat rl s Qb/4TSo, we find that

i.e.
–~ . 1

l-(rl/r2)
+ 0[(rl/r2)31

Cb

.-~+ o[(rl/r2)31
Cb

(3.17)
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● Thus we have the general estimate of A that was mentioned in the

introduction ‘cothis section

A = (rl/r2)
3

as (rl/r2) +0.

.

Numerical examples C and D of Section IV exhibit this type of A behavior.

Thus one cannot prove a higher order dependence of A on (rl/r2) than cubic,

in general (an improvement in the result would be a bound on the proportionality

constant, but we will not attempt to derive such a bound here). Nevertheless,

as we shall see in the following subsection, if one restricts ei~her B or E to

be a sphere, one can establish a higher order dependence of A on (rl/r2).

111.B. One Conductor is Really a Sphere

The situation to be studied is shown in figure 2, where B is of some

‘0

arbitrary shape and is enclosed in a spherical E. The results for a spherical

B inside an E of arbitrary shape will follow from an application of the inversion

-0
theorem. Let us first obtain the form of the inversion theorem that will be

most useful for this purpose.

In its most general form, the inversion theorem states that, if @(r,&)

is a solution of Laplace’s equation, then so is (R/r)@(Rz/r,~),where r is

the distance from some point and ~ denotes the angular orientation of > with

respect to that point ([6], Chap. IX, 52). Let @l(r,O_)be the solution of

Laplace’s equation in V that is equal to unity on the Se of figure 2 and equal

to zero on the S
b
of figure 2. If e denotes the radius of the E sphere, the

capacitance between B and E is clearly given by

(3,18)

Now let us invert the whole geometry, using an inversion sphere of radius

R whose center is at the center of E (note that, although the figure is drawn

for the case where the inversion sphere is between Sb and Se, R can really be

any radius we choose). The potential in the inverted region that is equal to

unity on S:, the inversion of Se,

m

and equal to zero on S;, the inversion of Sb,

is just

18
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.’

sphere of inversion

/ \

“~ I

‘,-

Figure 2. A body inside a spherical enclosure.
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@’(r,Q) = (e’/r)@l(R2/r,~) (3.19)

where e’(=R2/e) is the radius of the inverted Se sphere, The capacitance

between S; and S: is thus given by

= 4ncoe’ + (e’/R)2C (3.20)

Equation (3.20} is a form of the inversion theorem that is quite suited

to our needs. In particular, there are two special cases of it that are of

immediate importance. These are:

‘o
Case 1:

Fix R and let e become large. Then e’ becomes small, and the inverted

-o problem is the one defining r~,the r2of the inverted Sb surface. From the

basic definition of r2, equation (2.11), we have

$=:23[$-%1
which, by a substitution from equation (3.20), is just

c
+=

4moR2

But, since e is large, (C/4neo) is just the rlof B, and so we caa write

2
‘lr+ = R

(3.21)

Thus the r2 of any E is proportional ‘cothe inverse of the rl of any surface

obtained from Se by spherical inversion about ~, the proportionality constant

being equal to the square of the radius of inversion. This fact was originally

proved by Szeg8 [5] and later by Boukamp [71, who was apparently unaware of

● Szegti’swork. It ,wasmentioned by Baum [2] as’a way of calculating Z2’S.

20



o Other people seem to have been’mainly interes~ed in it as a way of calcul.atitig

rl’s [7], [8].

>.

Case 2:

.“ From equation (3.20), we have

By using the equivalent radii

e = ‘2’ it follows that

approximation

- f..
F’
—=1+- ‘1”2 o
Cb

l-rl/r2 r2

v

for (@Cb), and recalling that

o[(rl/r2)nl

when E is a sphere, But, fromwhere n is the order of A for small (rl/r2)

equation (3.21), rl/r2 = r~/r~, and so

●
F’ 1

-o
, n+l

+ O[(r;/r2) 1‘= l-(ri/r~)
Cb

(3.22)

Therefore, if n is the order of A when E is a sphere, the order of A when B

is a sphere is n+l, The rest of this subsection is devoted ‘coproving that

n is five.

Employing the interior Green’s function for a sphere ([6], Chap. IX, 54),

we can write the following integral equation for the surface charge density

on the B of figure 2

1

I

o(~’)

Sb ]r-r’ ‘s’ - * j’
u(~’)

1 ‘~ ..)
o Sb 1~-r_’(e/r’)21

dS‘ ronS
b

(3.23)

where the origin of coordinates is the center of Se. Expanding the second

integrand in equation (3.23) for small (r/e) and (r’/e), we obtain

_l’

/

c1(~’)
—dS’

41T&o s ‘{p~’[
b

(3.24)
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● where

.-

●
“o

J
o(r)rdS,2= ––

‘b

and y(r,r’) is the angle between ~ and r’. We will now neglect terms of order—— —

(rl/e)5 and higher. We will assume that we know the solution for cr(~)when

E is removed and +(x on Sb) is either a constant or a linear function of ~?osition.

That is to say we will assume ab(~) and ~l(@ are known, where

,
Ql (~’)

r-r— -b
.+

L

o /r-rtl ‘s’ ron S— b——

(3.25)

(3.26)

where r_b is the position of the center of charge of B. By applying Green’s

reciprocation theorem ([4], S3.07) to the two problems defined by equations

(3.25) and (3.26), it follows that

(3.27)

Now, from the definitions of ob(r_)and ~1(~), it is easy to show that, correct

to fourth order in (rI/e), the solution of equation (3.24) may be written as

(3.28)

If we integrate this equation over Sb, use equation (3.27), and rearrange the

terms, we can quickly establish the following equation for (C/Cb).

i-= E+-(’+31-’’or+l’l(3.29)

22



.

● But, from the definition of ~, and equations (3.26) and (3.28),

and it can be shown, using the definition of ~1(~), that

1

JJ

CTl(z)cll(z’)~sds, ~

Jr-r’I
=—=g

(47r60)2e Sb –– 47re3

(3,30)

(3.31)

‘o
where ~ is the electric polarizability tensor of B (see, for example, [9] for

some of the interesting properties of this tensor). ~ is proportional to Vb,

“o
the volume of B, and has dimension Vb* I’Cfollows from equations (3.29)

through (3.31) that, to order (rl/e)4,

~=[’-?(
1 + (~/e)*[&-OJ1* (&/e))]-l (3.32)

For small (Vb/4ne3), it can be shown tha~ [~- @-l is positive definite and—

hence, to order (rl/e)4,~bm = O. Therefore, to the same order of accuracy,

Since r2 = e, we have thus shown that, if E is

A = (rl/r2)5.

(3.33)

a sphere

(3.34)

From this equation, and the second special case of the inversion theorem al:

the beginning of this subsection, it is clear that if B is a sphere,

A cc(rl/r2)6 (3.35)

,
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● There is a point about the

little disturbing. If B doesn’t

the inclusion of terms of higher

above arguments that might, at first, be a

have a center of symmetry, then we know that

order ‘thanthe fourth will probably shift

‘bm
from zero. Will this changqif used in conjunction with equation (3.32),

,- have enough effect to change the order of A? The answer is no, because if one

includes the next order term (the term involving y in equation (3.24)) as a

perturbation, it turns out that r
bm

= (rl/r2)3. When this type of variation

is substituted back in equation (3.32), the extra error term is of higher order

than five. Thus equa’cion(3.34) i.svalid for any small B.

Before concluding this section, it might be well to point out that

equation (3.32) can be useful as it stands for studying the variation of C

with r
–b

when r
b

is close to zero. For example, if B is a sphere, it is not

difficult to show that

“o
“ o and thus

(3.36)

It would seem that a useful future project might be to determine the

generalization of equation (3,32) when E is an enclosure of arbitrary shape.

In other words, what is C(%) for small l~b -~bm’l in general? We will not

pursue this question further in this note.

24



@

.“

‘o

Iv. Accuracy of the Approximation -- Examples

In Section 111, we found the order of magnitude of the error in C as

(rl/r2) approaches zero. Our results suffice ‘coindicate that ~ is a good
—

approximation to C for most satellite simulator applications, i.e., those

cases where the satellite is fairly small compared to the size of the simulator

enclosure.

But we have not found how large (rl/r2) can become before the equivalent

radii approximation is useless. It would be nice to know the answer to this,

because some satellite simulator designs will allow (rl/r2) to be a fair-sized

fraction (a half, say) and compensate for the fact that C # Cb by precharging.

Design calculations for this type of simulator would be greatly simplified if

the equivalent radii approximation could still be used.

Establishing the largest value of (rl/r2) such -that(CbA/~) < d, for a

given 6, is a difficult task for a B and E of general shape. It amounts to

solving the capacitance problem exactly. In the present section, we hope only

●
to develop some intuition along this line by presenting.
of four particular problems. It would seem, from these

(CbA/F) is of the order of .01, or less, if

the numerical solutions

solutions, that

1, (4.0),-
ronS

b

but this must remain, for -thepresent, a criterion of a rather conjectural

nature.

The formulations of the following four problems are not new. The

formulations of problems B and D have been given by the present author; the

formulations of problems A and C are due to other authors. Appropriate

references will be made within each subsection. The analytical treatment of

each problem will consequently be kept rather brief; we will summarize the

previous treatments. We have made new computor calculations for problems A,

B, and C in order to augment the available numerical data. For problem B,

there was no previous numerical data available at all; for problems A and C

we have increased the number of cases previously treated by an order of magnitude,

o
All results have been tabulated in such a way as to make it easy to evaluate

the accuracy of the equivalent radii approximation for these four problems,
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It might

actually treaz

inversion. We

subsections to

be well to point out here that in Subsections A and B we

pairs of problems, each pair being related by a spherical

have not dignified the inverted problems by devoting separate

them, but we have presented numerical results for them since

.- these can be obtained by manipulations on the results for the original problems,

and the results for the inverted problem exhibit a different kind of A behavior

(see Section 111.B). To the best of the author’s knowledge, explicit statements

of the inverted problems have not been made before,in the literature.

IV.A. Sphere in an Infinite Cylinder

The geometry of the problem to be solved is shown in figure 3a. The

radius of the sphere is b; the radius of the infinite cylinder is a. From

symmetry, it is clear that ~bm = ~, and this point can be chosen as any point

on the axis of the cylinder. We can ‘thusdenote the capacitance between B and

“o
E, when~e = Lb = O, by ~. If this geometry is inve~ted, using an inversion

~
sphere of radius (eb) , we obtain the situation shown in figure 3b, where B

. 0 is the torus generated by rotating a circle of diameter b’ (=eb/a) about its

tangent along the z-axis. It is easy to show, using the forms of the inversion

theorem given in Section

~’/C~, the corresponding

and that

:

111, that once we have calculated ~/Cb we can obtain

quantity for the inverted problem, from

-=?= 1 1

Cb Cb l-(rl/r2) = l-(r;/r~) ‘

where

rl=b ‘2
= aa

‘i = ‘eb’aa)= ‘b”a) ‘i=e

(4.1)

(4.2)

26
,’



..

.“

‘o
“o

m,’,

‘a
i

,, I
, “

., 1,

2 22
‘b

:p-!-z=b

Se: p=a

3a. o’riginalgeometry.

.

,,

..

,.

.,,,,
3b. geometry,afce,rinversion.

,,

Figure 3. A sphere in

1.

27

an
,,;

infini~e cylinder
.,

..

.,’
,’

p2+z2=pb’

22,2
p +2 =e

,,



and, as will be shown,

.-

= 1.148515

c1
[-/

2m
Tr

o

‘dx

1

-1’

1:(x)

“o
“o

(4.3)

In

of

equation (4.3), Io(x) is the modified Bessel function of the first kind,

order zero.

With these simple relations in mind, let us now concentrate on calculating

the capacitance in the situation shown in figure 3a, and return to the situation

shown in figure 3b only to present the tesults for that case. Thus we want to

solve the problem

v2@(p,z) = o p“<a and r>b (404)

where

and then compute

This problem has

~(r=b) = 1; $(p=a) = O

r = 4Q2+Z2,

‘—
c 1

J

a+(r=b) ~S—= -—
4nb

(4.5)
Cb ar

%

had a fairly long history. Apparently tiight [10] was

the first worker to formulate it in terms of an infinite set of linear algebraic

equations for the coefficients of the spherical harmonic expansion of the

surface charge density on the sphere. Also, by making what was at that time

a large numerical effort, Knight actually computed the capacitance, to four

figure accuracy, for (b/a) values of .1, .2, .3, .4, and .5. His labor would

● have been reduced had he been aware of some earlier work of WaCson [11], in

,,’{

,.
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●
which the integrals that must be evaluated to determine Knight’s matrix elements

are elegantly transformed into some rather rapidly converging sums.

b A later treatment of the problem was given in 1960 by Smythe [12], who

used a slightly different method,from Knight’s to obtain the same infinite set
.-

of equations. Smythe was apparently unaware of Knight’s or Watson’s work,at

the time, although by 1963, when he treated the more general problem of a

spheroid inside a cylinder (and also corrected some small numerical errors in

his 1960 paper) [13], he refers to Knight’s work, and also to Watson’s, Smy’che

had a digital compucer available (a Burrough Datatron 205), and so he could

evaluate the required integrals more accurately than Knight. His corrected
—

values for (C/C ) [13] are accurate to at least seven figures.
b

He treats (b/a)

values of .1(.1).9 and .95.

A still later treatment is that of Chang and Chang in 1968 [141. TJ~ese

workers again obtain Knight’s equations. They evaluate the necessary integrals

o to four figure accuracy. The interesting thing about the Chang’s work is that

a statement is made ([141, eq. 17) that is equivalent to the equation

-o
E 1—.

l-(b/aa)
+ 0[(b/a)5].

Cb
(4,6)

Actually, a close examination of the equations from which this is derived

([14], eqs. (13) and(16)) reveals that the order of the error could actually

be stated as 0[(b/a)6]. This type of error has been shown to hold for a

sphere inside an E of general shape

part of equation (4.6) is a special

and statements of this kind are few

electrostatics.

In fact, these statements are

in Section 111.B. Nevertheless, the first

case of the equivalent radii approximation,

and far between in the literature on

so rare that it is worth a digressionary

paragraph to bring up a later work of Chang and Chang [15]. In [15], the

method of matched asymptotic expansions ([16], Chap. 5) istused to show that,

for a general axisymmetric B inside an infinite cylindrical E ([15], eq. 22)

F 1,
‘= l-(rl/aa)

+ O[(rl/a)2].
Cb

@ It is interesting that again Chang and Chang overstate the error by an order
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e of magnitude.

their equation

The point where this overstatemen’ccomes in is ingoing from

(14) to their equation (15) since, near B,; and; are small,

““ and an approximate evaluation of the integral in ‘(14)for small ~ and ~ l,eads

to a third order error term in (15). Alternatively, one can recall the third

.“ order error derived for a general B and E in Section 111.A of this note. The

example in reference [15] exhibits the third order error, but the authors

overlook this fact.

Now let us derive Knight’s equations and calculate (~/Cb) for (b/a)

values of .01(.01).99.

By standard techniques, the Green’s function for an infinite cylinder,

when the source point is at the origin, can be shown to be

1 1

\

coKo(Aa)
Ge(p,z;O,O) =—-—

4rir ~T2
I (~p)COS AzdA,

o Io(Aa) o
(4.7)

where I

e

and K. are modified Bessel functions. The validity of this represen-
0

tation of Ge is clear from the facts that it satisfies Laplace’s equation for

-0
r > 0, has the correct singularity as r + O, and is equal to zero on p = a

(the last relation follows from the known Fourier transform of Ko(Aa) given,

for example, in [17], page 412).

Any z-derivative of Ge is also a solution of Laplace’s equation for

r > 0 that is equal to zero on p =

to write the even

where

Io(Ap)cos ~Z

z-derivatives

a. We may use the identity (~14] Appendix

2m 2m
‘Ar

m~o (2m)J “
(-)%2m(z/f) ,

=

of Ge as

~2nG
p21i(z/r)

h+= 4mr2n+l
- ~ Mmr2m P2m(z/r)
m=O

1

4L’11

● By partial integration

o+2(n*)K (~)
(-)nh 1

J’

o
~2n-i-2m+l“ (2n):(2mji o 10(A)

d~

and the use of the Wronskian relation for modified

(4.8)

(4*9)

(4.10)
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o Bessel functions

n’

~

‘y A*nK~L)dA ,.,1’ w,”;#i’ ‘“‘.1(2n~,

10(A) ‘—2n-i-lJ
—dAz *,

0 0 I:(i)
(4.11)

.“ and thus

2 n+m

Mm =
(-l/a ) I(2n+2m,l)

2m2a(2n)!(2m):(2n+2m-i-1)

The I(2n,l) must be evaluated numerically. Smythe has given a table of them

[13]. We found it necessary to extend his table in order to obtain accurate

~ results for (b/a) close to unity. We will not tabulate these intermediate

results

The way

them in

here, but we will indica~e the method by which they were calculated.

we calculated the I(2n,l) was to use Watson’s results [III to write

the form

(4.12)●
J

w ~2ndA
I(2n,l) z — !

-o
0 I:(A)

2n-1
[(m+%i)B12n + ~(.)n ‘f ‘m

-gm

=6!2
1

gm - (2n+l)e 1 (4,13)
m=O Io[(m-!J+)~]; ~ m=l J~(pm) cosh2gm

cosh gm
,

where

gm = 7ru#&

the pm’s are the roots of

Jo(LIm)= 0,

and 6 may be any value we choose. By choosing p

equation (4.13) can be made to converge rapidly.

carefully, both series in

We note, as a matter of

interest, tha’cthe first series in equation (4.13) is just the numerical

integration of the integral defining I(2n,l) in (4.12) based on the rectangular

e integration rule with rectangles of width 6. The second series may thus be
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e
looked upon as a correction term co be added to the result of a simple numerical

integration,
.“

It is a convenient time to note, from equation (4,7), that the nonsingular

part of Ge at the origin is given by
4“

1

~

coKo(Aa)
.—

2T2 o
Io(ka) ‘A-

Thus, from equations (3.6) and (4.11),

r2= [(2/n)I(0,1)]-la,

This proves equation (4.3).

Now, any combination of the On’s is also a solution of Laplace’s equation

and equal to zero on the cylinder. The combination that is equal to unity

‘o
-o

over the sphere is clearly given by

4(P,Z) = ; a2n+1 xnOn(r,z/r)
n=O

where

xnP,2n(z/r)

: j X a2n+l b2m MmP2m(z/r) = 1
n=O 4~(b/a)2n+1 n

n,m=O

(4,14)

(4.15)

over the entire sphere. The orthogonality of the Pm’s over the sphere allows

us to write these equations as

/
1 2 (b/a)4n+11(4n,l)-—

I
x = 4~(b/a)6

m [(2n)!]2(4n+l) n
no

+ (b/a)4n+l 1
~ 2(-)n*I(2n-f-2m,l}
IT (2n)!(2m)i(2n-i-2m+l)‘:m”(4”16)

m+n

These equations may be solved for the Xn’s by truncating the series aridinverting

the resulting finite matrix equation.1 One can keep doubiing the number of Xn’s

involved until he is satisfied that Che accuracy of the lower Xn’s is adequate.

From equations (4.5), (4.9) and (4.14) it follows that
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,,

~ =’” ‘xO”’
Cb

4n(b/a) ‘
(4.17)

.-

●

and so an accurate value of x is all we need. Equation (4.17), in conjunction
o

with an iteration solution of equation (4.16), demonstrates &he sixth orcler

error of (C/C ) for this special case.
b

Accurate values of ~/Cb are given in table 1, along with the corresponding

values of C/Cb and the percentage error in C/C ,
b

The numerical results exhibit

the sixth order error dependence. This data is also presented graphically in

figure 4.

We have used equation (4.2) to calculate the data in the last two columns

of table 1, which are for a toroid’insidea sphere (the geometry of figure 3b),

from the data in the second two columns of table 1. Here the error exhibits

the expected fifth order dependence on (b’/e). This data is also presented

graphically in figure 4.

In the table, we have not given all the significant figures for ~/C13and

~/Cb that were neceqsary to calculate the error to .001%. These figures were

available from the computer printout, which is believed to be accurate to eight

significant figures, but ‘theseextra figures are no’cvery interesting except

for the calculation of the percentage error.

IV.B. Sphere Between Two Infinite Plates

The geometry of the problem to be solved is shown in figure 5a. The

radius of the sphere is b; the distance between the parallel plates is 2a.

From symmetry, it is clear that ~m = ~, and this point can be chosen any-

where on the plane midway between the plates. We can thus denote the capacitance

between B and E when & = Lb = O by ~, If this geometry is inverted, using an
1+

inversion sphere of radius (eb) , we obtain the situation shown in figure 5b,

where B is made up of two identical spheres, whose diameters are b’ (=eb/a), in

contact at the origin. With the notation we have chosen, equations (4.1) and

(4.2),can be directly applied to Che present case, but eqpation (4,3) must be

changed to

(2 = (In 2)-1

= 1.442695
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Table 1. Capacitance of a’sphere in an infinite cylinder

b/a or b’/e

.01

.02

.03

.04

.05

.06

.07

.08

.09

.10

.11

.12

.13

.14

.15

.16

.17

.18

.19

.20

.21

.22

.23

.24

.25

.26

.27

.28

.29

.30

.31

.32

.33

.34

.35

.36

.37

.38

.39

.40

.41

.42 >

.43

.44

.45

.46

.47

.48

.49

.50

?/cb =?’/c;

1.00878
1.01772
1.02682
1.03608
1.04552
1.05512
1.06490
1.07487
1.08502
1.09537
1.10592
1.11667
1.12764
1.13882
1.15022
1.16186
1.17373
1.18585
1.19823
1.21086
1.22376
1.23694
1.25041
1.26417
1.27824
1.29262
1.30734,
1.32239
1.33779
1.35356
1.36970
1.38624
1.40317
1.42053
1.43832
1.45656
1.47527
1.49446
1.51417
1.53439
1.55517
1.57652
1.59846
1.62102
1.64423
1.66811
1.69269
1.71801
1.74410
1.77100

ZICb

1.00878
1.01772
1.02682
1.03608
1.04552
1.05512
1.06490
1.07487
1.08502
1.09537
1.10592
1.11667
1.12764
1.13882
1.15022
1.16186
1.17373
1.18585
1.19823
1.21086
1.22376
1.23694
1.25041
1.26418
1.27825
1,29265
1.30736
1.32242
1.33784
1.35362
1.36977
1.38632
1.40328
1.42066
1.43848
1.45675
1.47550
1.49475
1.51451
1.53480
1.55566
1.57710
1.59915
1.62183
1.64519
1.66923
1.69401
1.71956
1.74591
1.77310
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(CbA/~)%

.000

.000

.000

.000
,000
● 000
.000
.000
● 000
.000
.000
.000
.000
.000
.000
.000
.000
.000
● 000
.000
.000
.000
.001
.001
.001
.002
,002
.003
.003
.004
.005
.006
.008
.009
.011
.013
.016
.019
.022
.027
.031
.037
.043
.050
.058
.067
.078
.090
.103
.119

@/cl
b

1.00878
1.01772
1.02682
1.03608
1.04552
1.05512
1.06490
1.07487
1.08502
1.09537
1.10592
1.11667
1.12764
1.13882
1.15023
1.16187
1.17374
1.18586
1.19824
1.21088
1.22379
1.23698
1.25045
1.26423
1.27831
1.29272
1.30746
1.32254
1.33797
1.35378
1.36996
1.38655
1.40355
1.42097
1.43884
1.45718
1.47600
1.49533
1.51517
1.53557
1.55654
1.57811
1.60030
1.62315
1.64668
1.67093
1.69593
1.72172
1.74834
1.77584

(C~A’/@)%

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.001

.001

.001

.001

.002

.002

.003

.004

.005

.006

.007

.009

.011

.013

.016

.019

.023

.027

.031

.037

.043

.050

.058

.067

.077

.088

.101

.115

.131

.149

.169

.191

.215

.243

.273



Table 1 (Continued)

b/a or b’/e Zlcb =:’/c; E/Cb

.-
.51
.52

.. .53
.54
.55
.56
.57
.58
.59
.60
.61
.62
.63
.64
.65
,66
.67
● 68

● .69
.70

9

.71

.72

.73

.74
●75
.76
.77
.78
.79
.80
.81
.82
.83
.84
.85
●86
.87
.88
.89
,90
.91
.92
.93
.94
.95

0

.96

.97

.98

.99
1.00

1.79873
1.82735
1.85690
1.88741
1,91895
1.95156
1.98529
2.02021
2.05638
2.09387
2.13276
2.17311
2,21502
2.25858
2.30389
2.35105
2.40018
2,45141
2.50487
2.56072
2.61912
2.68024
2.74428
2.81146
2.88201
2,95619
3.03429
3.11663
3.20356
3.29549
3.39284
3.49612
3.60588
3.72276
3.84748
3.98083
4.12377
4.27735
4.44281
4.62158
4.81535
5.02608
5.25610
5.50818
5.78565
6.09257
6.43387
6.81568
7.24$66
7*73355

1.80119
1.83020
1.86020
1.89124
1.92338
1.95667
1,99119
2.02702
2.06422
2.10289
2.14313
2.18503
2.22871
2.27430
2.32193
2.37174
2.42392
2.47865
2.53612
2.59658
2.66028
2.72751
2.79860
2.87392
2,95389
3.03901
3.12983
3.22700
3.33128
3.44355
3.56487
3.69649
3.83991
3.99697
4.16994
4.36162
4.57559
4.81644
5.09019
5.40495
5.77188
6.20693

( 6.73381
7..38956
8.23614
9.38702
11.07971
13.93042
20.39301

m

,.

(CbA/~)%

.136

.156

.178

.202
,230
.261
.297
.336
.380
.429
.484
.546
.614
,.691
.777
.873
.980

‘l.099-
1.232
1.381
1.547
1.733

‘ 1.941
2.173
2.434
2.725
3.053
3.420
3.834
4.300
4.826
5.421
6.095
6.860
7.733
8.730
9.875
11.193
12.718
14.493
16.572
19.025
21.945
25-.460
29.753
35.096
‘41.931
51.073
64.470
100.000

~l/cl

b

1.80426
1.83365
1.86407
1.89556
1,92820
1.96206
1.99719
2.03370
2.07165
2.11115
2.15230
2.19520
2.23999
2.28680
2.33577
2.38707
2.44089
2.49742
2.55690
2.61957
2.68571
2,75565
2.82975
2.90841
2.99210
3.08136
3.17681
3.27916
3.38926
3.50807
3.63678
3.77677
3.92973
4.09770
4.28320
4.48939
4.72026
4.98095
5.27826
5.62127
6.02261
6.50026
7.08104
7.80692
8.74822
10.03397
11.93479
15.15385
22,49814

m

(C~A’/@)%

.307

.344

.385

.430

.480

.536

.596

.664

.737

.819

.908
1.007
1.115
1.234
1.366
1.510
1.668
1.843
2.035
2.247
2,480
2,737
3.021
3.334
3.680
4.063
4.487
4.957
5.480
6.061
6.709
7.432
8.242
9.151
10,174
11.329
12.638
14.127
15.829
17.785
20.047
22.680
25.774
29.446
33.866
39.282
46.092
55.025
67.795
100.QOO
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● Thus the r; of two osculating spheres of diameterb’ is just b’ in 2 (in

agreement with [7]).

That equation (4.18) gives the correct value of a follows from the fact.-
that the Green’s func~ion for the parallel-plate region, wi’chthe $ource point

.. a-tthe origin, may be represented by the image series

‘o

Ge(p,z;OO) =
1 +~’m

1
(-j,n ,

2W
41T/p2+z2 ‘=1 ~p2+(z-2nd)2

and so, from equations (3.6) and (4.19),

1—=- ; (;]n
‘2 n=1

which, together with the definition r
2
a aa, results in equation (4.18).

As in the previous subsection, we will concentrate on calculating the

(4.19)

capacitance when B is the sphere, and only return ‘cothe geometry of figure

5b when we tabulate the results.

The problem of figure 5a has actually been treated in a previous note

in this series [18], although no numerical results were calculated at that

time. Therefore, let us assume that that note is available to anyone reading

the present note, and just briefly discuss the method of solution and then

state ‘theequations to be used for the numerical work.

The method of solution, as in the previous subsection, is to derive an

infinite set of linear algebraic equations for the spherical harmonic expansion

of the surface charge density on the sphere. Again this can be accomplished

by considering linear combinations of the successive z-derivatives of Ge(P,Z;OO),

and enforcing the condition that the potential be unity over the whole sphere.

This calculational program leads to a see of equations for the normalized

charge density coefficients x2n, defined by

,,(4n+l)
Cr(e)= ~ x

n=O 2n b

The set of equations to be solved is

m -.

soP2n(cos e>.

*

~ pf’#2m= 6no
m=O

38

(4.20)

“(4.21)

,,

.,



● where

.- M=l - (b/a)ln 2
00

..

Mm=6

- (2n+2m)! ~2-2(n+m)- ~-4(n+m)
(2n)!(2m)! )z(2n+ 2m + 1)(b/a)2n+2m+1,

norms O, (4.22)

/ and C(Z) is the Riemann-Zeta function ([19], Chap. 23).

I
‘rice‘he ‘2n

‘s have been determined by truncating and solving the set
\

(4.21), the capacitance is determined by the simple relation [18],

Zlcb x
o

‘o Table 2 contains the numerical data on this problem, Again we have

o tabulated~/Cb, ~/Cb, ~’/C~, and the errors of the effective radii approximation

for the two inversion-related geometries of ~igure 5. Figure 6 is similar

to figure 4; it shows graphically how the error of the effective radii approxi-

mation varies with b/a (or b’/e) in the two inversion-related problems.

To the best of the author’s knowledge, there has been no previous numerical

data published on this problem, In fact, reference 18 seems to be the only

other place where this problem has been considered for a sphere of arbitrary

size, but there may be some relevant publication that the author is unaware of.

IV.C. Disk in an Infinite Cylinder

The geometry of the problem is shown in figure 7. The radius of the

cylinder is a, and the radius of ‘thedisk, whose axis of symmetry is the same..
as that of the cylinder, is b, From symmetry, it is clear that ~bm = <, and. .. ... . .
this point can be chosen anywhere on’the axis of symmetry of the system, We,... .
can thus denote the capacitance between B and E when ~ = ~b = O by ~.

o
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Table 2. Capacitance of a sphere between parallel plates

●

✎✍

✎✍

.-

‘0
0

b/a or b’/e z/cb’=?’/cb @ Cb

.01

.02

.03

.04
● 05
.06
.07
.08
.09
.10
.11
.12
.13
.14
.15
.16
.17
.18
.19
.20
.21
.22
.23
.24
.25
.26
.27
.28
.29
*3O
.31
,32
.33
.34
.35
.36
.37
.38
.39
.40
.41
.42
.43
.44
.45
.46
.47
.48
.49
,50

1.00698
1.01505
1.02124
1.02852
1.03590
1.04339
1.05099
1.05871
1.06653
1.07448
1.08254
1.09072
1.09903
1.10747
1.11604
1.12474
1.13358
1.14255
1.15167
1.16094
1.17036
1,17993
1.18966
1.19955
1.20961
1,21984
1.23024
1,24082
1.25158
1.26254
1.27368
1.28503
1.29658
1.30834
1.32031
1.33250
1.34493
1.35758
1.37048
1.38362
1.39702
1.41068
1.42461.
1.43882
1.45331
1.46810
1.48319
1.49860
1.51433
1,53039

1.00698
1.01505
1.02124
1.02852
1.03590
1.04339
1.05099
1.05871
1.06653
1.07448
1.08254
1.09072
1.09903
1.10747
1.11604
1.12474
1,13358
1.14255
1,15168
1.16095
1.17036
1.17994
1.18967
1.19957
1.20963
1.21986
1.23027
1.24086
1.25163
1,26260
1.27376
1,28512
1.29669
1.30847
1.32047
1.33270
1.34516
1.35787
1.37082
1.38402
1.39749
1.41124
1.42527
1.43959
1.45421
1.46915
1.48441
1.50002
1.51597
1.53229

(CbA/@ %

.000

.000

.000

.000

.000

.000

.000

.000
● 000
● 000
.000
.000
.000
.000
.000
.000
.000
.000
● 000
,000
.001
.001
.001
.001
● 002
.002
.002
.003
● 004
● 005
.006
.007
.009
,010
.012
,015
.018
.021
.025
.029
.034
.040
.046
.054
.062
.071
.082
.094
.108
.123

~l/cl

b

1.00698
1.01505
1.02124
1.02852
1.03590
1.04339
1.05099
1,05871
1.06653
1.07448
1.08254
1.09072
1.09903
1.10747
1.11604
1.12475
1.13359
1.14257
1.15170
1.16097
1.17040
1.17998
1.18973
1.19964
1.20971
1,21997
1.23040
1.24101
1.25182
1.26282
1.27402
1.28544
1.29706
1,30891
1.32098
1.33329
1.34585
1.35866
1.37173
1.38507
1.39869
1.41260
1.42816
1.44134
1.45620
1.47139
1.486~4
1,50285
1,51985
1.53585

.000

.000

.000

.000

.000

.000

.000

.000

.000
,000
.000
.000
.000
.000
.001
.001
.001
.002
.002
,003
.003
.004
.006
● 007
.009
.011
.013
.016
.019
.023
.027
.032
.037
,044
.051
.059
.069
.079
.091
● 104
.119
.136
.149
.175
.198
.224
,252
,283
.317
● 355
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Table 2 (Continued)

*

.-

.-

●
0

b/a or bT/e z/cb”=?’/cb

.51

.52

.53

.54

.55

.56

.57

.58
,59
.60
.61
.62
.63
.64
.65
.66
.67
.68
.69
.70
.71
.72
.73
.74
.75
.76
.77
.78
.79
.80
.81
.82
.83
.84
.85
*86
.87
.88
.89
.90
.91
.92
.93
● 94
.95
.96
.97
.98
.99

1.00

1.54680
1.56357
1.58070
1.59821
1.61611
1.63442
1.65315
1.67231
1.69192
1.71200
1.73256
1.75362
1.77520
1.79731
1.81999
1.84324
1.86710
1.89158
1.91671

~ 1.94251
1.96903
1,99627
2.02428
2.05309
2.08273
2.11324
2.14465
2.17701
2.21037
2,24476
2.28024
2.31686
2.35467
2,39374
2.43412
2.47590
2.51913
2.56390
2.61029
2.65839
2.70829
2.76011
2.81394
2.86992
2.92817
2.98883
3.05206
3.11803
3.18690
3.25889

F/Cb

1.54898
1.56607
1.58358
1.60151
1.61989
1.63874
1.65807
1.67792
1.69831
1,71926
1.74080
1.76296
1.78578
1.80930
1.83354
1.85856
1.88441
1.91112
1.93876
1.96739
1.99708
2.02790
2.05994
2.09329
2.12805
2.16434
2.20229
2.24205
2.28380
2.32772
2.37405
2.42305
2.47502
2,53034
2,58944
2.65285
2.72122
2.79535
2.87625
2.96525
3.06405
3.17500
3.30138
3.44802
3.62238
3.83702
4.11548
4.51075
5,19213

w

(CbA/@ %

.141

.160

.182

.206

.233

.263

.297

.334

.376

.422

.473

.530

.593

.662

.739

.824

.919
1.023
1.138
1.265
1.405
1,560
1.731
1.920
2.130
2,361
2.617
2.901
3.215
3.564
3.952
4.382
4.862
5.398
5.998
6.671
7.426
8.280
9.247
I-O.348
11.611
13.067
14.765
16.766
19.164
22.105
25.840
30.876
38,620
100,00

~/cf
,b

1.55297
1.57052
1.58854
1.60703
1.62602
1.64554
1.66561
1.68627
1.70753
1.72945
1.75204
1.77536
1,79944
1.82433
1.85007
1.87674
1.90437
1.93304
1.96282
1.99379
2.02604
2.05965
2.09476
2.13146
2.16991
2,21024
2.25265
2.29731
2.34447
2.39437
2.44733
2.50369
2.56386
2,62835
2,69774
2,77274
2.85424
2.94334
3.04142
3.15028
3.27230
3.41071
3.57010
3.75717
3.98241
4.26349
4.63370
5.16831
6.10905

d-

●397
.443
.493
.549
.609
.676
.748
.827
.914

1.009
1.112
1.224
1.347
1.481
1.626
1.785
1.957
2.145
2,349
2.572
2.814
3.077
3,364
3.677
4.018
4.389
4.794
5.237
5.720
6.248
6.827
7.462
8.159
8.926
9.772
10.706
11.741
12.891
14.175
15.614
17.236
19.075
21.180
23.615
26.472
29.897
34.133
39.670
47.833
100.00
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e The equivalent radii of this B-E configuration are easily obtained,,

From the capacitance of an isolated disk ([47], S5.03),

;8d=
‘1 4Trs

#b,

and from Section IV.A,

‘2
= 1.148515a.

Thus

‘z 1—=

Cb
l-f3(b/a)‘

(4,23)

(4.24)

where

B = (2/Tr)(l.148515)-1= .554298. (4.25)

“o We must now de~ermine ~ in order ‘coget our hoped for comparison between

● ~ and ~. Let us start by reviewing a little of the history of this problem.

The first crack at it seems to have been by Smythe [20], in 1953. In a later

paper [14], Smythe referred to his 1953 treatment as “crude”, but this seems

an overly harsh evaluation. He had done as much as could be expected, considering

the state of the computational arts at that time. What he did was to assume the

charge density on the disk to be the sum of the charge density on a disk in free

space (i.e., (I -.p2/b2)-z) and a uniform charge density. The constant

multiplying the uniform charge density was adjusted so that the potential was

as uniform as possible over the disk. By considering various of the equipotential

surfaces of this system Smythe was able to derive a few bounds on C.
—

The cases

he treated that are of interest co us are Chose with (b/a) values of .25, ,5,

and .75, for which he obtained:

b/a

,25 1.1627 1,1628
.50 1.4036 1.4089 “
.75 1.856 1.883

44
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o The next investigation of a problem somewhat like the present one is that

of Kirkham [21] in 1957. He attacks the more general problem of concentric

.“ coaxial capped cylinders. A disk inside a cylinder is a special case of this,

Kirkham also mentions the more specialized case of a disk inside an infinitely

.“ wide cylinder (i.e., between parallel plates), but his formulation does not

allow him to consider the cylinder to become infinitely long. Therefore, there

are no numbers of present interest to us in reference [21].

The next treatment of our problem was that of Cooke and Tranter [22] in

1959. Their approach, based on the use of dual Fourier-Bessel series, seems

the most useful of all, for computational purposes, and it is quite possibly

the most elegant as well, It is the method we will outline later in this

subsection, and the one we used for our numerical work. Cooke and Tranter

themselves made only two numbers:

b/a ?/Cb

.25 l.1627-i-

-0
.50 1.407

where the + indicaces that the number is rounded from a number larger than

● 1.1627. The authors do give an interesting expansion for~/Cb for small (b/a).

It is equivalent to

‘~ . 1

l-F(b/a)
(4,26)

Cb

where the small argument expansion of the function F(x) iq

F(x) = 6X -1-.08739x3 + .03728x5 (4.27)

and 6 is given by equation (4.25). From equations (4.26) and (4.27), the third

order error of the general effective radii approximation (Section 111.A) is

quite evident.

Collins [23] investigated the present problem in 1961, He derived a

second kind integral equation for a function related to the charge density on

the disk, but the kernel of this integral equation is a little complicated.

● It is possible, by subsequencetransformations, to retrieve Cooke and Tranter’s

45



● equations from Collinsl integral equation, but those equations can be obtained

more directly. Collins made no numbers.

.. A generalized version of Collins’ approach was given by Sneddon [25] in

1962. He was able to prescribe a non-axisymmetric potential over both the
,’ surface of che disk and the surface of the cylinder. He made no new numbers,

but verified Cooke and Tranter’s results. In his book ([24], p. 259), Sneddon

presents some previously unpublished numerical results of Mathut. These, in

our present notation, are:

a/b b/a F/Cb

1.2 .833 2.178
1.3 .769 1.933
1.4 .714 1.780

(There is a misprint in Sneddon’s table 7. The number for ;/b = 1.2 must be

-o
●

●

2.178, not 2.718).

Smythe gave his second treatment of our problem in 1963 [14]. This time

he considered it as a limiting case of a spheroid in a cylinder. By a

generalization of the method described in Section IV.A, he obtained a matrix

equation for the coefficients of the spheroidal harmonic expansion of the surface

charge density on the spheroid; his matrix differs from Cooke and TranterPs

matrix, but the two are equivalent. In this manner, Smythe was able to

calculate the following values of capacitance.

b/a F/Cb

.1 1.05878

.2 1.12558

.3 1.20300

.4 1.29490

.5 1.40740

.6 1.55099

.7 1.74593

.8 2.03915
●9 2.58610
.95 3.17778

Smythe attributes only 3-figure accuracy <o the last of these values and 5-figure

accuracy to the second l?@~.
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Let us now outline

SmytheTs table. For the

the method of Cooke and Tranter, and use it to extend

sake of simplicity, we will not describe the method

in its full generality, but just use it to solve the particular problem we are

interested in (in [22] our problem was created as an example of a more general

approach),

A representation of the potential in the geometry of figure 7 is ([4]

~~5.297, 5.298)

i >e-pnlz/a/4(P,Z) = Jo(pnp/a)
n=l n

(4,28)

where the pn’s are the roots of

Jo(Pn) = O

Representation (4.28) satisfies Laplace’s equation and is equal to zero on E,

The constants, an, must be determined by enforcing the boundary conditions on

“o
the z = O plane. These conditions can be written in the forms

i ~Jo(vnp/a) = 1 ()<p<b
n=l n

~ anJo(pnp/a) = O b<p<a
n=1

(4.29)

(4030)

Now, by making use of the identity (a special case of [24], equaeion 5.2.6)

aJ

1’
2n~+(~jb/a)Jo(p.p/a)= o, b<p<a, n an integer > 0 (4.31)

j=l ti~J;(Bj)

it is easy to show, by an interchange in the order of summations, that if we set

●
then equation (4.30) will be satisfied iden’cicall.yfor any values of bm.

Substituting equation (4.32) in equa’cion(4.29), we obtain
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o ~m~~’(ti“’,b/.4)J”(jnbla)
~ bm~” J ;3~22.0 =1
m=O n=O J1 (vn)n

.-

Multiply both sides of this equation by

()< p <b. (4*33)

.’

,# I’(s+-l) +

r(s-Pti)
p(b2 - p2) p2s(~l - (p/b)2),

‘here ‘2s
is a Legendre polynomial and s is an arbitrary integer, then integrate

over p from O’to b by using the identity (a special.case of [24], equa’cion5.2.9)

J

2% r(s+l) b p J2s~+(xb/a)

~ r(s-$=+) —
P2@ - (p/b)2)Jo(xp/a)dp=

0 ~b2...p2 (xb/a)+ ‘

The resul’cis

f bm ~ ‘2m4ti(pnb’a)~2j~~(Bnb’a)
m=O n=1 ~~(b/a) Jl(vn)

-0
But ([24], equation 5.2.13)

● CQJ 2m.@l(Vab/a)J2s+ll(pnb/a) ‘m,s
21
n=1 P~J;(Pn)

= 4s+1

(4.34)

I

m Ko(t)
m-t-s2

- (-) ; (bt/a)12~&#t/a)d~,o tIo(t) 12m-Pti
(4.35)

and thus, relabling indices,

~ - ~ Mnmbm = 2(#)% 6
n,o

m=O

where

nti z coKo(t)
M = (-) ;

I
(bt/a)12n++(bt/a)dtnm o tIo(t) 12m+%

(4.36)

(4.37)

The capacitance we wish to calculate is equal ‘cothe total charge on the

e disk. Thus
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I

$ 8$(p,o) , ~mpdp

—=. —

Cb
8b * az

But, from reference [22], the inner sum in the above equation

and so

Let us simplify our equations a little by defining

x z 2(%)% bn.
n

From equations (4,36) and (4,38), we can therefore say that

~=x
‘b 0

where

and M is given by equation (4.37).

Bessel functions in the in’cegrandof

([26], 55.4), and then inverting the

>
is just (2/rr)2dm ~,

Y

Mmxm = dn o,
9

(4,38)

(4.39)

(4.40)

By expanding the product of half-integer

equation (4.37) in a power series in (bt/a)

order of summation and integration, we can

obtain the following algorithm for computing the Mm in terms of the I(2n,l.)

integrals defined in Section IV.A:

Mm = (:)2(-)‘* (+)
2n+2m-!-l

~ (b/a)2j I(2ni-2m +2j,l)T. (n,m) (4.41)
j=O ‘J
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●
where

.-

,“

with

Tj(n,m) = (n+m+j)3(n+ri+j-Lj)
(n$m)

j (2n+2m-1-j-f-1)(2n+j+J+)(2m+j~+) ‘j-1

To(n,m) = 24n+4m+l (2n)! (2m)! [(n+m)!]2
(4n+l)! “ (4m+l)! 2n+2m+l

(4.42)

(4.43)

Equations (4.39) through (4.43) were the ones used for the numerical work,

The results of this numerical work are given in table 3 and figure 8. This

table and curve exhibit a slightly larger error for 7/Cb than was calculated

in the first two examples, The reason for this is simply that the present

example is of the more general type, discussed in Section 111.A, having a third

order error term for small b/a. The previous two examples, where either B or

E was a sphere, had a fifth or sixth order error

●
that the error in~/Cb is still not very large.

.
b/a is greater than 2/3.

● IV.D. Disk in a Circular Aperture

term. We see, nevertheless,

It doesn’t exceed 5% until

The geometry of the problem is shown in figure 9. The radius of the

circular aperture is a; the radius of the disk, whose axis of symmetry is the

same as that of the aperture, is b. Strictly speaking, this geometry is not

the -typefor which the equivalent radii approximation was designed, since the

real r-bm is at an infinite distance from the plane with the aperture (C decreases

as the disk moves away from the plane, until it reaches its minimum value, C
b’

at infinity). Nevertheless, we should still expect a third order error in the

numbers obtained from a formal application of the C equation, because C is a

maximum with respect to the disk’s motion perpendicular to the plane and a

minimum with respect to the disk’s motion in the plane. A review of Section
.

111.A should convince one that these conditions are sufficient to assure a third.,
order error for C if,we set r = r“ = O.

-b-e
Again we will denote the capacitance

.
for this ~ and & by ~.

● The effective radii approximation for this problem is easy to write down.

From the previous subsection we have 1
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Table 3. Capacitance

b/a ?/ Cb ?/Cb

.01 1.00557 1;00557
002 1.01121 1.01121
.03 1.01691 1.01691
.04 1.02267 1.02268
.05 1.02850 1.02852
.06 1.03440 1.03442
.07 1.04037 1.04040
.08 1.04640 1.04645
.09 1.05251 1.05258
.10 1.05868 1.05878
.11 1.06493 1.06506
.12 1.07126 1.07143
.13 1.07765 1.07788
014 1.08413 1.08441
.15 1.09068 1.09104
.16 1.09732 1.09775
.17 1.10403 1.10456
.18 1.11083 1.11147
.19 1.11771 1.11848
.20 1.12468 1.12558
.21 1.13174 1.13279
.22 1.13888 1.14016
.23 1.14612 1.14755
.24 1.15344 1.15510
.25 1.16087 1.16276
.26 1.16838 1.17055
.27 1,17600 1.17846
,28 1,18372 1.18651
.29 1.19154 1.19468
.30 1.19946 1.20300
.31 1.20749 1,21146
.32 1.21562 1,22007
.33 1.22387 1.22883
.34 1.23223 1.23775
.35 1.24070 1.24683
.36 1.24929; 1.25608
.37 1.25800 1.26551
.38 1.26684 1.27511
.39 1.27580 1,28491
.40 1.28488 1,29490
.41 1.29410 1,30510
.42 1.30345 1.31550
.43 1.31294 1.32612
.44 1.32256 1.33697
.45 1.33233 1.34806

●
.46 1.34224 1.35939
.47 1.35230 1.37098
.48 1.36252 1.38284
.49 1.37288 1.39497
,50 1,38341 1,40740

(ACb/~)%

.000

.000

.000

.001

.001

.002

.003

.005
● 007
.010
.012
.016
.021
.026
● 033
.039
.048
.057
● 068
.080
.093
,112
.125
,143
.163
,185
,209
,235
.263
.295
.328
.365
.404
,446
.492
.540
.593
.649
.709
.774
.843
.916
..994
1.078
1.167
1.262
1.362
1.470
1.583
1,704

of a disk in an infinite cylinder

b/a :/Cb“ F/Cb

.51 1.39410

.52 1.40496

.53 1.41599

.54 1.42719

.55 1.43857

.56 1.45013

.57 1.46188

.58 1.47382

.59 1.48596

.60 1.49830

.61 1.51085

.62 1.52361

.63 1.53659

.64 1.54979

.65 1.56322

.66 1.57688

.67 1.59079

.68 1,60494

.69 1.61934

.70 1.63401

.71 1.64895

.72 1.66416

.73 1.67965

.74 1.69543

.75 1.71152
,76 1,72791
.77 1.74462
.78 1.76166
,79 1.77903
,80 1.79675
,81 1.81482
,82 1.83326
.83 1.85208
.84 1.87129
.85 1.89091
.86 1.91094
.87 1.93140
.88 1.95230
.89 1.97365
.90 1.99548
.91 2.01780
.92 2.04063
.93 2.06397
.94 2.08786
.95 2.11231
.96 2.16295
.97 2.18920
.98 2.21609
.99 2.24365

1.00 2.27191

1.42013
1.43317
1.44655
1.46028
1.47437
1.48885
1.50373
1.51903
1.53477
1.55099
1.56770
1.58494
1.60273
1.62110
1.64010
1.65976
1.68012
1.70124
1.72315
1.74593
1.76963
1.79432
1.82008
1.84700
1.87516
1.90469
1,93570
1.96834
2,00277
2,03916
2.07774
2.11875
2,16249
2,20931
2.25962
2.31393
2.37286
2.43718
2.50787
2.58620
2.67383
2.77305
2.88704
3.02052
3,18083
3.38028
3.64211
4.Cj1869
4,67795

q

(ACb/~)%

1.833
1.968
2.113
2.266
2.428
2.601
2.783
2.976
3.180
3.397
3.626
3.869
4.127
4.399
4.688
4.993
5*317
5.661
6.024
6.410
6,820
7.254
7.716
8.206
8.727
9.281
9.871
10.500
11.172
116888
12.654
13,474
14.354
15.300
16.317
17.416
18.605
19.895
21.302
22.841
24.535
26.412
28.509
30.877
33.593
36.771
40.613
45.525
52.627
100.00
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(4044)

. .

.“

while from equation (3.21), using an inversion sphere of radius a, we have

(4.45)

Thus

75 1
—s (4.46)
Cb l-(2/m)2(a/b)

The calculation of ~has been given in detail in a previous note in this

series [27]. In fact, we will not need to make any other numbers than those

given in that note. We will assume that the previous note is available to

anyone reading the present one. Thus we will merely present the equations that

had to be solved numerically, and arrange the numerical data in a format that

-0
is suitable for evaluating the accuracy of the effective radii approximation.

Before doing this,

●
only other paper that is

of the present problem,

with reference [27], and

The two investigations upon which these two papers were based were completely

however, we would be remiss if we did not mention the

known to the author (besides [27]) on the exact solution

The paper by Spence [28] came out almost simultaneously

was unknown ‘cothe authors of [27] until quite recently,

independent, but, inevitably, much of the development is similar. One difference

is that Spence concentrates largely on the case where (1 - b/a) is small, while

in [27] a great deal of time was devoted ‘codeveloping a variational expression

for ~ that is quite accurate when b/a is small, Another difference is that in

[28] only a dozen (b/a) cases were treated numerically, while a hundred (b/a)

cases were treated in [27]. It is interesting that both papers give equation

(4.46) as an approximation for ~. Spence attributes this form of the approxi-

mation to J, C, Cooke, who apparently was one of the reviewers of Spence’s

paper. Of course, neither reference [27] nor reference [28] give any indication

of the general applicability of the effective radii approximation.

. Now let us state the equations for computing ~/Cb. These are [27]

F

~

T/2
—= Pl(6)sin f3d6,
Cb O

(4.47)
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● where PI(6) is determined from the numerical solution of the coupled pair of

integral equations

-o

~

7r/2
Pi(e) +: G(i,i’)P2(0’)d6’ = 1 o<e<Tr/2

o
(4,48)

J

Tr/2
P2(6) + G(0,0’)P1(6’)df3’= O (4*49)

o

and

2 sin e’[1-(b/a)2 sin26’]%
G(6,8’) == .

l-(b/a)2 sin26 sin20’
(4050)

The results of this calculation are presented in table 4 and figure 10.

As with the previous problem, the error in? exhibits a third order dependence

on (b/a).

This completes our treatment of exemplary problems. We have had examples

of each of the three types of error (third, fifth, and sixth orders) discussed

in Section 111. In all cases, the effective radii approximation has turned out

to be surprisingly accurate as long as condition (4.0) is fulfilled. Therefore,

until some future work proves the contrary, the author will believe that

condition (4.0) is sufficient for the effective radii approximation to give

an accurate value (to within, say, a percent or two) for ~/Cb in any B-E problem,

Therefore, let us now turn our attention ‘coanother part of the B-E

capacitance problem -- the calculation of r2. This subject will occupy us for

the next three sections,
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Table 4. Capacitance of a disk in a circular aperture

-o
,0

b/a

.01

.02

.03

.04

.05

.06

.07

.08

.09
,10
.11
.12
.13
.14
.15
.16
.17
.18
.19
.20
.21
,22
.23
.24
.25
.26
.27
.28
.29
.30
.31
.32
.33
,34
*35
.36
.37
.38
.39
.40
.41
.42
.43
.44

. .45
.46
.47
.48
.49
,50

:/cb

1.00407
1.00817
1.01231
1.01648
1.02068
1.02492
1.02920
1.03351
1.03786
1.04224
1.04666
1.05112
1.05562
1.06015
1.06473
1.06934
1.07400
1.07869
1.08343
1.08821
1.09303
1.09789
1.10280
1.10775
1.11274
1.11779
1.12287
1.12801
1.13319
1.13841
1.14369
1.14902
1.15439
1.15982
1,16530
1.17083
1.17641
1.18204
1.18773
1.19348
1.19928
1.20514
1.21105
1.21703
1.22306
1.22915
1.23531
1.24152
1,24780
1.25414

a Cb

1,00407
1.00817
1.01231
1.01648
1.02070
1.02494
1.02923
1.03356
1.03793
1.04234
1.04679
1.01529
1.05584
1.06043
1.06508
1.06977
1.07451
1.07931
1.08417
1.08908
1.09405
1.09907
1.10417
1.10932
1.11454
1.11983
1.12519
1.13062
1.13613
1.14172
1.14738
1.15313
1.15896
1.16488
1.17089
1.17700
1.18320
1.18951
1.19592
1.20244
1.20907
1.21582
1.22269
1.22969
1.23682
1● 24408
1.25149
1;25905
1,26676
1,27463

( cb/F)%

.000

.000

.000

.000

.001

.002

.003

.005
,007
.010
.013
.016
.021
.026
.033
.040
.048
.057
.068
.080
.093
.107
.124
,142
.161
.183
.206
.231
.259
.290
.323
.357
.394
*434
.478
.525
.574
.628
.684
,745
.810
.879
.952

1.030
1.113
1.200
1.293
1,392
1.497
1,607

b/a ?/ Cb

.51 1.26055

.52 1.26702
,53 1.27356
.54 1.28017
.55 1.28685
.56 1.29359
.57 1.30041
.58 1.30730
.59 1,31426
.60 1.32130
.61 1.32842
.62 1.33561
.63 1.34288
.64 1.35022
.65 1.35765
.66 1.36517
.67 1.37276
.68 1.38044
.69 1.38821
.70 1.39606
.71 1.40401
.72 1.41204
.73 1.42017
.74 1.42839
.75 1.43671
.76 1.44512
.77 1.45363
.78 1.46225
.79 1.47097
.80 1.47979
.81 1.48872
.82 1.49775
.83 1.50690
,84 1.51616
.85 1.52553
,86 1,53503
.87 1.54463
.88 1.55437
.89 1.56422
.90 1.57420
.91 1.58431
.92 1.59455
.93 1.60492
.94 1.61542
.95 1.62607
.96 1.63686
.97 1.64779
.98 1.65887
.99 1,67010

1,00 1,68148

F/Cb

1.28267
1.29089
1.29929
1.30789
1.31668
1.32569
1.33491
1.34437
1.35408
1.36404
1.37427
1.38479
1.39562
1.40676
1.41824
1.43009
1.44231
1.45495
1.46802
1.48155
1.49558
1.51015
1.52529
1.54106
1,55749
1.57465
1.59261
1.61144
1.63121
1.65203
1.67401
1.69728
1.72199
1.74832
1.77649
1,80675
1,83942
1.87492
1.91372
1.95649
2.00408
2.05764
2.11882
2.18999
2.27488
2.37973
2,51627
2.~1092
3,04810

w

( cb/m%

1.725
1.849
1.980
2.119
2.266
2.421
2.584
2.757
2.940
3.133
3.337
3.552
3.779
4.019
4.272
4.540
4.822
5,121
5.437
5.770
6.123
6.497
6.892
7.311
7*755
8,226
8.726
9.258
9.824
10.426
11.069
11.756
12.491
13.279
14.126
15.039
16.026
17.097
18.263
19,540
20.946
22.506
24.254
26.236
28.521
31.217
34.515
38.808
45.209
100.00
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v. Enclosure Radius Calculations -- Available Methods

. .

,.

..

-o

0

Now that we have gained some confidence in the accuracy of the effective

radii approximation, we have to press on and develop ways of calculating the

two parameters appearing in the approximation, rl and r2.

The problem of calculating rl will not be treated here. It is equivalent,

according to equation (2.10), to the well studied problem of determining the

capacitance of a single isolated body. A few references to the extensive

literature on this subject will be given in Section IX. At this time we will

mention only reference [3], where the problem is treated by finding two ellipsoids

related to B, one ellipsoid being the smallest within which B can be contained ,

and the other ellipsoid being the largest contained in B (the measure for

determining “smallest” and “largest” is capacitance). The readily computed

capacitances of these two ellipsoids bound the capacitance of B. The arithmetic

mean of -thetwo bounding capacitances is not ‘coobad an estimate of the

capacitance of B in the cases examined so far.

In this section, we will give a brief ou~line of four of the methods

available for calculating r2, with a few comments on each. Of course, by

equation (3.21), this general problem is the same as the general problem of

calculating rl. Nevertheless, there are enough differences between the detailed

treatments of the interior and exterior boundaty-value problems that a quick

review of some basic methods seems useful. We will mention integral equation

methods, the method of nets, the method of invetsion, and the method of

separation of variables.

V.A. Integral Equation Methods

Integral equations give us a general approach to the calculation of r2,

applicable to enclosures of arbitrary shape.

Consider the problem represented in figute 11, where ~

of a point source within the enclosure E. The surface of the

centered on r is S and tihesurface of E is, as usual, Se.
&’

theorem ([6], Chap. VIII, eq. III)

is the location

small sphere

From Green’s

H ~Go(g,~’) 3Ge(q’,rJ
Ge(r,r)’= Ge(~’,&)

an’
- Go(r, ~’)

an!
1

dS‘ (5.1)
SG+se

58



9
,. ,,

,, q

.-

..

-0
●

●

I n,—

‘a

●r

SE,,
I,,

.
,1

,,

,

v214(yJ =

w+) ‘=

Ge(r,rJ =

,,
!

1

Figure 11, ,A general

● r,

o

1
ron S4T]~-41 ‘ – e

,
enclosure shape,

,p

‘,

,.

,,. ,

59’,



● where Ge(~,~) is the interior Green’s function of E whose source

and whose value on S is zero. The directions of the normals are
e

-- the figure, and

Go(~,~’) =
1

41T]~-~’]“
-.

point i.sat ~

indicated on

)
(5.2)

Performing the S integral of equation (5.1) in the limit of small spheres,

and using the fact that on S we have Ge(~,q) = OJ it follows that
e

(5.3)

Now,allow~’to approach Se; the result is a surface integral equaticm over Se for

in the form

-o ~

~ (x’>=)
lrl I = se lr-r’l ‘s” ‘on ‘e
—-o —-

(5.4)

Once this equation has been solved for ‘r(~,~), we can use equations (3.4)

and (5.3) to say that

J
‘r (lyJ

$(q,q) =& dS,
se la-~1

and thus, from equation (3.6),

1

J

T (grJ
—= min

\r -rl ‘s
‘2 ~in E -o–

(5.5)

(5.6)

If E possesses enough symmetry, it may be possible to pick out ~ by

inspection and set r ‘ ~. Thus it would only be necessary to solve.equa.tion

(5.4) once. In some other cases, it might be possible ‘couse symmetry to restrict

to a line or a surface.
& Any such restriction would lead to a great reduction

in the complexity of the numerical search for ~, through equations (5.4) and

(5.6), that will be necessary if E has a completely arbitrary shape.

Up to now, we have tacitly assumed ‘chatthe solution of equa~im (5.4)
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● could really be obtained$ by some means or other. There are several quite

similar numerical methods that are suitable for ‘thispurpose. The kernel of
..

the equation is the same as the kernel of an equation chat has often been used

to calculate the surface charge density on an isolated cotiduccifigbody at
.,-

potential Vo, ioe. ,([291,eq. (4.1)),

J

CT(z’)

/r-r’] ‘s’ = 4TSOVO”
‘b ‘-

Any numerical method that can be used to solve this equation can be used to

solve equation (5.4). One such method has been called the “method of subareas”

[30], [31]. It has recently become popular among electrical engineers to call

such methods “moment methods,” probably because of reference [32]. An elegant

discussion of such methods has been given by Kantorovich dnd Krylov ([33],

Chap. II), who remind us that the method of moments is equivalent to replacing

the kernel of the original integral equation by a degenerate kernel.

Numerical solutions will result in more accurate values

.
0

used in conjunction with a variational representation of tihat

Such an expression is the following

of 1#(~,~) if

quantity [34].

{/

‘c (~,rJ HH2 T(~’,&)T(~,q)

I

-1
l)(q,~) =

s Ir-rl ‘s s s ‘ Ir;-rl
dSdS‘ . (5.7)

-o— —-
e ee

Before concluding this subsection, we should at least make note of an

alternative integral equation formulation that is available. The integral.

equation we mean is the one on which existance theorems on the solution of the

interior Dirichlet problem are based, i,e.$ since v(r_,~) = Go(~,~) on Se,

and $(~,~) has no singularities within E, we can write ([6], Chap. XI, S2)

1 ““

,aGo(~,~’)
o(~,q) = ~(~’,4) —dS?

an’ (5.8)
se

where P(z) is the solution of the integral equation

. (5.9)

●
e

Although the kernel of Chis equation looks a little me~sier than that of
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● equation (5.4), the numerical solution of equation (5.9) could often lead to

more accurate values of $(~,~) than the numerical solution of equation (5.4),

.. using the same number of subareas on Se in each case. If ~(~,~) is used with

an expression line (5.7), this comment is iess relevantl since no comparable

,, expression can be obtained for use with v(~,~).

V.B. Method of Nets

, ●

This method is a natural for the solution of interior potential problems;

it’s a strain to use i-tfor exterior problems. Therefore, because the calculation

of r~ is essentially an internal potential problem, the method of nets is more

useful for calculating r* Chan rl. This fact has led some investigators who

like the method of nets to turn rl-calculations into r2-calculations by invoking

equation (3.21) [8]. We will look at the reverse of this procedure in the next

subsection.

The method of nets ([33], Chap. 111) is quite easy to understand in its

simplest form. One simply defines a three-dimensional lattice of points within

E, and approximates Laplace’s equation by some finite difference formula involving

the values of the potential at the points of the lattice. If the lattice is

cubic, and we choose the simplest possible finite difference approxlma’cionto
o

v~+(~,~)s the equation for Y(i,j,k), the finite difference approximation

~(xi>yj,zk;~), h just

Y(i,j,k) =~{Y(i+ l,j,k)+Y(i,j -!-l,k)-l-Y(i,j,k+l)

-i-Y(i - l,j,k) + Y(i,j - l,k) -t-Y(i,j,k - 1)}

to

(5.10)

The values of Y at the boundary points of the lattice can be determined

by finding the value of ~ at the closest point on Se to each lattice boundary

point. At least, that is the most natural way of choosing boundary values.

It may be easier in practice ‘cochoose the boundary Y’s according to some rule

such as saying they are the same as the ~’s at the closest points on S in a
e

given direction, the x-direction, say. Of.
just Go(~,~).

● Fans of the method of nets use it in

course, the boundary values of $ are

the hope that, since solu’cionsof
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@ Laplace’s equation are fairly well behaved when the boundary values are well

behaved, one may not need a very fine net for equations like (5.10) to be quite

.. accurate.

The solution of equations (5.10) could be obtained by any sparse matrix

.- inversion routine or, perhaps more readily, by an iteration process, The

straightforward and obvious iteration process applied to equations (5.10) is

guaranteed to converge eventually ([33], p. 229), but it mighe not converge

. 0
o’

very fast.

It would be handy if ~ could be chosen as one point of the net, but

this is’not necessary. Interpolation formulas ‘involvingthe Y’s at nearby

net points are readily available.

There are two ways in which a symmetry of E is useful in connection with

a net-calculation of r ,
2

As with the integral equation methods, anything one

can do toward picking out ~’greatly reduces the amount of calculation. In

addition, though, with the method of nets it is a Iit’cleeasier than with

integral equation methods ‘comake use of the symmetry of E to reduce the size

of the matrix we have to consider. Of course, similar reductions are possible

when one is using an integral equation method, but it is a little easier to

build such reductions into a general computer code when one uses the method

of nets.

We are not going to get into any extended

merits of the integral equation methods and the

depends partly on tasteand partly on ignorance.

lead to much smaller matrices, while the method

discussion here on the

method of nets. One’s

The integral equation

relative

choice

methods

of nets results itia large

sparse matrix that is easier to invert for a given matrix size.

Itfs always nice to throw in an example. Let’s consider a cubical E,

whose edges are two units long, centered at the origin of a Cartesian coordinate

system. It is clear, from symmetry, that & = O. Equation (5.10), applied to

a one-point net, using boundary Y’s equal to the values of $ at the same

points, gives

,

and thus

.(
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@
(l)=..l. .

‘2 41T4(0,0,0)= 1’

--

.-

where the superscript on r
2
indicates the number of net points. Using a 27-point

cubic lattice (net spacing

not hard, if one makes use

(27) =
‘2

= +), the origin being one of the net points, it is

of all the symmetries of the cube, ‘co,show that

3.4
= 1.102.

1+.8(1.5)-%+1.6(1.25)-%

Similarly, for a net spacing of 1/3 (this one is easier to do strictly numerically),

(125)
‘2

= 1.135

A more precise value, obtained in Section VI by other means, is

(m)
‘2

= 1.144.

. e In this subsection, we have done no more than to

existance of the method of nets; it seems to have been

o To really learn about it, one will have to read a book

perhaps [35] and [36])...

V.c. Method of Inversion

remind the reader of the

going out of style lately.

or two (see, besides [33],

We have seen in Section III (equation (3.21)) that the r2 of any E and

Che r{ of the B obtained from E by inverting in a sphere of radius R, centered

at $, are related by

2
‘ir2 = R ●

This gives us a useful means of calculating r2 or, speaking more accurately,

a way of determining E shapes that have a given r .
2

Any B whose capacitaficeto

infinity is known, by some means or other, will give us an E with a known r2 by
. inversion, The center of the inversion sphere must be at the center of charge

●
of B; this condition is necessary because of the following argumen~.

The position ox ~ is determined from a minimization of ~(~,~) and,
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● according to equation

of the test charge is

-. to a zero dipole term

charge on the body in

(3.10), this means the,induced electric field at the point

zero when & = ~. A zero electric field at ~ corresponds

in the far field of the inverted domain. With a finite

che inverted domain, the only way to avoid a dipole term

.“ in the far field is to choose the origin (i.e., the center of inversion) to be

at the center of charge.

Therefore, one can obtain only one E shape for a given B shape and a

given r2. Nevertheless, there are a large number of B shapes whose electrostatic

properties are well known; each one will lead us ‘coa new (r2,E) pair by

inversion. For example, this is the method we used to obtain the r2 of a circular

aperture in Section SJ.D. Several other inversion-related shapes are discussed

in reference [8], Spheroids, whose rl’s are tabulated in reference [3], assume

a wide variety of shapes on inversion. A lens, defined as the body within two

intersecting spherical surface segments, will lead to another lens on inversion;

a detailed study of lenses has been made by Herriot [37]. We will now examine

a specific example of inversion. The B and E of the following example are

-o
actually degenerate forms of the lens, but we”will make no use of Herriot’s

general lens formulas.

● Consider the calculation of the r2 of a spherical shell of radius a$ in

which there is a circular hole whose diameter subtends an angle 2E at the center

of the sphere. The results of this calculation will give an upper bound on the

‘2
of a spherical enclosure with a circular “get lost” hole. The “get lost”

region [2] must be finite in any real simulator, while in the model we will

study it is infinite. These facts can be used to demonstratethe bounding

property of the r2 we will.calculate; the proof (which is easy, using the methods

of Section VII) will be left to the reader.

So let us consider figure 12, where we have drainstwo inversion-related

spherical bowls, S and S’, where we want to identify S with our enclosure.

The center of inversion is the center of charge of S’ when the charge on that

surface assumes its natural distribution (i.e., the distribution that gives a

contant potential over S’). The necessity of this position of the center of

inversion has been
.

for the S’ surface

e
in the notation of

explained above.. From the solution of che potential problem

(see, for example [24], 58.7), it is not difficult co S11OW,

figure 12, -that

,,
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‘i ‘sin s’-s’
T =li-
a Tr (5.11)

and that.-

..
*? sin c’(1-cos et)
~= sin s~-c‘-!-Tr ●

(5.12)

Note that A’ is the distance from the center of S’ to the center of inversion,

and that the center of inversion is more remote from the hole than center of the

sphere is. If S and S’ osculate at the point opposite Che center of the hole,.,

the radius of inversion is clearly given by

R=a’-A’ (5,13)

It then foll,ows, after some simple manipulations, that

a“ I-(A’/a)
~= l+(A’/a) ~

-o and

.

0

A L’—=_—
a a

(5,14)

(5015)

where A is the dista’ncelfrom the center of S to ~ (the negative sign indicates

that r_e is on the hole side of the center of S). Now equation (3.21) may be

called upon, together with equations (5.11) through (5.16), to write

~=a’ 2(1-A’/a’)2.= (1-(A/a)2m
a’ rTa

1
sin c’-s’+n

(5.16)

The remaining job is to relate (A/a) and e’ to C. To this end, observe

‘4rom the $iagram that
(:

and thus

.! r
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—= Y= ’M=”.QQsin 6’ Ar
sin $ a a sin+ ‘

giving
.-

.“

Hence, since

we have

By manipulating

-o

‘-E Msin(+) = sin 6 = a sin~=~si.n~.
a

this equation, it follows that

-I I-t-lAl/a
c’ = 2 tan

l-lAl/a
● ‘can(~) (5.17)

●
✌✎

When this equation is substituted into equation (5.12), and use is made of

equation (5.15), we obtain an equation for (lAl/a) as an implicit function of

s. To get!an explicit table of values we can solve the implicit equation by

iteration. Once (lA//a) is found, equations (5.17) and (5.16) can be used.to

calculate r2/a. Table 5’contains the information thus obtained. Also included

in table 5 is a column giving the fraction of the surface area of the sphere

that is cut out by the hole (= sin2(~/2)). From the table, we see that there

., i,svery little change in either r
2
or ~ for e < 30°.

It should be pointed out that as z becomes larger we eventually reach the

point where there is no minimum in ~(~,~) for

undefined. This phenomenon manifests itself in

iterative solution for (lAl/a) as a function of

finite ~, and thus r2 becomes

the nonconvergence of the

c. The maximum c for which

r2 is dqfined is 48,918+0.
.

●
.

,
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Table 5. Effective radius of a spherical enclosure with a hole

●
✎✎

.“

-0
0

0
& 100 sin2(s/2) lA1/a.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 ,;
26
27
,28
29
30
31
32
33
34
35
’36
37
38
39
40
41
42
43
44

. 45
46

●
47
48
48.9

.008

.030

.069
,122
.190
.274
.373
.487
.616
.760
..919
1.093
1.281
1,485
1.704
1,937
2.185
2.447,
2.724
3.015
3.32i
3,641
3.975
4.323
4.685
5.060
5.450
5.857
6.269
6.669
7.142
~,598
80066
8.548’
9.042
9.549
10.068
10.599
11.143
11.698
12.265
12.843
13.432
14,033
14.645
15.267
15.900
16.543
17.131

.00000

.00001

.00002

.00005

.00011

.00018

.00029

.00043

.00062

.00084

.00112

.00146

.00186

.00232

.00286

.00347

.00417

.00496

.00585

.00685

.00795

.00918

.01053

.01202

.01367

.01548

.01746

.01962

.02200

.02459

.02742

.03051

.03390

.03760

.04167

.04613

.05104

.05647

.06248

.06918

.07670

.08519

.09490

.10616
,11949
,13578
.15678
.18721
.25481

(lA1/a)(2~/e3)

.99993

.99974

.99946

.99912

.99876

.99841

.99810

.99785

.99770
,99768
.99782
.99814
.99869
.99948

1.00055
1,00194
1,00366
1.00577
1.00828
1.01124
1.01470
1.01868
1.02323
1.02842
1,03427
1.04088
1.04828
1.05658
1.06583
1.07617
1.08767
1.10049
1.11478
1.13072
1.14852
1.16846
1.19086
1.21612
1.24477
1.27747
1.31511
1.35892
1.41061
1.47281
1.54965
1,64852
1.78458
2,00052
2,57538

r2/a

1,00000
1.00000
1.00001
1.00002
1.00004
1.00007
1.00010
1.00014
1.00021
1,00028
1.00038
1.00049
1.00062
1.00078
1.00096
1.00116
1.00140
1.00166
1.00196
1.00229
1.00266
1.00307
1.00352
1,00401
1.00456
1.00515
1.00580
1.00650
1.00727
1.00810
1.00900
1.00998
1.01103
1.01217
1.01341
1.01475
1,01619
1.01776
1.01946
1.02130
1.02330
1.02548
1.02786
1.03048
1.03338
1.03660
1.04024
1.04446
1.04910
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● V.D. Separation of Variables Method

This method is so well known that we need do no more than mention it, and
..

make a few comments. The two special cases treated in Section VI are examples

of the application of this method.
.-

The number of distinct enclosure shapes that can be treated by this

method is quite limited. In addition ‘cothe examples of Section VI, one can

imagine applying this method to the calculation of the r
2 of ellipsoids,

finite elliptical cylinders, and certain “quasi-enclosures,” such as the circular

aperture of Section IV.D, a system of two spheres or an anchor ring. This almost

exhausts the list of reasonably shaped “enclosures” to which the method can be

applied straightforwardly. All these shapes have enough symmetry for one to be

able to pick out ~ by inspection; this is probably true for any shape for

which the separation of variables method is applicable.

Probably no real simulator enclosure will take’exactly a shape for which

the separation of variables method can be applied, but r2 calculations for such

shapes are important for two reasons:

-0 Firstly, small perturbations in the boundary-surface shape will have an

insignificant effect on the r

o
2
of an enclosure. We have seen an example of this

already in Section V.C, where even a hole cut in the boundary surface had very

little effect until the hole’s area was a significant fraction of the original

surface area of the enclosure. A detailed study of the effect of boundary
+

perturbations on r2’might be an interesting topic for a future note.

Secondly, the r2’s of simple shapes can be used to bound the r2’s of

more complex shapes. This is because the r, of any E is less than r;, the r.

of any E’ that can contain E, and

can contain. This will be proven

it is the real mo~ivation for the

of this bounding property, making

found in Section VII.

.

L

greater t;an r;, the r2 of any E“ ~hat E

in Section VII. We mention it here because

calculations of Section VI. An application

use of the results of Section VI, may be
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●
✎✎

✎✍

-0
●

VI. Enclosure Radius Calculations -- Two Simple Shapes

In this section, we will make use of the separation of variables method,

together with a judicious application of image theory, to calculate the r2 of

two simple enclosure shapes -- fini’cecircular cylinders and rectangular

parallelepipeds There are various alternative representations of the r2’s

of these two simple shapes. Our aim here will be to derive Chose representations

that are most suited to numerical evaluation.

The numerical results of the calculations of this section can be used to

bound the r2’s of enclosures having more complicated shapes. This will be

elaborated upon in Section VII.

VI.A. Finite Circular Cylinders

Consider a finite circular cylindrical enclosure such as that shown in

figure 13. From symmetry it is clear that, with the coordinate system shown

in the figure, r = O.

We will calculate the ~(0,0) of a finite cylinder by making use of the——

Green’s function of an infinite circular cylindrical enclosure with the source

point on the axis. The finite cylinder Green’s function will be found by

assuming an infinite row of source points spaced uniformly (spacing = h) along

the axis of the infinite cylinder, ‘thesources being of alternating sign, There
:>

are, of course, alternative methods of deriving the Green’s function for a finite

cylinder, but the orieused here is perhaps the simplest for which it is easy

to isolate the ~(~,~) contribution to Ge(~,~).

been

The Green’s function for an infinite

given as equation (4.7); we repeat it

G:(p,z;O,z’) =
1

~

lm-—
4TrJp2+(z-z’)2

2T2 o

As we saw in Section IV.A, the G; of

cylinder of radius a has already

here for convenience:

KO (~a)

I (~~)COS, ~(Z - z’)d~.
Io(Aa) o

(6.1)

equation (6.1)

required of a Green’s function. A detailed derivation of

use of the separation of variables method, has been given

has all the properties

equation (6.1), making

by Weber [38]. A

. detailed study of the properties of this Ge has been given by Boukamp

[39], We are interested in the case where p is zero, and so we write

o
1<

>

i

and De Bruijn
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.-

.-

~

~

C? K.(La)
G;(O,Z;O,Z’) =

1
‘COS, ~(Z - z’)d~

4Trlz-z’\‘~ ~ Io(Aa) (6.2)

It has been shown by Boukamp and De Bruijn ([39], equation (27)) that

an alternative representation of G~(O,z;O,z’) is

-Unlz-z’I/a

G~(O,z;O,z’) =&:e (6.3)
n=1 VnJ:(tin)

where the p ‘s are the roots of
n

Jo(Pn) = O.

Now, adding up a string of sources of alternating sign spaced uniformly

along the z-axis with spacing h, using equation (6.2) for the source nearest

the origin and equation (6.3) for all the other sources, we obtain the Green’s

function for the finite cylinder in the form

inner

1 1 I
@Ko(Aa)

Ge(O,z’O,z’) = -— —
4nlz-z’l 2m2 o Io(Aa) Cos

}(Z - z’)d~

-pnlz-mh /a -unlz+mhl/a

+&; (-)m:e .? ? (6.4)
m=1 n=1 VnJl(Un)

from which we can identify ~(0,0) as——

~

~ Ko(Aa)
4(0,0) =+ —o Io(Aa) d~-$——

2Tr
~ (-)m ~ e-Vnmh/a

m=1 n=l ~nJ~(un)
(6.5)

Interchanging order of summation in Che double sum, performing the new

sum, and changing the integration

~

@ Ko(x)
4na~(0,0) =: ——— 10(X} ‘x +o

.

We can integrate

the equation for

the integral by

‘2
in the form

variable to Aa, we obtain

4 nil ~ h/a 1 .

= (en +l);nJ:(Pn)

(6.6)

parts and call upon equation (3.6) to



O
..

/

Q
-1

‘2 2 “ ‘dx—=—— +4 .f’’’”2H’1”l”
a

n o I:(x)
‘=1 (e n +l)inJ:(Pn)

(6.7)

where

H s (h/2a)

As H becomes large, the sum in equation (6,7) becomes negligible, and we

revert to the r2/a of an infinite cylinder given by equation (4.3). h the

general case, we already know the value of the integral from Section IV.A,,and

so we may write 1

-1
‘2

.8706898 -f-4 ~
1—=

2PnH
(6.8)

a
(

n=l (e
+l)tinJ21(un)

The values of pn and Jl(pn) have been tabulated ([19], p. 409), and so it

-9
is a straightforward matter, by using even a desk-top computer, to evaluate

expression (6.8) for various values of H. This is the manner in which we

o obtained the data exhibited in table 6 and figure 14, except ‘chat

smaller values of H we summed the asymptotic form of the terms of

to say that

-(2N+3/2)TH
‘= ,8706898 + ~

4 + 27re

‘2
2uH ~_e-2TrIi

‘=1’(e n +l)vnJ:(vn)

for the

the series

, (6.9)

Using equa~ion (6.9), an N of 20 gives the accuracy indicated by table 6,

We note that the correct

figures given, since for

which, from Sec’cionIV.B

small H limit is obtained, to

small H we have essentially a

(equation 4.18),

2r. 7

the number of significant

parallel-plate region for

+=
—= 1.442695+.
1; 2

An interesting thing about the results is that the magnitude of r. is

o L

primarily determined by the minimum distance from ~ to the surface of the

enclosure; it is a little larger than this minimum distance.
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Table 6: Effective radii Of FQ3U circular cylindrical enclosures

●
long thin cylinders

2a/h zr la

.-

-* .

●

?01
.02
● 03
“.04
.05
.06
.07
.08
.09
,10
.11
.12
.13
.14

. .15
16
:17
.18
.19
,20
.21
.22
.23
.24
,25
.26
.27
.28
.29
.30
.31
.32
,33
● 34
e35
.36
.37
.38
.39
.40
.41
.42
.43
.44
.45
.46
.47
.48
049
.50

1.14851
1.14851
1.14851
1.14851
1.14851
1.14851
1.14851
1.14851
1.14851
1.14851
1.14851
1.14851
1.14851
1.14851
1.14851
1.14851
1.14851
1,14851
1.14851
1.14851
1.14851
1.14851
1.14851
1.14851
1,14851
1.14851
1,14851
1.14851
1.14851
1.14851
1.14851
1.14851
1.14851
1.14851
1,14851
1,14850
1.14850
1.14849
1.14848
1.14847
1.14845
1.14843
1.14840
1.14837
1.14833
1.14828
1.14822
1.14815
1.14807
1,14797

2a/?n 2r la

.51 1.14786

.52 1.14773

.53 1.14758

.54 1.14741

.55 1.14722

.56 1.14700

.57 1.14676

.58 1.14648

.59 1.14617

.60 1.14583
●61 1.14546
.62 1.14505
.63 1.14459
.64 1.14410
.65 1.14356
.66 1.14298
.67 1.14234
.68 1.14166
.69 1.14093
.70 1.14014
.71 1.13929
.72 1.13839
.73 1.13743
.74 1.13641
.75 1.13533
.76 1.13419
.77 1,13298
,78 1.13171
.79 1.13036
.80 1.12896
.81 1.12748
.82 1.12594
.83 1.12432
.84 1.12264
,85 1.12088
.86 1.11905
.87 1.11716
.88 1.11519
.89 1.11315
.90 1.11104
.91 1.10886
.92 1.10661
.93 1.10429
.94 1.’10190
.95 1.099A4
.96 1.09691
.97 1.09432
.98 1.09166
099 1.08894

1.00 1.08615

h/2a

.01

.02
,03
.04
.05
,06
.07
.08
.09
.10
.11
.12
.13
.14
.15
.16
,17
.18
.19
.20
.21
.22
.23
.24
.25
.26
.27
,28
.29
,30
.31
.32
.33
.34
,35
.36
.37
.38
.39
● 40
●4I
.42
.43
.44
.45
.46
.47
.48
.49
.50

short fat cylinders

2r2/h

1.44270
1.44270
1.44270
1.44270
1.44270
1.44270
1.44270
1.44270
1.44270
1.44270
1.44270
1.44270
1.44270
1.44270
1.44270
1.44269
1,44269
1.44269
1.44269
1.44269
1.44269
1.44269
1.44268
1.44267
1.44265
1,44262
1.44258
1.44253
1.44245
1.44234
1.44220
1.44202
1.44178
1.44150
1.44114
1.44070
1.44017
1.43955
1.43882
1.43796
1.43698
1.43585
1.43457
1.43313
1.43152
1.42973
1.42775
1.42558
1.42320
1.42061

h/2a 2r2/h

.51 1.41782

.52 1,41480

.53 1.41157

.54 1.40811

.55 1.40442

.56 1.40052

.57 1.39638

.58 1.39202

.59 1.38744
,60 1.38264
.61 1.37763
.62 1.37240
.63 1.36696
.64 1.36133
.65 1.35549
.66 1.34947
.67 1.34326
.68 1.33687
.69 1.33032
.70 1.32360
.71 1.31673
.72 1.30972
.73 1.30257
.74 1.29529
.75 1.28789
.76 1.28038
.77 1.27277
,78 1.26506
,79 1.25726
.80 1.24939
.81 1.24144
.82 1.23344
.83 1.22537
.84 1.21726
.85 1.20911
.86 1.20093
.87 1.19272
.88 1.18448
.89 1.17624
.90 1.16799
.91 1.15973
.92 1,15148
.93 1.14323
.94 1,13500
.95 1.12679
.96 1.11860
.97 1.11044
.98 1.10230
.99 1.09421

1.00 1.08615
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We will use the data of table 6 in our discussion of bounds in Section VII.

VI.B. Rectangular Parallelepipeds

Consider a rectangular parallelepipedsenclosure such as the one shown in

figure 15. We have chosen a coordinate sysCem whose origin is at the center of

the enclosure, and the edges of the enclosure parallel to the x, y, and z axes

are of length 2a, 2b, and 2c, respectively. We will assume that we have

oriented the enclosure so that a ~ b s c. From symmetry it is clear that > = O.

We will calculate $(0;0) by making use of the Green’s function for the——

infinite parallel-plate region, ]z/ SC . The Green’s function for the actual

enclosure can be though of as being the superposition of a doubly infinite sum

of parallel-plate Green’s functions. More precisely, it is clear from image

theory that if the parallel-plate Green’s function is given by G~(x,y,z;x’,y’,z’),

then the parallelepipedsGreen’s function is just

w

Ge(x,y, z;x’,y’,z’) = ~ 7 {G~(x,Y,z;x’ + 4an,y’ + 4bm,z’)
n.-w m=.co

+ G~(x,y,z;2a - x’ + 4an$2b - y’ -t-4bn,z’)

- G~(x,y,z;2a - x’ + 4an,y’ -I-4bn,z’)
I

f
- G~(x,y,z;x’ + 4an,2b - Y’”+ 4bn,z’)}. (6.10)

\

For the source point at the origin this reduces ‘CO

Ge(x,y,z;O_)= : i (-)n* G~(x,y,z;2an,2bm,(l),
n=-a m=-m

which we will write as

(6,11)

t

Ge(x,y,z;Q) = G~(x,y,z;~) + 2 ~ (-)n[G~(x,y,z;2an,0,0)+ G~(x,y,z;0,2bn,0)]
n=1

+4:; f (-)n% G~(x,y,z;2an,2bm,0).
n=l m=l

“

(6.12)
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● The singularity as the field point approaches the origin is due solely co

the term G~(x,y,z;O), which we can write as—
..

.“

G:(x,y,z;Q) = & i’ ‘-)*
n‘-W Jx2+y2+(z-2nc)2

4Tr4x2+y2+z2

.

We can therefore subtract

use equation (6.12) to write

o

‘m

+(0;0) =$b=(o;o) - 2 ~.— ——
n=1

1
-i-

1
(6.13)

[x2+y2+(z-2nc)2]% [x2+y2-1-(z+2nc)2]%

the appropriate singularity from this term and

(-)n[G~(~;2an,0,0)+ G“’(~;0,2bn,0)]

-4 j j (-)n%
G~(~;2an,3bm,0),

=
(6,14)

where

n-!-1
in 2

ljw(o;o)=+ f -“—n=l 2nc 4rlc ‘
(6.15)——

as we have already seen in Section IV.B.

From equations (6.14) and (6.15), and the definition of r2 (equation (3,6)),

we can see that

c
—=ln2-

/
4nc 2 f (-)n[G~(~;2an,0,0)+G~(~;0,2bn,0)]

‘2 n=1

-4 ‘n?l‘j (-)~~ “ [
G~(O;2an,2bm,0) .

==
(6.16)

We still have to determine an appropriate representation of G~(Q;2an,2bm,0).
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● From the symmetry of Green’s functions this can also be written as G~(2an,2bm,0;Q)

and so, in principle, one could use equation (6.13), but that representation of
.— G: is useless for numerical work because of its slow convergence. An alternative

representation which is well adapted for numerical evaluationmay be found by
.“

using circular cylindrical coordinates to calculate the potential of a point

charge between two infinite parallel plates. If the point charge is at the

origin we obtain, by a simple separation of variables calculation,

! \

-Q
●

(6.17)

where K. is a modified Bessel function.

Alternatively, the above representation may

rather formal manipulations of equation (6,13).

G:(x,y,O;Q) =-&- i ‘-)n
n-‘-m /x2+y2+(2nc)2

L

)

be obtained by the following

This equation results from

p. 412. Continuing with p

n---m “o

a use of a Fourier transform given in reference [17],

1
G:(x,y,O;Q) =-

41T2

1=—

4Tr2

1=—
2TC

co ‘w

lJ ~o(plol)e in(2ucti) du

n=-co -m

J

w

KO(PIUI) j
6(u-t(~/c)(%-k))

km-co c/Tr-m

~ Ko(:.~)

k=O

which, with the substitution p = 2(n2a2~2b2)k 9 returns us to equation (6.17).

We can now define the function

o F(x) s ~ Ko{(2k -t-l)7TXj, (6.18)
k=O
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. .

0 and rearrange the double sum in equation (6.16) to write

c 4 ~ (-)n[F(n/a)-1-F(n/ai3)]-
n=1

8j>-,<[F~~)

where

and

-1

5,19)

Equation (6.19) was evaluated numerically for a = 0(.1)1 and @ = 0(.1>1.

All sums converged quite rapidly. The results of the numerical work are

displayed in table 7 and in figures 16 and 17.

From these data displays we see again, as in the case of the finite

circular cylinder, that the magnitude of r2 depends primarily on the minimum

9
distance from r~ to the wall of the enclosure; r2 is a little larger than this

distance.

●
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Table 7. Effective radii of rectangular parallelepipedse..
,“

c/b = .3c/b = .2 c/b = .4

b/a r2/c b/a r2/c b/a r2/c

o 1.44269
.1 1.44269
.2 1.44269
.3 1.44269
.4 1.44269
.5 1.44269
.6 1.44269
.7 1.44269
.8 1.44269
.9 1.44269

1.0 1.44269

0 1.44260
.1 1.44260
.2 1.44260
●3 1.44260
●4 1.44260
.5 1.44260
.6 1.44260
.7 1.44260
.8 1.44260
.9 1.44258

1.0 1.44252

0 1.44127
.1 1.44127
.2 1.44127
.3 1,44127
.4 1.44127
.5 1.44127
.6 1.44127
.7 1.44124
.8 1.44111
.9 1.44076

1.0 1.43995

c/b = .5 c/b = ,6 c/b = .7

‘6
●

b/a rzlc b/a r /c
2

b/a r2/c

1,43511
1.43511
1.43511
1.43511
1.43511
1,43511
1.43505
1.43479
1.43398
1.43210
1.42854

1.41943
1.41943
1.41943
1.41943
1.41942
1.41939
1.41911
1.41808
1.41542
1.41009
1.40112

0
,1
.2
,3
.4
●5
.6
.7
.8
.9

1.0

0
.1
.2
.3
04
.5
.6
.7
.8
.9

1.0

0 1.39104
.1 1.39104
,2 1.39104
.3 1.39104
.4 1.39103
,5 1.39089
.6 1.39008
,7 1.38751
.8 1.38168
.9 1.37116

1*O 1.35495

c/b = .8 c/b = .9 c/b = 1.0

b/a rzlc bla r2/c b/a r2/c

o 1.29747
.1 1.29747
.2 1.29747
.3 1:29747
.4 1.29740
.5 >1.~29672
.6 1.29389
.7 1.28658
.8 1.27258
.9 1.25060

1.0 1.22055

0 1.23797
,1 1.23797
.2 1.23797
.3 1.23797
.4 1.23784
.5 1.23678

,6’ 1.23273
.7 1.22299
.8 1.20537
.9 1.17900

1.0) 1,14445

o 1.34966
.1 1.34966
.2 1.34966
.s3 1.34966
.4 1.34963
.5 1.34927
.6 1.34758
.7 1.34280
.8 1.33294
.9 1.31649

1.0 1.29278
0
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VII.’ Enclosure Radius Calculations -- Bounds

In this section, we will give a brief description, together

examples, of some of the kinds of bounds one can put on the r2 of

The literature on the bounds one can put on the capacitance of an

or rl, is rather extensive (references [40] through [47] are just

with a few

an enclosure,

isolated body,

a sampling of

this literature). The setting of bounds seems to be the way mathematicians

have liked to attack the capacitance problem. It would therefore seem prudent

to once again invoke the inversion relation between rl and r; (equation (3.21))

in order to transform the many available results on r~ bounds into equivalent

statements about r .
2

That is what we will do here. We will not make an

exhaustive study of bounds; that can await a future note. We will content

ourselves with just a couple

statements of lower bounds.

of statements of upper bounds and a couple of

The upper bounds, which are simpler, will be

treated first.

VII.A. Upper Bounds

“o Reconsider equation (3.21), which we will repeat here, for cotivenience,

o
in the form

. R2
‘2 ~ (7.1)

From this equation it is obvious that, if we can make any lower bound

statement about r;, say in the form

then we can make an equivalent sta’cmentabout r2 in the form

R2
r2<q (7*3)

Of course, equation (7.3) will be more useful if we can write (r’) in
lb

terms of the parameters of the uninvested geometry. Let us make this a little

o clearer by looking at a particular example of an (r~)b -- the “volume radius”

lower bound. It is show-din reference [40] that

85



O
.-
.“

(7.4)

where V’ is the volume of the body inverse to the E in question. Note, as a

matter of interest, that (r~)V, is the radius of the sphere whose volume is V’,.

From equations (7.3) and (7.4) we can see that

1/3

‘2
S R2(~) , (7.5)

but we need to write V’ in terms of unprimed variables in order to make this

inequality easy to use. This can be accomplished as follows (we denote the

solid angle subtended at the center of inversion by $2)

v’ = I r’2dr’dfi’
E’

“o

where n is now—

and (7.6) give

J r’3(S’) do,=

4n’ 3

R6 da

J
3—,—

3
4TrZ3(S)

R6 =ds=—
J3s—
e ‘6

the outward normal from E. Taken together, equations (7.5)

(7.6)

(7.7) ‘

.

●
‘r,)vr‘1+1s’ ydsr’3

e

Thus we have an upper bound on r2, which we will denote by (r,)v, in memory of

where it came from, given by

where the origin of coordinates is ~,

)

(7.8)

u
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Let’s calculate (r2)V, for a couple of simple shapes. The finite cylinder

figure 13 is a nice example for which we already have the numbers to check

the closeness of the (r,),,,bouad. The working is simple:
LV

~

●r ~ h/2 ~z-—

s ~~ds=4~a o
(a2+z2)3

e

4?r

~

tan-lH
a—

a3 o
cos40dG

~

a
+.2~h

pdp

O (p2+(h/2)2)3

-1-> y’ ‘dx
o (HX2)3

{[

4Tr3H

11

1——
“~ 8

-t-‘can-lH +—
1+H2 4H3

(7.9)

where H S (2h/a). From equations (7.8) and (7.9) it follows that, for a finite

cylinder,

—

o We have chosen ‘coexhibit the

cylinder case by plotting the ratio

II
1

-1/3
+ tan-lH i-— (7,10)

4H3

closeness of the (r ) , bound in the finite2V
of r, (using the numerical values computed
-1 -

in Section VI,A) to (r ) ,, versus H .
2V

This plot is givdn as figure 18. From

the plot, we can see that (r2)v, never exceeds r2 by more than about 10%, and

for H around unity the difference is only about 2%. It would seem that one

could expect this kind of behavior in general -- the more the enclosure looks

like a sphere, the better the (r ) , bound will be.
2V

We could go on to calculate the (r2)v, of a rectangular parallelepipeds.

The required integrals can be performed analytically, and the result can be

written in terms of elementary functions, But it is a little messy, We will

not inflict this nugatory algebra on the reader. We will merely make note of

the fact that, for a cube, (r2)v, exceeds r2 by only about 3.6%.

Let us instead look at the enclosure shown in figure 19, a hemispherically-

capped circular cylinder of radius one and overall length four. We will come

back to this enclosure a couple of more times in this section. It is a fairly

o

simple shape for which no analytical representation of r2 exists, and yet it is

not too unlikely a candidate for a practical enclosure shape, It will serve as
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o a convenient

bounds. The
.’-. most easily,

domain. The
.“ indicated on

example with which to demonstrate the closeness of the various

only bound we have mentioned so far, (r2)V,, can be calculated

for this particular enclosure, by calculating V’ in the inverted

inverse surface, for a radius of inversion equal to unity, is

the figure. The volume within it is just

1
1<

v’ = 2 T&+- 4(%)2 - x2]dx
o

=~”-(lo + 3Tr)

Thus, from equation (7.5)

1/3
(r2)V, = (-)

@

= 1.1810 (7.11)

Let us now discuss briefly a slightly different kind of upper bound on

r,
2

A well known property of the capacitance of a body is that it is increased

by the addition of any conducting material. In other words, the capacitance

of a body is greater than that of any body it could contain and less than that

of any body that could contain it. A proof of a statement equivalent to this

is given in Smythe’s book, for example ([4], S3.11), Smyche proves that, if

conductor is added to a system without adding charge, the total energy of the

system decreases. Since this energy is equal to %Q2/C, we see that the capaci-

tance must have increased. This property of capacitance, together with equation

(7.3), makes it quite obvious that the r2 of any enclosure is less than the r2

of any enclosure containing it and greater than the r2 of any other enclosure

chat it can contain. Thus we can have many bounds on r2 to choose from if we

can calculate the r2 of many simple shapes. As we mentioned previously, this

was the real motivation for the calculations of Section VI,
.

Now we will make use of the numbers of Section VI to put an upper bound

● on the r
2
of our hemispherically-capped circular cylinder, The capped circular
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● cylinder can

radius one.
..

.-

be contained within

Thus, from table 6,

a right circular cylinder of length four and

‘2
s 1.1480 (7,12)

This is an improvement

we will see in ‘thefollowing

on the (r2)V, bound of equation (7.11). In fact,

subsection that equation (7.12) gives a bound that

can differ from the true rz by no

course, this wont always be true;

an (r ) , bound that is less than
2V

VII.B. Lower Bounds

more than about a third of a percent. Of

some enclosure shapes will undoubtedly have

any upper bound we could find in the tables.

We will first mention a simple lower bound on rz that applies to enclosures

of arbitrary shape, the trouble being that the bound may not be very close, We

will then briefly discuss a couple of closer lower bounds that apply to enclosure

‘3
shapes that fulfill certain special requirements.

The simple lower bound is the one ‘chatarose during the discussion of the

final upper bound of the previous subsection. A lower bound on Che r2 of E is

the rz of any E’ that fits inside E. The proof of this statement has already

been given in Secti~n VII,A, We may therefore use the tables of Section VI to

give us a lower bound on r2 by finding the largest right circular cylinder, or

rectangular parallelepipedsthat fits inside E,

For example, the largest right circular cylinder ‘chatfits inside a cube

whose edges are two units long is one with 2a = h = 1. This tells us, from

table 6, that the r2 of such a cube is greater than 1.08615. The actual r2,

from table 7, is 1,14445, so we have not obtained a very close bound in this

case. But it isn’t too bad (5% low). The same cylinder (2a = h = 1) is also

the largest one that will fit inside the hemispherically-capped cylinder of

figure 19, so that, for that enclosure as well, we can say that rz is greater

than 1.08615. Better lower bounds on the r2 of that enclosure will be obtained

below.,.,

We should also mention explicitly some very simple upper and lower bounds

@

on the r
2
of an enclosure, also based on the eficlosedand eticlosingenclosure

‘2‘s. The sphere itself can serve as the enclosed or enclosing enclosure, arid
1

.
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●
the r2 of a sphere is just its radius. The spherical enclosure bounds will

often be quite a bit rougher than those obtained from canonical enclosures
...

for which we have one or more parameters to play with in trying ‘cofill up as

much of E as possible (in the case of a lower

the spherical enclosure bounds on the r2 of a

long are:

bound calculation). For example,

cube whose edges are two units

1 < r2 < 1.73205,

while the cylindrical enclosure bounds for the same cube are

1.08615 < r2 < 1.32360.

Nevertheless, the spherical enclosure bounds are quite simple, and, if the

enclosure under study is almost spherical, the spherical enclosure bounds could

be closer than the bounds given by the best of the canonical enclosures treated

‘s

in Section VI.

Let us now look at another type of lower bound, one tha’conly applies to

enclosures inverse to a convex body. It has been shown by Polya and Szegti[40]

‘chatan upper bound on the r; of a convex body, B’, is

(7.13)

where M’, the surface integral of mean curvature over S~ (known as $he Minkowski

number, hence the M’), is given by

(7.14)

r~(S) and r+(S) being the

In equation (7.13), e? is

.

two principal radii of curvature at the point S on S;.

given by

r

4Ti~
c’ = 1 -— 2

(7.15)
M’

● where A$ is the surface area of s;. From equations (3.21) and (7.13), it follows
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● ‘chat, if S; is convex

. .
‘4nR2’lnC(l+C’)/(1-C’)1

‘2
s (r2)M, = ~ 2s’ (7.16)

this formula, there are two more -things

formulas for M’ and c’ (i.e., M’ and 1$)

we should find some means (in the unprirned

.- In order to facilitate the use of

that should be done. We should develop

in terms of the unprimed variables, and

variable system) of determining if B’ is convex. Both these topics are dealt

with in books on differential geometry (see, for example, C48], pp. 162-164).

The results are

(7.17)

(7,18)
~=R4JS~

‘1

e

whete n is the outward normal from E. “ Also, Br is convex if—

2n~r
—>~
——

2r
over S (7*19)

e
r. u

where ru(S) and rv(S) are the two principal radii of curvature at the point S

on S and r~ k ru.
e’
We can relax the condition that Bt be convex, if we are willing to put up

with a little lower bound, by filling in B’ until it is convex. For example,—

the surface inverse to an infinite cylindrical E is the torus without a hole

shown as the B of figure 3b. By filling in this B until it is just barely

convex we obtain the inverse surface of figure 19, Thus, as a lower bound on

the r2 of an infinite circular cylindrical E of unit radius, we could calculate

the (r2)Mf of the hemispherically-capped cylinder of figure 19. Let’s calculate

this (r2)M,. Note that inequality (7.19) is jus~ barely fulfilled, so we may

proceed, From equation (7.18),

o
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1, ““ Tr/2,”,”,
1~ 2j

2ndx
22+2

~

2Trsin e de=

o (1+X ) o (2+2 cos e)2

=;(3+T) (7.20)

where we have split the Se integration into one integration over the cylindrical

portion and another integration over the spherical caps. In a similar manner,

from equation (7.17) we have

= 2TT(1-@. (7.21)

Thus, from equations (7,15), (7.20), and (7.21), and a little algebra,

472-8
E’ =-= .19146. (7.22)

7r+4

Then, from equations (7.16), (7.21), and (7.22),

(r2)M, = ~+~74
ln(l.19146/.8O854)

.38292

= 1.1342 (7.23)

This is a pretty good lower bound on r2. Even for the infinite cylinder

it is only 1$% low. For the hemispherically-capped cylinder it has to be a little

better, because the r2 of the capped cylinder is less than the r2 of the infinite

cylinder.

●
.

We wish to bring the reader’s attention ta the generalization of the Polya-
—

Szeg5 bound invented by Parr [41], To apply Parr’s bound we still.require B’
L
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to be convex, but, by minimizing certain functional of a function 6(x) (details

may be found in Parr’s paper), we can arrive at a better,lower bound than the..

(r2)M, bound on r2. If we restrict 6(x) to be a linear function a priori (this

. process won’t give us the best bound that Parr’s procedure is capable of, but

it will still be better than (r2)M,), we find from Parr’s procedure that, for

the hemispherically capped cylinder of figure 1$,

‘2
a 1.1438. (7.24)

The bound implied by this inequality differs by only a third of a percent from

the upper bound of equation (7.12), and so we see that Parr’s bound can be quite

close indeed.

This concludes our discussion of r2 bounds. We have done no more than

give a taste of the subject, in the hope of stimulating some interest and some

●

future notes.
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VIII. Conclusions and Possible Extensions

We have presented a rather long examination of the effective radii

approximation, with numerous examples. Our intention has been to demonstrate,

and give reasons for, the accuracy of the approximation. It is hoped that

enough particular cases have been examined to instill some confidence in the

accuracy of the approximation in general. Of course, the order of error

arguments of Section III apply to general bodies and enclosures, as long ,as

the body is small compared to the enclosure. The examples of Section IV were

presented to show that the error of the approximation can still be small, even

though the body’s size becomes comparable to the enclosure’s,

It seems useful at this point ‘cosummarized, in a few statements, what

we have learned so far, and then to list several directions in which the present

work could be extended. Some of the extensions have been mentioned previously;

we bring them all together here because we feel ‘chatknowing what hasn’t been

done is a good thing.

First, what we know:

(1) The accuracy of the effective radii capacitance approximation for a

body inside a spherical enclosure, or for a spherical body inside

any enclosure, is very good indeed. The developments in Section III

give good reasons for this accuracy if the body is small. The

examples of Section IV show that the error of the approximation

doesn’t exceed 1% until the body size is about two-thirds the

enclosure size (here “size” means a linear dimension), when either

is a sphere.

(2) The accuracy of the effective radii capacitance approximation for

an arbitrarily-shaped body and enclosure is still good, better than

one might expect until one has looked_into the problem. Again,

Section 111 contains reasons for this accuracy. The examples of

Section IV show that the error of the apptoxirnationdoesn’t much

exceed 1% until the body size is about half the enclosure size, where

again “size” means a linear dimension.

(3) The calculation of r2 can be reduced to

Dirichlet problem for the enclosure (or

we can’t:pick out= from symmetry).
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(4) The two simple shapes for which r2 calculations were made in Section

VI exhibit what is probably a general property of convex enclosures

--
‘2

is determined primarily by the shortest distance between $

and the wall of the enclosure; it is just a little larger than this

shortest distance.

(5) It is possible to put rather good upper and lower bounds on the r2

of an enclosure by invoking the many types of bounds known for -the

‘ of the body inverse to the enclosure.
‘1

Unfortunately, up to now

an easy calculation of these bounds requires a prior knowledge of

either from symmetry or by some other argument.%’

Now, what it would be nice to know:

(1) What is the capacitance between an arbitrary B and E when the center

of charge of B is a little off ~? In other words, what is the

generalization of equation (3.32) to arbitrarily shaped enclosures?

(2) How do ~and~ compare for some other examples than those treated in

this note? Some cases that come ‘coone’s mind are a disk insides

sphere, a disk between two plates, and a sphere in a cube.

(3) What is the best way ‘cowrite a general computer code to calculate

the r
2
of an arbitrary enclosure? In other words, what is the most

efficient formulation of the interior Dirichlet problem that will

give us, ‘say,less than 1% error in the numeri~al calculation of r2.

(4) What are the r2’s of some other simple enclosure shapes besides those

treated in Section VI? The r2’s of ellipsoids and finite length

elliptical cylinders would give us more possibilities to get good

bounds on the rq’s of more complicated enclosures.

(5) What kind of si~ple bounds can one put on~? We have discussed a

few simple bounds on r2 in Section VII. Can these bounds be generalized,

in some simple way, to give bounds on ~ itself?

(6) Can one put abound on the proportionality constant between (CbA/~)
3and (rl/r2) for any small B in any E?

(7) Mos’cof the bounds we talked about in Section VII required a prior

knowledge of the position of ~. What kind of bounds can one put on

‘2
without knowing r ?
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(8) For all the examples of Section IV, Zwas a lower bound on~. Is

there any general statement one can make about the kinds of bodies

for which this is true? The example of a disk between two plates

would show that it can’t be true for an arbitrary B and E.

(9) HOW do slight perturbations in a spherical E affect the order of

error arguments of Section 111.B?

(10) How do perturbations of the boundary of a general E affect its r2?

(11) What is the error in r2 incurred by replacing the actual electro-

static boundary of a simulator enclosure (probably a wire grid of

some sort) by the smooth surface that facilitates analytical and

numerical calculations?

(12) How should one best calculate &he effect of space charge on~?

o
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